
Safety Critical Specification for Java

Version 0.76
8 July 2010

First Release

Every effort has been made to ensure that all statements and information contained herein are
accurate, however The Open Group accepts no liability for any error or omission.

c©Copyright 2006-2010 The Open Group

Safety Critical Specification for Java

Expert Group Membership

Each Expert Group member is listed with the organization represented, if any.

Core Group

Doug Locke (LC Systems Services Inc., representing The Open Group -
Specification Lead)

B. Scott Andersen (Self - employed by Verocel)
Ben Brosgol (Self - employed by AdaCore)

Mike Fulton (IBM)
Thomas Henties (Siemens AG)

James J. Hunt (aicas GmbH)
Johan Olmütz Nielsen (DDC-I, Inc.)

Kelvin Nilsen (Atego)
Martin Schoeberl (Self - employed by T.U. Copenhagen)

Joyce Tokar (Self - employed by Pyrrhusoft)
Jan Vitek (Self - employed by Purdue U.)

Andy Wellings (Self - employed by U. of York)

Consulting Group

Robert Allen (Boeing)
Greg Bollella (Oracle)
Eric Arseneau (Self)

Chris Cole (Apogee Software, Inc.)
Arthur Cook (Self - employed by Alion Science & Technology)

Allen Goldberg (Self)
David Hardin (Rockwell Collins, Inc.)

Takeoka Shozo (AXE, Inc.)

ii Version 0.76
Confidentiality: Public Distribution

8 July 2010

Contents

1 Introduction 1

1.1 Definitions, Background, and Scope 2

1.2 Additional Constraints on Java Technology 5

1.3 Key Specification Terms . 7

1.4 Specification Context . 7

1.5 Overview of the Remainder of the Document 8

2 Programming Model 9

2.1 The Mission Concept . 9

2.2 Compliance Levels . 10

2.2.1 Level 0 . 11

2.2.2 Level 1 . 13

2.2.3 Level 2 . 13

2.3 SCJ Annotations . 13

2.4 Use of Asynchronous Event Handlers 16

2.5 Development vs. Deployment Compliance 16

2.6 Verification of Safety Properties 17

3 Mission Life Cycle 19

3.1 Semantics and Requirements . 20

3.2 Level Considerations . 24

3.2.1 Level 0 . 24

3.2.2 Level 1 . 25

3.2.3 Level 2 . 25

iii

Safety Critical Specification for Java

3.3 API . 25

3.3.1 Safelet . 25

3.3.2 MissionSequencer . 26

3.3.3 Mission . 28

3.3.4 Cyclet . 30

3.3.5 CyclicSchedule . 32

3.3.6 CyclicSchedule.Frame . 33

3.3.7 Level0Mission . 33

3.3.8 Level0MissionSequencer 34

3.3.9 SingleMissionSequencer 35

3.4 Application Initialization Sequence Diagram 36

3.5 A Sample Level 0 Application . 36

3.6 A Slightly More Complex Level 0 Application 41

3.7 Level 2 Example . 42

3.7.1 MyLevel2App.java . 42

3.7.2 MainMissionSequencer.java 43

3.7.3 PrimaryMission.java . 43

3.7.4 CleanupMission.java . 44

3.7.5 SubMissionSequencer.java 44

3.7.6 StageOneMission.java . 44

3.7.7 StageTwoMission.java . 45

3.7.8 MyPeriodicEventHandler.java 45

3.7.9 MyCleanupThread.java . 45

4 Concurrency and Scheduling Models 47
4.1 Semantics and Requirements . 48

4.2 Level Considerations . 49

4.2.1 Level 0 . 49

4.2.2 Level 1 . 49

4.2.3 Level 2 . 50

4.3 The Parameter Classes . 50

4.3.1 Class java.safetycritical.StorageParameters 51

iv Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

4.3.2 Class javax.realtime.ReleaseParameters 53

4.3.3 Class java.realtime.PeriodicParameters 54

4.3.4 Class javax.realtime.AperiodicParameters 55

4.3.5 Class javax.realtime.SchedulingParameters 55

4.3.6 Class javax.realtime.PriorityParameters 56

4.4 Asynchronous Events and their Handlers 56

4.4.1 Class javax.realtime.AsyncEvent 57

4.4.2 Class javax.safetycritical.AperiodicEvent 57

4.4.3 Class javax.realtime.Schedulable 58

4.4.4 Class javax.safetycritical.ManagedSchedulable 58

4.4.5 Class javax.realtime.AsyncEventHandler 60

4.4.6 Class javax.realtime.BoundAsyncEventHandler 60

4.4.7 Class javax.safetycritical.ManagedEventHandler 60

4.4.8 Class javax.safetycritical.PeriodicEventHandler 61

4.4.9 Class javax.safetycritical.AperiodicEventHandler 63

4.5 Threads and Real-Time Threads 64

4.5.1 Class java.lang.Thread . 64

4.5.2 Class java.lang.Thread.UncaughtExceptionHandler 66

4.5.3 Class javax.realtime.RealtimeThread 66

4.5.4 Class javax.realtime.NoHeapRealtimeThread 67

4.5.5 Class javax.safetycritical.ManagedThread 67

4.6 Scheduling and Related Activities 69

4.6.1 Class java.safetycritical.CyclicExecutive 69

4.6.2 Class javax.safetycritical.CyclicSchedule 70

4.6.3 Class javax.safetycritical.CyclicSchedule.Frame 70

4.6.4 Class javax.realtime.Scheduler 71

4.6.5 Class javax.realtime.PriorityScheduler 71

4.6.6 Class javax.safetycritical.PriorityScheduler 72

4.6.7 Class javax.realtime.AffinitySet 72

4.6.8 Class jaxax.safetycritical.Services 74

4.7 Rationale . 76

8 July 2010 Version 0.76
Confidentiality: Public Distribution

v

Safety Critical Specification for Java

4.7.1 Scheduling and Synchronization Issues 77

4.7.2 Multiprocessors . 78

4.7.3 Feasibility Analysis and Multi-Processors 79

4.7.4 Impact of Clock Granularity 80

4.7.5 Deadline Miss Detection 80

4.8 Compatibility . 81

5 Interaction with External Devices 83

5.1 Happenings and Interrupt Handling 83

5.1.1 Semantics and Requirements 83

5.1.2 Level Considerations . 86

5.2 The Happening Class Hierarchy 87

5.2.1 Class javax.realtime.Happening 87

5.2.2 javax.realtime.EventHappening 89

5.2.3 javax.realtime.AutonomousHappening 89

5.2.4 javax.safetycritical.ManagedAutonomousHappening 90

5.2.5 javax.realtime.EventExaminer 91

5.2.6 javax.realtime.ControlledHappening 91

5.2.7 javax.safetycritical.ManagedControlledHappening 92

5.2.8 javax.realtime.InterruptHappening 93

5.2.9 javax.safetycritical.ManagedInterruptHappening 93

5.3 Raw Memory Access . 94

5.3.1 Semantics and Requirements 94

5.3.2 Level Considerations . 95

5.3.3 javax.realtime.RawMemoryName 95

5.3.4 javax.realtime.RawIntegralAccess 96

5.3.5 javax.realtime.RawIntegralAccessFactory 99

5.3.6 javax.realtime.RawMemory 100

5.4 Rationale . 101

5.5 Compatibility . 102

vi Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

6 Input and Output Model 103
6.1 Semantics and Requirements . 103

6.2 Level Considerations . 103

6.3 APIs . 104

6.3.1 Interface javax.microedition.io.Connection 104

6.3.2 Class javax.microedition.io.Connector 105

6.3.3 Class javax.microedition.io.ConnectionNotFoundException 106

6.3.4 Interface javax.microedition.io.InputConnection 106

6.3.5 Interface javax.microedition.io.OutputConnection 107

6.3.6 Interface javax.microedition.io.StreamConnection 107

6.4 Rationale . 107

6.5 Compatibility . 107

7 Memory Management 109
7.1 Semantics and Requirements . 109

7.1.1 Memory Model . 110

7.2 Level Considerations . 110

7.2.1 Level 0 . 110

7.2.2 Level 1 . 111

7.2.3 Level 2 . 111

7.3 Memory related APIs . 112

7.3.1 Interface javax.realtime.AllocationContext 112

7.3.2 Interface javax.realtime.ScopedAllocationContext 114

7.3.3 Class javax.realtime.MemoryArea 114

7.3.4 Class javax.realtime.ImmortalMemory 116

7.3.5 Class javax.realtime.ScopedMemory 116

7.3.6 Class javax.realtime.LTMemory 117

7.3.7 Class javax.safetycritical.ManagedMemory 117

7.3.8 Class javax.safetycritical.MissionMemory 118

7.3.9 Class javax.safetycritical.PrivateMemory 118

7.3.10 Class javax.realtime.SizeEstimator 119

7.4 Rationale . 120

8 July 2010 Version 0.76
Confidentiality: Public Distribution

vii

Safety Critical Specification for Java

7.4.1 Nesting Scopes . 122

7.5 Compatibility . 122

8 Clocks, Timers, and Time 123
8.1 Semantics and Requirements . 123

8.1.1 Clocks . 123

8.1.2 Time . 123

8.1.3 RTSJ Constraints . 124

8.2 Level Considerations . 124

8.3 API . 124

8.3.1 Class javax.realtime.Clock 124

8.3.2 Interface javax.realtime.ClockCallBack 127

8.3.3 Class javax.realtime.HighResolutionTime 128

8.3.4 Class javax.realtime.AbsoluteTime 129

8.3.5 Class javax.realtime.RelativeTime 132

8.4 Rationale . 135

8.5 Compatibility . 135

9 Java Metadata Annotations 137
9.1 Semantics and Requirements . 137

9.1.1 Annotations for Enforcing Compliance Levels 138

9.1.2 Annotations for Restricting Behavior 140

9.1.3 Annotations for Memory Safety 142

9.2 Level Considerations . 146

9.3 API . 147

9.3.1 Class javax.safetycritical.annotate.SCJRestricted 147

9.3.2 Class javax.safetycritical.annotate.SCJAllowed 147

9.3.3 Class javax.safetycritical.annotate.Level 148

9.3.4 Class javax.safetycritical.annotate.Restrict 148

9.4 Rationale and Examples . 148

9.4.1 Compliance Level Annotation Example 149

9.4.2 Memory Safety Annotations Example 151

9.4.3 A Large-Scale Example 152

viii Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

10 Class Libraries for Safety Critical Applications 155

10.1 Comparison of SCJ with JDK 1.6 java.io 156

10.2 Comparison of SCJ with JDK 1.6 java.lang package 156

10.3 Comparison of SCJ API with JDK 1.6 java.lang.annotation 168

10.4 Comparison of SCJ Safety Critical Java API with JDK 1.6 java.util 169

11 JNI 171

11.1 Semantics and Requirements . 171

11.2 Level Considerations . 171

11.3 API . 171

11.3.1 Supported Services . 171

11.3.2 Annotations . 173

11.4 Rationale . 173

11.4.1 Unsupported Services . 173

11.5 Example . 175

11.6 Compatibility . 176

11.6.1 RTSJ Compatibility Issues 176

11.6.2 General Java Compatibility Issues 176

12 Exceptions 177

12.1 Semantics and Requirements . 177

12.1.1 New Functionality . 178

12.2 Level Considerations . 179

12.3 API . 179

12.3.1 Class java.lang.Error . 179

12.3.2 Class java.lang.Exception 180

12.3.3 Class java.lang.Throwable 181

12.3.4 Class jaxax.safetycritical.ThrowBoundaryError 182

12.4 Rationale . 183

12.5 Compatibility . 185

12.5.1 RTSJ Compatibility Issues 185

12.5.2 General Java Compatibility Issues 185

8 July 2010 Version 0.76
Confidentiality: Public Distribution

ix

Safety Critical Specification for Java

A Javadoc Description of Package java.io 187
A.1 Interfaces . 189

A.1.1 INTERFACE Closeable . 189

A.1.2 INTERFACE Flushable . 189

A.1.3 INTERFACE Serializable 189

A.2 Classes . 190

A.2.1 CLASS FilterOutputStream 190

A.2.2 CLASS IOException . 191

A.2.3 CLASS InputStream . 192

A.2.4 CLASS OutputStream . 193

B Javadoc Description of Package java.lang 195
B.1 Interfaces . 202

B.1.1 INTERFACE Appendable 202

B.1.2 INTERFACE CharSequence 202

B.1.3 INTERFACE Cloneable . 203

B.1.4 INTERFACE Comparable 204

B.1.5 INTERFACE Deprecated 204

B.1.6 INTERFACE Override . 204

B.1.7 INTERFACE Runnable . 205

B.1.8 INTERFACE SuppressWarnings 205

B.1.9 INTERFACE Thread.UncaughtExceptionHandler 205

B.2 Classes . 206

B.2.1 CLASS ArithmeticException 206

B.2.2 CLASS ArrayIndexOutOfBoundsException 207

B.2.3 CLASS ArrayStoreException 208

B.2.4 CLASS AssertionError 209

B.2.5 CLASS BigDecimal . 211

B.2.6 CLASS BigInteger . 223

B.2.7 CLASS Boolean . 232

B.2.8 CLASS Byte . 235

B.2.9 CLASS Character . 240

x Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

B.2.10 CLASS Class . 247

B.2.11 CLASS ClassCastException 250

B.2.12 CLASS ClassNotFoundException 251

B.2.13 CLASS CloneNotSupportedException 252

B.2.14 CLASS Double . 253

B.2.15 CLASS Enum . 259

B.2.16 CLASS Error . 261

B.2.17 CLASS Exception . 263

B.2.18 CLASS ExceptionInInitializerError 264

B.2.19 CLASS Float . 265

B.2.20 CLASS IllegalArgumentException 271

B.2.21 CLASS IllegalMonitorStateException 273

B.2.22 CLASS IllegalStateException 274

B.2.23 CLASS IllegalThreadStateException 275

B.2.24 CLASS IncompatibleClassChangeError 276

B.2.25 CLASS IndexOutOfBoundsException 277

B.2.26 CLASS InstantiationException 278

B.2.27 CLASS Integer . 279

B.2.28 CLASS InternalError . 286

B.2.29 CLASS InterruptedException 287

B.2.30 CLASS InvocationTargetException 288

B.2.31 CLASS Long . 289

B.2.32 CLASS Math . 297

B.2.33 CLASS NegativeArraySizeException 307

B.2.34 CLASS NullPointerException 308

B.2.35 CLASS Number . 309

B.2.36 CLASS NumberFormatException 311

B.2.37 CLASS Object . 311

B.2.38 CLASS OutOfMemoryError 314

B.2.39 CLASS RuntimeException 315

B.2.40 CLASS Short . 316

8 July 2010 Version 0.76
Confidentiality: Public Distribution

xi

Safety Critical Specification for Java

B.2.41 CLASS StackOverflowError 321

B.2.42 CLASS StackTraceElement 322

B.2.43 CLASS StrictMath . 324

B.2.44 CLASS String . 334

B.2.45 CLASS StringBuilder . 346

B.2.46 CLASS StringIndexOutOfBoundsException 353

B.2.47 CLASS System . 354

B.2.48 CLASS Thread . 356

B.2.49 CLASS Throwable . 359

B.2.50 CLASS UnsatisfiedLinkError 362

B.2.51 CLASS UnsupportedOperationException 363

B.2.52 CLASS VirtualMachineError 364

B.2.53 CLASS Void . 365

C Javadoc Description of Package javax.microedition.io 367

C.1 Interfaces . 369

C.1.1 INTERFACE Connection 369

C.1.2 INTERFACE InputConnection 369

C.1.3 INTERFACE OutputConnection 370

C.1.4 INTERFACE StreamConnection 370

C.2 Classes . 370

C.2.1 CLASS ConnectionNotFoundException 370

C.2.2 CLASS Connector . 371

D Javadoc Description of Package javax.realtime 373

D.1 Interfaces . 379

D.1.1 INTERFACE AllocationContext 379

D.1.2 INTERFACE ClockCallBack 381

D.1.3 INTERFACE EventExaminer 382

D.1.4 INTERFACE PhysicalMemoryName 382

D.1.5 INTERFACE RawIntegralAccess 382

D.1.6 INTERFACE RawIntegralAccessFactory 384

xii Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

D.1.7 INTERFACE RawMemoryName 385

D.1.8 INTERFACE RawScalarAccess 385

D.1.9 INTERFACE RawScalarAccessFactory 385

D.1.10 INTERFACE Schedulable 385

D.1.11 INTERFACE ScopedAllocationContext 386

D.2 Classes . 387

D.2.1 CLASS AbsoluteTime . 387

D.2.2 CLASS AffinitySet . 392

D.2.3 CLASS AperiodicParameters 394

D.2.4 CLASS AsyncEvent . 394

D.2.5 CLASS AsyncEventHandler 395

D.2.6 CLASS AutonomousHappening 395

D.2.7 CLASS BoundAsyncEventHandler 396

D.2.8 CLASS Clock . 396

D.2.9 CLASS ControlledHappening 400

D.2.10 CLASS EventHappening 401

D.2.11 CLASS Happening . 402

D.2.12 CLASS HighResolutionTime 404

D.2.13 CLASS IllegalAssignmentError 408

D.2.14 CLASS ImmortalMemory 408

D.2.15 CLASS InaccessibleAreaException 409

D.2.16 CLASS InterruptHappening 410

D.2.17 CLASS LTMemory . 412

D.2.18 CLASS MemoryAccessError 413

D.2.19 CLASS MemoryArea . 413

D.2.20 CLASS MemoryInUseException 416

D.2.21 CLASS MemoryScopeException 417

D.2.22 CLASS NoHeapRealtimeThread 417

D.2.23 CLASS PeriodicParameters 418

D.2.24 CLASS PhysicalMemoryManager 419

D.2.25 CLASS PriorityParameters 420

8 July 2010 Version 0.76
Confidentiality: Public Distribution

xiii

Safety Critical Specification for Java

D.2.26 CLASS PriorityScheduler 420

D.2.27 CLASS ProcessorAffinityException 421

D.2.28 CLASS RawMemoryAccess 421

D.2.29 CLASS RealtimeThread 424

D.2.30 CLASS RelativeTime . 425

D.2.31 CLASS ReleaseParameters 429

D.2.32 CLASS Scheduler . 429

D.2.33 CLASS SchedulingParameters 429

D.2.34 CLASS ScopedCycleException 430

D.2.35 CLASS SizeEstimator . 430

D.2.36 CLASS ThrowBoundaryError 432

E Javadoc Description of Package javax.safetycritical 433
E.1 Interfaces . 437

E.1.1 INTERFACE ManagedSchedulable 437

E.1.2 INTERFACE Safelet . 437

E.1.3 INTERFACE Schedulable 438

E.2 Classes . 439

E.2.1 CLASS AperiodicEvent 439

E.2.2 CLASS AperiodicEventHandler 440

E.2.3 CLASS Cyclet . 441

E.2.4 CLASS CyclicExecutive 443

E.2.5 CLASS CyclicSchedule 445

E.2.6 CLASS CyclicSchedule.Frame 446

E.2.7 CLASS InterruptHandler 447

E.2.8 CLASS InterruptHappening 448

E.2.9 CLASS Level0Mission . 448

E.2.10 CLASS Level0MissionSequencer 449

E.2.11 CLASS ManagedEventHandler 450

E.2.12 CLASS ManagedInterruptHappening 451

E.2.13 CLASS ManagedMemory 452

E.2.14 CLASS ManagedThread 453

xiv Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

E.2.15 CLASS Mission . 454

E.2.16 CLASS MissionSequencer 457

E.2.17 CLASS NoHeapRealtimeThread 459

E.2.18 CLASS PeriodicEventHandler 460

E.2.19 CLASS PortalExtender 462

E.2.20 CLASS PriorityScheduler 462

E.2.21 CLASS PrivateMemory 462

E.2.22 CLASS Services . 463

E.2.23 CLASS SingleMissionSequencer 465

E.2.24 CLASS StorageConfigurationParameters 466

E.2.25 CLASS StorageParameters 467

E.2.26 CLASS Terminal . 469

E.2.27 CLASS ThrowBoundaryError 470

F Javadoc Description of Package javax.safetycritical.annotate 473
F.1 Interfaces . 474

F.2 Classes . 474

F.2.1 CLASS Level . 474

F.2.2 CLASS Restrict . 474

G Javadoc Description of Package javax.safetycritical.io 477
G.1 Interfaces . 478

G.2 Classes . 478

G.2.1 CLASS Connector . 478

G.2.2 CLASS ConsoleConnection 479

8 July 2010 Version 0.76
Confidentiality: Public Distribution

xv

Safety Critical Specification for Java

Document Control

Version Status Date
0.1 Draft Uncontrolled draft
0.2 Draft Uncontrolled draft
0.3 Draft Uncontrolled draft
0.4 Draft 25 July 2008
0.5 Draft Work-in-progress
0.6 Draft Work-in-progress
0.65 Draft San Diego Feb 2009
0.66 Draft London May 2009
0.67 Draft Pre-Toronto July 2009
0.68 Draft Toronto July 2009
0.69 Draft Pre-Madrid Oct 2009
0.73 Draft Pre-Karlsruhe Apr 2010
0.75 Draft Karlsruhe May 2010
0.76 First Release JCP July 2010

xvi Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

Executive Summary

This Safety Critical Java Specification (JSR-302), based on the Real-Time Specifica-
tion for Java (JSR-1), defines a set of Java services that are designed to be usable by
applications requiring some level of safety certification. The specification is targeted
to a wide variety of certification paradigms, but is designed specifically to enable
applications and conforming implementations to be certified to DO-178B, Level A.

This specification presents a set of Java classes providing for safety critical applica-
tion startup, concurrency, scheduling, synchronization, input/output, memory man-
agement, timer management, interrupt processing, native interfaces, and exceptions.
To enhance the certifiability of applications constructed to conform to this specifica-
tion, this specification also presents a set of annotations that can be used to permit
static checking for applications to guarantee that the application meets certain safety
properties.

To enhance the portability of safety critical applications across different implemen-
tations of this specification, this specification also lists a minimal set of Java libraries
that must be provided by conforming implementations.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

xvii

Safety Critical Specification for Java

xviii Version 0.76
Confidentiality: Public Distribution

8 July 2010

Chapter 1

Introduction

The Real-Time Specification for Java (RTSJ) [?] was designed to address the gen-
eral needs of adapting Java for use in real-time applications. As Java has matured,
it has become increasingly desirable to leverage Java technology within applications
that require not only predictable performance and behavior, but also high reliability.
When such performance and reliability are required to protect property and human
life, such systems are said to be safety-critical. This document specifies a Java tech-
nology appropriate for safety-critical systems called Safety Critical Java (SCJ).

Safety-critical systems are systems in which an incorrect response or an incorrectly
timed response can result in significant loss to its users; in the most extreme case,
loss of life may result from such failures. For this reason, safety-critical applications
require an exceedingly rigorous validation and certification process. Such certifi-
cation processes are often required by legal statute or by certification authorities.
For example, in the United States, the Federal Aviation Administration requires that
safety-critical software be certified using the Software Considerations in Airborne
Systems and Equipment Certification (DO-178B [?] or in Europe ED-12B [?]) stan-
dard controlled by an independent organization.

The development of certification evidence for a software work-product used within
a safety-critical software system is extremely time-consuming and expensive. Most
safety-critical software development projects are carefully designed to reduce the ap-
plication size and scope to its most minimal form to help manage the costs associated
with the development of certification evidence. Examples of the resulting restrictions
may include the elimination or severe limitations on recursion and the rigorous and
careful use of memory, especially heap space, to ensure out-of-memory conditions
are precluded.

In the context of Java technology, as compared to other Java application paradigms,
this requires a more efficient and smaller set of Java virtual machines and libraries.
They must be more efficient and smaller both to enhance their certifiability and to

1

Safety Critical Specification for Java

permit meeting tight safety critical application performance requirements when run-
ning in the Java run-time environments and libraries. Additionally, the applications
must exhibit freedom from exceptions that cannot be successfully handled. This re-
quires, for example, that there be no memory access errors at run-time.

This safety-critical specification is designed to enable the creation of safety-critical
applications, built using safety-critical Java infrastructures, and using safety-critical
libraries, amenable to certification under DO-178B, Level A, as well as other safety-
critical standards.

1.1 Definitions, Background, and Scope

The field of safety-critical software development makes use of a number of special-
ized terms. Though definitions for these terms may vary throughout safety-critical
systems literature, there are some concepts key to this discussion that can be crisply
defined. Below is a set of specific terms and associated definitions used throughout
this standard:

Storey [?] provides several useful definitions:

• Safety is a property of a system that demonstrates that a failure in the operation
of the system will not endanger human life or its environment.

• A safety-related system is one in which the safety of the equipment and its
environment is assured.

• The term safety-critical system is normally used as a synonym for a safety-
related system, although in some cases it may suggest a system of high criti-
cality (e.g. in DEF STAN 00-55[?], it relates to Safety Integrity Level 4). A
safety-critical system is generally one which carries an extremely high level of
assurance of its safety.

• Safety integrity is the likelihood of a safety-related system satisfactorily per-
forming its required safety functions under all the stated conditions within a
stated period of time.

Some additional definitions from Burns and Wellings [?] are useful as well:

• Hard real-time components are those where it is imperative that output re-
sponses to input stimuli occur within a specified deadline.

• Soft real-time components are those where meeting output response time re-
quirements is important, but where the system will still function correctly if
the responses are occasionally late.

• Firm real-time components have associated time constraints that can be missed
occasionally, but where there is no benefit from a late response.

2 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

In the aviation industry, the DO-178B standard defines the following software levels

• Level A: Software whose anomalous behavior would cause or contribute to a
failure of system function resulting in a catastrophic failure condition for the
aircraft. A catastrophic failure is one which would prevent continued safe flight
and landing.

• Level B: Software whose anomalous behavior would cause or contribute to a
failure of system function resulting in a hazardous/severe major failure con-
dition for the aircraft. A hazardous/severe-major failure is one which would
reduce the capability of the aircraft or the ability of the crew to cope with ad-
verse operating conditions to the extent that there would be, for example, a
large reduction in safety margins or potentially fatal injuries to a small number
of the aircrafts’ occupants.

• Level C: Software whose anomalous behavior would cause or contribute to a
failure of system function resulting in a major failure condition for the aircraft.
A major failure is one which would reduce the capability of the aircraft or
the ability of the crew to cope with adverse operating conditions to the extent
that there would be, for example, a significant reduction in safety margins or
discomfort to occupants, possibly including injuries.

• Level D: Software whose anomalous behavior would cause or contribute to a
failure of system function resulting in a minor failure condition for the aircraft.
A minor failure is one which would not significantly reduce aircraft safety or
functionality.

• Level E: Software whose anomalous behavior would cause or contribute to a
failure of system function with no effect on aircraft operational capability.

Note that Level D and Level E systems may be constructed from Java technology
without the aid of this specification.

Other standards have similarly defined levels and also add a probability of such a
failure occurring. For example, in IEC 61508 [?], the maximum probability of a
catastrophic failure (for Level A) is defined to be between 10−5 and 10−4 per year per
system. In DEF STANDARD 00-56 [?], Safety Integrity Levels (SILs) are defined in
terms of the predicted frequency of failures and the resulting severity of any resulting
accident (see Figure 1).

The type of verification techniques that must be used to show that a software com-
ponent meets its specification will depend on the SIL that has been assigned to that
component. For example, Level A and B software might be constrained so it can be
subjected to various static analysis techniques (such as control flow analysis).

Evidence may also be demanded for structural coverage analysis, an analysis of the
execution flows for the software that determines that all paths through the software
have been tested or analyzed, and that there is an absence of unintended function

8 July 2010 Version 0.76
Confidentiality: Public Distribution

3

Safety Critical Specification for Java

Improbable

4

4 3 3

3

2

2

2 2

1

1

24

2

33

3 2

2 1

Catastophic

Remote

Critical Marginal Negligible

Accident Severity
Failure Probability

Frequent

Probable

Occasional

Figure 1.1: DEF STANDARD 00-56 Safety Integrity Levels

within the code. Additionally, decisions affecting control flow may also need to
be examined and evidence produced to show that all decisions, and perhaps even
conditions within those decisions, have been exercised though testing or analysis.
Specific techniques such as Modified Condition Decision Coverage (MCDC) [?] may
be mandated as part of this analysis.

The type and level of structural coverage analysis (within a requirements-based test-
ing framework) might be different for different certification levels. For example in
DO-178B MCDC is compulsory at Level A but optional at Level B; only statement
level coverage is required at Level C. Also, whether or not the analysis and testing
must be carried with independence (a requirement that the developer of an artifact
must not also be its reviewer) may vary among levels.

It is important to understand that this specification can not, and will not attempt
to ensure that a conforming application or implementation will meet the demands
of certification under any safety-critical standard, including DO-178B. Rather, this
specification is intended to enable a conforming application and implementation to
be certifiable when all conditions defined by a safety-critical standard (such as DO-
178B) are also met. It is the responsibility of the developer to understand and fulfill
the specific requirements of the applicable standards. By implication, it remains the
responsibility of application and implementation developers to create the ”certifica-
tion artifacts,” i.e., the required documentation for a certification authority that will
be needed to complete the application’s safety certification.

The requirements imposed by DO-178B were used to identify the capabilities and
limitations likely needed by a safety-critical application developer using Java tech-
nology. Additionally, the objectives identified within DO-178B for Level A soft-
ware were used to guide key decisions within the Safety Critical Java framework

4 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

since Level A represents one of the most stringent standards in use today. Systems
amenable to certification under DO-178B Level A are also likely to attain certifica-
tion under similar competing standards.

The use of five levels in the DO-178B reflects the fact that the safety requirements
of any system, including its software, occupy a place on a wide spectrum of safety
properties. At one end of this spectrum are systems whose failure could potentially
cause the loss of human life, such as those covered by DO-178B, Level A. At the
other end of the spectrum are systems with no safety responsibilities, such as an
in-flight entertainment system.

The next major position on this spectrum below safety-critical is that of mission-
critical software. Mission-critical software consists of software whose failure would
produce the loss of key capabilities needed to successfully carry out the purpose
of the software such that a failure could cause considerable financial loss, loss of
prestige, or loss of some other value. An example of a mission-critical system would
be a Mars rover.

Unfortunately, there is no fully accepted definition of mission-critical real-time soft-
ware, although there is broad agreement that mission-critical software is deemed
vital for the success of the enterprise using that software, and any failure will have a
significant negative impact on the enterprise (possibly even its continuing existence).
Safety-critical software is clearly also mission-critical software in the sense that fail-
ure of safety-related software is unlikely to result in a successful mission. In general
however, mission-critical software may not (directly) cause loss of life and therefore
will probably not be subject to as rigorous a development and assessment/certifica-
tion process as safety-critical software. The authors of this specification have con-
siderable interest in mission-critical systems, and consider it likely that a similar (but
broader) specification may be created addressing mission-critical systems, but a Java
specification for mission-critical systems is explicitly beyond the scope of this effort.

1.2 Additional Constraints on Java Technology

There are many issues associated with the use of Java technology in a safety-critical
system but the two largest issues are related to the management of memory and con-
currency. This specification addresses both of these architectural areas and defines
a model based on that described in the RTSJ. Six major additional constraints are
imposed on the RTSJ model as described below.

1. The safety-critical software community is conservative in adopting new tech-
nologies, approaches, and architectures. The safety-critical Java software spec-
ification is constrained to respect both the traditions of the Java technology

8 July 2010 Version 0.76
Confidentiality: Public Distribution

5

Safety Critical Specification for Java

community and the safety-critical systems community. The Ada Ravenscar
profile is an example of a language and technology that has been constrained
to meet the needs of the safety-critical software community, but it was ac-
cepted only after the definition was stringently defined and simplified from its
pure Ada roots, especially in regards to the models of concurrency that were
provided. Constraints on the usage of dynamic memory allocation, and es-
pecially reallocation, are also imposed to mitigate out-of-memory conditions
and simplify analysis of memory usage during development of certification
evidence. Severe constraints on concurrency and heap usage, not typical of
traditional Java technology-based applications, are commonplace within the
safety-critical software community.

2. The safety-critical Java technology memory management and concurrency spec-
ified here is based on the technology within the RTSJ (version 1.1) and Java
technology version 6.0. With very minor exceptions delineated later in this
specification, a safety-critical Java application constructed in accordance to
this specification will execute correctly (although not with the same perfor-
mance) on a RTSJ compliant platform when the Safety Critical Java libraries
specified herein are provided.

3. New classes are defined in this specification, but these classes are designed to
be implementable by using the facilities of the RTSJ. New classes are gener-
ally used when the use of the native RTSJ facilities would obfuscate or add
complexity to a conforming application or implementation, or to increase the
safety of an interface. Another reason for defining new classes is control of the
implementation configuration (e.g., StorageParameters) to prevent exceptions
such as out of memory exceptions.

4. Annotations are defined in this specification to restrict the memory manage-
ment thus enabing off-line tools to detect the absence of certain run-time er-
rors. Annotations have also been used to provide a means of documenting the
assumptions made by the programmer to facilitate off-line tools in identifying
errors prior to run-time.

5. Some widely used Java capabilities are omitted from this specification to en-
able the certifiability of conforming applications and implementations. Dy-
namic class loading is not required. Finalizers are not required. Many Java
and RTSJ classes and methods are omitted. The procedure for starting an ap-
plication differs from other Java platforms. Unlike the RTSJ, synchronization
is required to support priority ceiling emulation, and a conforming implemen-
tation need not support priority inheritance. Further, the RTSJ requires that a
BoundaryErrorException be created in a parent scoped memory if an exception
is thrown but unhandled while the thread is in a child scoped memory. This

6 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

specification has the same behavior except that the BoundaryErrorException
behaves as if it had been preallocated in per-thread storage.

6. This specification takes no position on whether a Java Virtual Machine is used
to execute safety critical applications or the application is compiled to object
code and executed using a run-time environment.

1.3 Key Specification Terms

1. Implementation Defined — When the phrase ”implementation defined” is used
in this specification, it means that the antecedent can be designed and imple-
mented in any way that the implementation’s designers wish, but that the de-
tails of how it is implemented must be documented and made available to users
and prospective users of the implementation.

1.4 Specification Context

This specification defines the requirements for JSR-302 conformant applications and
implementations and is accompanied by two other components: a Reference Imple-
mentaion (RI) and a Technology Compatibility Kit (TCK).

The RI is an actual implementation of the mandatory interfaces of this specification
that satisfies these requirements and thus permits users of this specification to fully
understand the specification in the context of an executing program, as well as pro-
viding a platform for experimenting with application designs that conform to this
specfication.

The TCK consists of Java application code that conforms with this specification and
serves to test whether an implementation is conformant to this specification. Con-
forming implementations must correctly execute the entire TCK in order to claim
JSR-302 conformance. The TCK source code for JSR-302 is publicly available un-
der an open source license, but it must be understood that an implementation must
correctly execute the official TCK with no changes in order to claim JSR-302 con-
formance.

1.5 Overview of the Remainder of the Document

This specification is focused on defining the constraints on the Java technology nec-
essary to facilitate the development of safety-critical applications. The organization
of this document is as follows.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

7

Safety Critical Specification for Java

Chapter 2 presents the programming model and introduces the concept of a mis-
sion, and the three compliance levels 0, 1, and 2. These compliance levels provide
application developers with varying levels of sophistication in the programming en-
vironment with level 0 being the most simple (and limiting), and level 2 offering the
greatest number of facilities.

Chapter 3 presents the mission life cycle and how a mission (an application or portion
of an application) is initialized, run, and terminated.

Chapter 4 presents the concurrency and scheduling models including the types and
handling of events (periodic and aperiodic). Threads and schedulable objects are also
discussed, as well as multiprocessors.

Chapter 5 presents the external event handling model, including happenings, inter-
rupts, and their relationships.

Chapter 6 presents SCJ support for simple, low-complexity I/O.

Chapter 7 presents memory, and specifically how memory handling differs from that
in the RTSJ. Control mechanisms for memory area scope and lifetimes are identified.

Chapter 8 presents clocks, timers, and time.

Chapter 9 presents the Java metadata annotation system and its use within the SCJ
class library.

Chapter 10 presents class libraries for SCJ applications.

Chapter 11 presents Java Native Interface (JNI) usage within SCJ applications.

Chapter 12 presents exceptions and the exception model for SCJ applications.

The required interfaces from standard Java, the RTSJ, and the SCJ library classes
are included in the Appendix.

8 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Chapter 2

Programming Model

The Real-Time Specification for Java (RTSJ) imposes few limitations on how a de-
veloper structures an application, and supports a wide variety of software models
in terms of concurrency, packaging, synchronization, memory, etc. Because safety-
critical applications must generally conform to rigorous certification requirements,
they generally use much simpler programming models that are amenable to certifi-
cation.

This specification is based on the Java language reference and the RTSJ. Specif-
ically, this specification can be considered to define a subset of the Java language
and the RTSJ to support safety-critical systems. It is intended that SCJ-compliant
applications should be readily portable from an SCJ environment to a RTSJ envi-
ronment.

In this specification, a flexible but quite limited programming model is intended to
be sufficiently limited to enable certification under such standards as DO-178B Level
A. This is accomplished by defining concepts such as a mission, limited startup pro-
cedures, and specific levels of compliance. In addition, a set of special annotations
is described that are intended for use by vendor-supplied and/or third-party tools
to perform static off-line analysis that can ensure certain correctness properties for
safety-critical applications.

2.1 The Mission Concept

Under this specification, a compliant application will consist of one or more missions.
A mission consists of a bounded set of limited schedulable objects as defined by
the RTSJ. For each mission, a specific block of memory is defined called mission
memory. Objects created in mission memory persist until the mission is terminated,
and their resources will not be reclaimed until the mission is terminated.

9

Safety Critical Specification for Java

If the application chooses to exit a mission, this specification optionally permits it
to be restarted by emptying the mission memory and re-entering its initialization
mode. If the application designer does not choose to permit restart, it can either
avoid terminating the mission, or permit the application to stop all processing.

Conforming implementations are not required to support dynamic class loading.
Classses visible within a mission are unexceptionally referenceable. Class initial-
ization must happen before any part of any mission runs, including its initialization
phase or its execution phase (described below). There is no requirement that classes,
once loaded, must ever be removed, nor that their resources be reclaimed. A properly
formed SCJ program should not have cyclic dependencies within class initialization
code.

Each mission starts in an initialization phase during which objects may be allocated
in mission memory and immortal memory by an application. When a mission’s ini-
tialization has completed, its execution phase is entered. During the execution phase
an application may access objects in mission memory and immortal memory, but will
usually not create new objects in mission memory or immortal memory.

All application processing for a mission occurs in one or more schedulable objects.
When a schedulable object is started, its initial memory area is a scoped memory area
that is entered when the schedulable object is released, and is exited (i.e., emptied)
when the schedulable object completes that release. This scoped memory area is not
shared with other schedulable objects.

Because safety-critical systems are typically also hard real-time systems (i.e., they
have time constraints and deadlines that must be met predictably), methods imple-
mented according to this specification should have predictably bounded execution
behavior. Worst case execution time and other bounding behavior is dependent on
the application and its SCJ execution environment.

2.2 Compliance Levels

Safety critical software application complexity varies greatly. At one end of this
range, many safety critical applications contain only a single thread, support only a
single function, and may have only simple timing constraints. At the other end of this
range, highly complex applications have multiple modes of operation, may contain
multiple (nested) missions, and must satisfy complex timing constraints. While a
single safety critical Java implementation supporting this entire range could be con-
structed, it would likely be overly expensive and resource intensive for less complex
applications.

Minimizing complexity is especially important in safety-critical applications because
both the application and the infrastructure, including the Java runtime environment,

10 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

must undergo certification. The cost of certification of both the application and the
infrastructure is highly sensitive to their complexity, so enabling the construction of
simpler applications and infrastructures is highly desirable.

This specification defines three compliance levels to which both implementations and
applications may conform. This specification refers to them as Level 0, Level 1, and
Level 2, where Level 0 supports the simplest applications and Level 2 supports more
complex ones. These three compliance levels have no relationship with the safety
levels defined by standards such as DO-178B, they only refer to different subsets
of Java. The specification enables an application compliant with any of the three
SCJ levels to satisfy the most stringent of certification objectives, as long as both
the application developer and the SCJ infrastructure provider address the targeted
certification requirements.

The cost and difficulty of achieving any given certification level is expected to be
higher at Level 2 than at Level 1 or Level 0.

The requirements for each Level are designed to ensure that properly synchronized
SCJ missions at any Level will execute correctly on any compliant implementation
that is capable of supporting that Level or a higher Level. Thus, for example, a Level
1 application must be able to run correctly on an implementation supporting either
Level 1 or Level 2. Conversely, implementations at higher levels must be able to
correctly execute applications requiring support at that level or below.

The definition of each level includes the types of schedulable objects (i.e., Period-
icEventHandler, AperiodicEventHandler, no-heap-real-time thread) permitted at that
level, the types of synchronization that can be used, and other permitted capabilities.

2.2.1 Level 0

A Level 0 application’s programming model is a familiar model often described as
a timeline model, a frame-based model, or a cyclic executive model. In this model,
the mission can be thought of as a set of computations, each of which is executed
periodically in a precise, clock-driven timeline, and processed repetitively throughout
the mission. Figure 2.1 illustrates the execution of a simple Level 0 application,
including its memory allocation.

A Level 0 application’s schedulable objects shall consist only of a set of Period-
icEventHandler (PEH) instances. Each PEH has a period, priority, and start time
relative to the beginning of a major cycle. A schedule of all PEHs is constructed by
either the application designer or by an offline tool provided with the implementation.

All PEHs execute under control of a single infrastructure thread. This enforces the
sequentiality of every PEH, so the implementation can safely ignore synchroniza-
tion. The application developer, however, is strongly encouraged to include the syn-

8 July 2010 Version 0.76
Confidentiality: Public Distribution

11

Safety Critical Specification for Java

Scheduler

private
memory

PEH PEH

Major frame

Timer
event

Timer
event

Timer
event

Mission memory

Shared by all Periodic Event Handlers

Shared by all Periodic Event Handlers

Immortal memory

Time

(priority 1)

private
memory

PEH

private
memory

PEH
(priority 2)(priority 3)(priority 4)

Private memory

Private memory

idle idle idle

Figure 2.1: Level 0 [Cyclic Executive]

chronization required to safely support its shared objects so the application maintains
consistency on a Level 1 or Level 2 implementation as well. The methods Object.wait
and Object.notify are not available at Level 0. Applications should also avoid block-
ing because all of its PEHs are executing in turn in the context of a single thread.

The use of a single infrastructure thread to run all PEHs without synchronization
implies that a Level 0 application runs only on a single CPU. If more than one CPU
is present, it is necessary that the state managed by a Level 0 application not be
shared by any application running on another CPU. This specification describes the
semantics for a single application; interactions, if any, among multiple applications
running concurrently in a system are beyond the scope of this specification.

Each PEH has a private scoped memory area, an instance of PrivateMemory, created
for it before invocation that will be entered and exited at each invocation. A Level
0 application can create private memory areas directly nested within the provided
private memory area, it can enter and exit them, but not share them with any other
PEH.

12 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

2.2.2 Level 1

A Level 1 application uses a familiar multitasking programming model consisting of
a single mission sequence with a set of concurrent computations, each with a priority,
running under control of a fixed-priority preemptive scheduler. The computation is
performed in a set of PEHs and/or AperiodicEventHandler instances (APEHs). An
application shares objects in mission memory and immortal memory among its PEHs
and APEHs, using synchronized methods to maintain the integrity of these objects.
The methods Object.wait and Object.notify are not available.

Each PEH or APEH shall have a private scoped memory area created for it before
invocation that will be entered and exited at each invocation. During execution, the
PEH or APEH may create, enter, and/or exit one or more other private memory areas,
but these memory areas shall not be shared among PEHs or APEHs. Figure 2.2
illustrates the execution of a simple application with a single mission, including its
memory allocation.

2.2.3 Level 2

A Level 2 application starts with a single mission, but may create and execute ad-
ditional missions concurrently with the initial mission. Computation in a Level 2
mission is performed in a set of schedulable objects consisting of PEHs, APEHs,
and/or no-heap real-time threads. Each child mission has its own mission memory,
and may also create and execute other child missions.

Each Level 2 schedulable object shall have a private scoped memory area created
for it before invocation. For PEHs and APEHs, the private scoped memory area will
be entered and exited at each invocation. For no-heap real-time threads, the private
scoped memory area will be entered when it starts its run method and exited when
the run method terminates. During execution, each schedulable object may create,
enter, and/or exit one or more other scoped memory areas, but these scoped memory
areas shall not be shared among PEHs or APEHs. Figure 2.3 illustrates the execution
of a simple application with one nested mission, including its memory allocation. A
Level 2 application may use Object.wait and Object.notify.

2.3 SCJ Annotations

To permit a level of static analyzability for safety critical applications using this spec-
ification, a number of annotations following the rules of Java Metadata Annotations
are defined and used throughout this specification. A description of these annotations

8 July 2010 Version 0.76
Confidentiality: Public Distribution

13

Safety Critical Specification for Java

private
memory

PEH

private
memory

PEH

Timer
event

Shared by all Asynchronous Event Handlers

Shared by all Asynchronous Event Handlers
Immortal memory

SO
 1

SO
 3

SO
 2

Mission memory

External
Event

External Event

Time

(priority 2)

private
memory

APEH
(priority 1)

Timer
event

private
memory

APEH

Timer
event

PE
Preempted

ate
ory
H

priv
mem

(priority 2) (pri ority 2)

(priority 7)

Figure 2.2: Level 1 [Single Mission]

14 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

Immortal memory
Shared by all Threads

M
IS

S
IO

N
 1

private
memory

APEH

S
O

 2
S

O
 1

Mission memory

priv
mem

AP

ate
ory

EH

Preempted

S
O

 1

private
memory

APEH

S
O

 2

Mission memory

S
O

 3

Private memory

M
IS

S
IO

N
 2

APEH

private memory

(priority 3)

(priority 4)

ority 2)

(priority 1)

Time

NHRT
(priority 5)

<<creates>>

(pri

Figure 2.3: Level 2 [Nested Missions]

8 July 2010 Version 0.76
Confidentiality: Public Distribution

15

Safety Critical Specification for Java

is provided in Chapter 9. One specific annotation that is pervasive in this specifica-
tion is @SCJAllowed(level). Its primary use is to mark the minimum level at which
any specific class, interface, method, or field may be referenced in a safety criti-
cal application. This means that an application at level n will be permitted only to
reference items labelled with @SCJAllowed(n) or lower.

2.4 Use of Asynchronous Event Handlers

The RTSJ defines two mechanisms for real-time execution: the RealtimeThread and
NoHeapRealtimeThread classes, which uses a style similar to java.lang.Thread for
concurrent programming, and the AsynchronousEventHandler class, which is event
based. This specification does not require the presence of a garbage-collected heap,
thus the use of RealtimeThread is prohibited. To facilitate analyzability, this spec-
ification provides only AsynchronousEventHandlers at Levels 0 and 1, permitting
no-heap real-time threads only at Level 2. In particular, this specification permits the
following:

• Level 0: periodic AsynchronousEventHandler (class PeriodicEventHandler).
• Level 1: periodic and aperiodic (but not sporadic) AsynchronousEventHandler

(classes PeriodicEventHandler and AperiodicEventHandler).
• Level 2: no-heap real-time threads, periodic and aperiodic (but not sporadic)

AsynchronousEventHandlers.

The classes PeriodicEventHandler and AperiodicEventHandler are defined by this
specification. The application programmer establishes a periodic activity by extend-
ing PeriodicEventHandler, overriding the handleAsyncEvent method to perform the
per-release processing, and constructing an instance with the desired priority and
release parameters. This is different from the style in the RTSJ, which requires asso-
ciating a periodic AsynchronousEventHandler with a periodic timer.

Sporadic AsynchronousEventHandler are not provided because their management
would require the implementation to monitor minimal interarrival time for asynch
events. It was determined that this would add excessive complexity with a resulting
impact on safety-critical certifiability.

2.5 Development vs. Deployment Compliance

As previously described in this specification, in a safety critical application, certifica-
tion requirements impose very stringent constraints on both the Java implementation

16 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

and the application. This specification describes many syntactic and semantic limi-
tations intended to enable the development of certifiable implementations and appli-
cations with a maximum level of portability across both development and execution
platforms.

This specification requires that a conforming implementation provide all of the in-
terfaces, operating according to the specified semantics, to be available to every con-
forming application.

These requirements are to be strictly imposed on implementations that are capable of
deployment into safety critical environments. On the contrary, for implementations
usable only during development, while it is preferable for these requirements to be
imposed, a limited number of exceptions are explicitly permitted. These exceptions
are:

• Implementations running on an RTSJ-compliant JVM are permitted to support
RTSJ interfaces that are not supported by this specification. Applications con-
forming to this specification are not permitted to make use of these interfaces.

• Implementations running on an RTSJ-compliant JVM must support the inter-
faces supporting Priority Ceiling Emulation (PCE), but are not required to sup-
port the PCE semantics if the underlying RTSJ implementation does not sup-
port PCE. Applications conforming to this specification must be able to toler-
ate Priority Inheritance behavior without creating functional errors, although
its performance characteristics may not be correctly supported.

2.6 Verification of Safety Properties

This specification omits a large number of RTSJ and other Java capabilities, such as
dynamic class loading in its effort to create a subset of Java capabilities that can be
certified under a variety of safety standards such as DO-178B.

However, it is clear that no specification can, by itself, ensure the complete absence
of unsafe operations in a conforming application. As a result, a further recommen-
dation for an implementation is the ability to perform a variety of pre-deployment
analysis tools that can ensure the absence of certain unsafe operations. While this
specification does not define particular analysis tools, it is extremely important that
applications be certifiably free of memory reference errors. When analysis tools pro-
vided with an implementation are able to certify freedom of memory reference errors,
the implementation need not provide checking for, and handling for such errors in the
runtime environment.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

17

Safety Critical Specification for Java

18 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Chapter 3

Mission Life Cycle

An SCJ application is a sequence of mission executions. Each Mission is comprised
of initialization, execution, and cleanup phases, as illustrated in the following figure.

Start Initialization Execution Phase HaltCleanup

Figure 3.1: Safety Critical Application Phases

Application Initialization: An SCJ application is represented by a user-defined
implementation of the Safelet interface. The application defines the setUp method,
which may create objects in the ImmortalMemoryArea memory and may perform cer-
tain other side effects, such as setting up hardware interrupt handlers and initializing
hardware devices.

The application also defines the getSequencer method, which returns the MissionSe-
quencer that represents the application. The MissionSequencer identifies a sequence
of user-defined missions, each of which is represented by a class that extends the
Mission class.

Mission Initialization: The MissionSequencer arranges to invoke the initialize method
for each Mission. This method instantiates and registers all of the ManagedSched-
ulable objects corresponding to this Mission and it allocates and initializes objects to
be shared between these ManagedSchedulable objects. In particular, all Managed-
Schedulable objects used by the mission shall be created and registered in initialize.

Mission Execution: The application’s missions shall run under the direction of the
MissionSequencer in the order that the Missions are returned from the MissionSe-
quencer’s implementation of getNextMission. By default, memory allocations take
place in the PrivateMemory areas associated with each ManagedSchedulable, but

19

Safety Critical Specification for Java

allocations can also be directed to ImmortalMemoryArea or MissionMemory. Each
ManagedSchedulable is free to use additional PrivateMemory areas that can be seen
as inner scopes of the MissionMemory. Before a Mission can terminate, it must wait
for all of the managedSchedulables associated with the Mission to complete their
execution.

Mission Cleanup: The application defines the cleanup method. The cleanup phase
can be used to free resources. This is required for missions terminated asynchronously
by parent missions. After the cleanup phase is complete, the mission can either be
restarted, or replaced by a different Mission, or the entire application can halt, under
the direction of the MissionSequencer.

Application Cleanup: Upon termination of the application, the tearDown method
is invoked and any resources used by the application, such as external handles to
devices, can be freed

Mission Life Cycle Interactions

The runtime environment for a safety critical system differs from an RTSJ system.
In RTSJ, the system starts with a normal Java thread in heap memory. In SCJ, the
application runs entirely under the control of the SCJ infrastructure, without any
involvement of traditional Java threads.

The SCJ run-time environment is started up with a request to execute the SCJ appli-
cation represented by a particular application-defined implementation of the Safelet
interface. This document refers to the user-defined Safelet implementation as the
application. This chapter describes the life cycle of an application. In particular, it
describes the initialization, running, and termination of the application. Differences
in the life cycle between Level 0, Level 1 and Level 2 applications are also described.

The application defines itself through the Safelet interface, MissionSequencer and
Mission classes. The Safelet implementation defines how the environment starts and
terminates the application. The MissionSequencer definition describes transfers of
control between the various Mission objects that execute in sequence within the ap-
plication. Applications running at Level 2 may also create nested missions, which
are launched from an outer-nested mission and have their own MissionSequencer for
driving a sequence of sub-missions.

3.1 Semantics and Requirements

An application consists of one or more missions executed sequentially or concur-
rently, as initiated by a user-defined implementation of the Safelet interface. Each
Mission has its own MissionMemory which holds objects representing the Mission

20 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

state. The independent threads and event handling activities that comprise the Mis-
sion communicate with each other by modifying the shared objects that reside within
the MissionMemory.

The normal sequence of activities for an application consists of several steps:

1. Safelet Initialization:

An implementation-specific initialization thread running at an implementation-
specific thread priority takes responsibility for running Safelet-specific code.
An SCJ-compliant implementation of this startup thread shall implement the
semantics described below:

• It is expected that vendors of SCJ implementations will provide a mecha-
nism to specify the priority at which the initialization thread runs relative
to other non-Java threads which may be running concurrently on the same
hardware.

• It is expected that vendors of SCJ implementations will provide a mecha-
nism to specify the StorageConfigurationParameters for this initial thread.
The resources requested by the StorageConfigurationParameters of the
Safelet’s MissionSequencer are taken from the StorageConfigurationPara-
meters for this initial thread.

• The SCJ infrastructure shall load and initialize all classes used by the ap-
plication before invoking any user-written code associated with Safelet.
The mechanism for identifying which classes need to be loaded and spec-
ifying a deterministic class initialization order shall be implementation
defined.

• The initial allocation context for the initialization thread is ImmortalMem-
oryArea.

• User-defined methods executed by this thread are allowed to introduce
PrivateMemory memory regions at their discretion.

• Once control has transferred to the Safelet’s MissionSequencer, the ini-
tialization thread shall remain blocked until the MissionSequencer termi-
nates its execution.

The SCJ infrastructure performs the following sequence of activities:

• Invokes the setUp method of Safelet to run user-defined initialization
code that must precede execution of the MissionSequencer.

• Invokes the getSequencer method of Safelet and remembers the result,
which represents the MissionSequencer object seq that is responsible for
running the sequence of missions that comprise this application. The
returned object shall reside in ImmortalMemoryArea. The StorageCon-
figurationParameters resources for MissionSequencer seq are taken from
the StorageConfigurationParameters resources for the initialization thread.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

21

Safety Critical Specification for Java

• Causes MissionSequencer seq to begin executing. The details of this
implementation are not specified in the SCJ specification.

• Blocks the initialization thread until MissionSequencer seq terminates
its execution.

• Invokes the tearDown method of Safelet to run user-defined finalization
code that must follow termination of the MissionSequencer.

2. MissionSequencer Behavior:

Between execution of getSequencer and tearDown, the SCJ infrastructure ar-
ranges for the MissionSequencer to execute the sequence of missions with
which it is associated. The typical sequence of the infrastructure activities in-
volving the MissionSequencer consists of the following interactions:

• In the case that a MissionSequencer is the outermost MissionSequen-
cer for a given SCJ application, the Safelet’s execution thread causes
the independent thread that is associated with the MissionSequencer to
begin executing. The thread’s storage resource requirements are specified
by the StorageConfigurationParameters argument to the MissionSequen-
cer constructor. These resources are taken from the storage resources of
the application’s initialization thread. Note that the Safelet’s Mission-
Sequencer, which is an extension of BoundAsynchronousEventHandler,
is instantiated and starts up outside of an enclosing Mission. This is the
only circumstance under which a BoundAsynchronousEventHandler may
be instantiated outside of a Mission’s initialize method.

• Alternatively, in the cast that a MissionSequencer nests within a Level 2
Mission, the MissionSequencer must be instantiated and registered within
that Mission’s initialize code. The thread’s storage resource requirements
are specified by the StorageConfigurationParameters argument to the
MissionSequencer constructor. These resources are taken from the stor-
age resources of the enclosing Mission’s MissionSequencer thread. When
Mission initialization completes, the SCJ infrastructure arranges to start
up the execution of all threads associated with ManagedSchedulable ob-
jects, including any MissionSequencer objects that were instantiated and
registered during Mission initialization.

• When the MissionSequencer’s bound event handling thread begins to ex-
ecute, it instantiates a MissionMemory object to hold the first Mission to
be executed by the MissionSequencer. The backing store associated with
this MissionMemory object is initially sized to represent all of the remain-
ing backing store memory available within the current thread’s storage
resources.

• Next, the MissionSequencer’s bound event handling thread enters into
the newly created MissionMemory area and invokes its own getNext-

22 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

Mission method to obtain a reference to the first mission to be executed
by this MissionSequencer. The getNextMission method, which is written
by the application developer, should return a reference to a Mission object
residing in the MissionMemory area.

• Having selected the Mission that is going to execute first, the Mission-
Sequencer thread now invokes the missionMemorySize method on that
Mission. It passes the value returned from missionMemorySize to an in-
vocation of resize on the MissionMemory area. This truncates the size of
the MissionMemory’s backing store, returning the excess memory to the
running thread’s backing store so that it can be used to represent Private-
Memory areas.

• The MissionSequencer then arranges to execute the selected Mission and
waits for that Mission to complete. The detailed steps that comprise Mis-
sion execution are described in the next subsection.

• When the mission finishes its execution, control exits the MissionMemory
area allocated above, releasing all of the objects that had been allocated
within that MissionMemory, including the Mission object itself.

• The MissionSequencer now instantiates another MissionMemory object
to hold the next Mission to be executed by the MissionSequencer. As with
the initial MissionMemory object allocated by this MissionSequencer, the
backing store associated with this MissionMemory object is initially sized
to represent all of the remaining backing store memory available within
the backing store associated with the currently running thread.

• The MissionSequencer’s event handling thread invokes MissionSequen-
cer.getNextMission to obtain a reference to the next mission to be ex-
ecuted by this MissionSequencer. If getNextMission returns null, the
MissionSequencer considers its role to be complete and it terminates by
exiting the dedicated MissionMemory area and returning control to its
controlling context (the outer-nested Safelet or Mission). Otherwise, the
MissionSequencer arranges to execute the selected Mission and control
follows the same sequence described above.

• Under certain circumstances, user code may request that a particular Mis-
sionSequencer terminate its execution by invoking the MissionSequen-
cer’s requestSequenceTermination method. This in turn invokes the cur-
rently running mission’s requestTermination method, and then causes the
MissionSequencer’s event handling thread to wait for that Mission to end
its execution. Once the Mission ends, the MissionSequencer’s event han-
dling thread terminates without another invocation of getNextMission.

3. Mission Execution:
For each Mission executed by the MissionSequencer, the MissionSequencer’s
event handling thread performs the following actions:

8 July 2010 Version 0.76
Confidentiality: Public Distribution

23

Safety Critical Specification for Java

• With MissionMemory as the current allocation area, the MissionSequen-
cer invokes the Mission’s initialize method, which is written by the ap-
plication developer. Note that this method may allocate mission-relevant
objects within the MissionMemory. The initialize method may also in-
troduce PrivateMemory scopes for temporary computations. Within the
initialize method, application code allocates and registers one or more
ManagedEventHandler or ManagedThread or MissionSequencer objects
as part of the Mission. Each of these represents an independent thread of
control with a backing store memory reservation specified by a Storage-
ConfigurationParameters object. The backing store for each independent
thread is obtained by setting aside contiguous segments of the backing
store memory that had been previously associated with the MissionSe-
quencer’s event handling thread.

• Upon return from initialize, the MissionSequencer’s event handling thread
starts up the threads associated with each of the ManagedSchedulable
objects that had been registered by initialize.

• The MissionSequencer’s event handling thread then waits for the Mis-
sion’s execution to terminate. This event handling thread shall remain in
a blocked state until the Mission’s mission phase terminates, except for
small and predictable implementation-defined increments of work asso-
ciated with arranging to shut down a running Mission.

• When the MissionSequencer’s event handling thread detects that the Mis-
sion’s mission phase has terminated, it invokes the Mission’s cleanup
method to allow the Mission to finalize mission objects and perform what-
ever other activities are necessary in order to finish shutting down the
Mission.

• Upon return from the cleanup method, the MissionSequencer’s event
handling thread exits the MissionMemory scope so the memory for the
just-completed Mission can itself be reclaimed.

3.2 Level Considerations

3.2.1 Level 0

A Level 0 application shall extend Cyclet, a library class which implements Safelet.
The getSequencer method of Cyclet is declared to return a Level0MissionSequen-
cer object. The getNextMission method of Level0MissionSequencer is declared to
return a Level0Mission. Thus, the type system enforces that a Level 0 application
is comprised only of Level0Mission missions. This is important because the SCJ
infrastructure requires that a CyclicSchedule be associated with each Mission in the

24 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

Level 0 application.

The Level0Mission subclass must implement the getSchedule method. This method
returns a reference to a CyclicSchedule object which represents the static cyclic
schedule for the PEHs associated with this Level0Mission. This schedule would typ-
ically be generated by vendor-specific tooling, but it can also be generated by hand.
The Level 0 example described later in this chapter shows a generated schedule.

3.2.2 Level 1

A Level 1 application shall implement Safelet. In particular, the application needs to
provide a getSequencer to return the mission sequencer of the application.

3.2.3 Level 2

A Level 2 application shall implement Safelet, similar to a Level 1 application.
An enhanced capability of Level 2 applications is the option to instantiate Man-
agedThreads and inner-nested MissionSequencers during execution of a Mission’s
initialize method.

3.3 API

3.3.1 Safelet

Declaration

@SCJAllowed
public interface Safelet

Description

A safety-critical application consists of one or more missions, executed concurrently
or in sequence. Every safety-critical application is represented by an implementation
of Safelet which identifies the outer-most MissionSequencer. This outer-most Mis-
sionSequencer takes responsibility for running the sequence of Missions that com-
prise this safety-critical application.

The mechanism used to identify the Safelet to a particular SCJ environment is im-
plementation defined.

Given the implementation app of Safelet that represents a particular SCJ application,
the SCJ infrastructure invokes in sequence app.setUp() followed by app.getSequencer().

8 July 2010 Version 0.76
Confidentiality: Public Distribution

25

Safety Critical Specification for Java

For the MissionSequencer returned from app.getSequencer(), the SCJ infrastruc-
ture arranges for an independent thread to begin executing the code for that Mission-
Sequencer and then waits for that thread to terminate its execution. Upon termination
of the MissionSequencer’s thread, the SCJ infrastructure invokes app.tearDown().

Methods

@SCJAllowed
public MissionSequencer getSequencer()

Returns the MissionSequencer responsible for selecting the sequence of Missions
that represent this SCJ application. The infrastructure invokes getSequencer to ob-
tain the MissionSequencer that oversees execution of Missions for this application.
The returned MissionSequencer resides in ImmortalMemoryArea. Note that Mission-
Sequencer is an extension of BoundAsynchronousEventHandler. The StorageCon-
figurationParameters resources for the MissionSequencer’s bound thread are taken
from the StorageConfigurationParameters resources for the Safelet’s initialization
thread. The initialization infrastructure arranges to start up the corresponding Bound-
AsynchronousEventHandler and causes its event handling code to execute in the cor-
responding bound Thread. The event handling code, provided in the MissionSequen-
cer’s final handleAsyncEvent() method, begins executing with ImmortalMemoryArea
as its current allocation area.

@SCJAllowed
public void setUp();

The infrastructure invokes setUp before invoking getSequencer. Application de-
velopers place code to be executed before the MissionSequencer begins to execute
within this method. Upon entry into this method, the current allocation context is
ImmortalMemoryArea. User code may introduce nested PrivateMemory areas for
temporary computations.

@SCJAllowed
public void tearDown();

The infrastructure invokes tearDown after the MissionSequencer returned from get-
Sequencer completes its execution. Application developers place code to be exe-
cuted following MissionSequencer execution within this method. Upon entry into
this method, the current allocation context is ImmortalMemoryArea. User code may
introduce nested PrivateMemory areas for temporary computations.

3.3.2 MissionSequencer

Declaration

@SCJAllowed

26 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

public abstract class MissionSequencer extends BoundAsyncEventHandler

Description

A MissionSequencer runs a sequence of independent or repeated Mission executions.

Constructor

@SCJAllowed
@SCJRestricted({INITIALIZATION})
public MissionSequencer(PriorityParameters priority,

StorageConfigurationParameters storage)

Construct a MissionSequencer to run at the priority and with the memory resources
specified by its parameters.

Throws IllegalStateException if not invoked during initialization of a Level 2 Mission
or during the infrastructure’s invocation of an SCJ application’s Safelet.getSequen-
cer method.

Methods

@SCJAllowed
protected abstract Mission getNextMission()

This method is called by the infrastructure to select the initial Mission to execute,
and subsequently, each time one Mission terminates, to determine the next Mission
to execute.

Prior to each invocation of getNextMission by the infrastructure, the infrastructure in-
stantiates and enters a MissionMemory, initially sized to represent all available back-
ing store for the currently running thread. Though this method is implemented by
the application developer, the expectation is that this method returns a Mission object
newly allocated within the default MissionMemory area.

Returns the next Mission to run, or null if no further Missions are to run under the
control of this MissionSequencer.

@SCJAllowed
public final void handleAsyncEvent()

This method is declared final because the implementation is provided by the vendor
of the SCJ implementation and shall not be overridden. This method performs all of
the activities that correspond to sequencing of Missions by this MissionSequencer.

@SCJAllowed(LEVEL 2)
public final void requestSequenceTermination()

Try to finish the work of this mission sequencer soon by invoking the currently run-
ning Mission’s requestTermination method. Upon completion of the currently run-
ning Mission, this MissionSequencer shall return from its handleAsyncEvent method
without invoking getNextMission and without starting any additional missions.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

27

Safety Critical Specification for Java

Note that requestSequenceTermination does not force the sequence to terminate be-
cause the currently running Mission must voluntarily relinquish its resources.

@SCJAllowed(LEVEL 2)
public final boolean sequenceTerminationPending()

Check if the current Mission is trying to terminate.

Returns true if and only if this MissionSequencer’s requestSequenceTermination
method has been invoked.

3.3.3 Mission

Declaration

@SCJAllowed
public abstract class Mission

Description

An SCJ application is comprised of one or more Missions. Each Mission is imple-
mented as a subclass of this abstract Mission class. Only Missions that implement
Safelet can be started directly. These missions are called primary missions. A pri-
mary mission can implement Safelet directly if it is a Level 1 or Level 2 application.

Constructor

@SCJAllowed
public Mission()

Constructor for a Mission. Normally, the infrastructure instantiates a new Mission
in the MissionMemory area that is dedicated to that Mission. Upon entry into the
constructor, this same MissionMemory area is the current allocation area.

Methods

@SCJAllowed(LEVEL 1)
protected void cleanup()

Method to clean up after an application terminates. The infrastructure calls cleanup
after all managedSchedulables associated with this Mission have terminated but be-
fore control leaves the dedicated MissionMemory area. The default implementation
of cleanup does nothing. User-defined subclasses may override its implementation.

@SCJAllowed()
protected abstract void initialize()

Perform initialization of this Mission. The infrastructure calls initialize after the Mis-
sion has been instantiated and the MissionMemory has been resized to match the
size returned from this Mission’s missionMemorySize method. Upon entry into the

28 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

initialize method, the current allocation context is the MissionMemory area dedicated
to this particular Mission.

The default implementation of initialize does nothing. User-defined subclasses may
override its implementation.

The typical implementation of initialize instantiates and registers all managedSchedu-
lables that constitute this Mission. The infrastructure enforces that managedSchedu-
lables can only be instantiated and registered if the infrastructure is currently execut-
ing a Mission.initialize method. (A special exception to this rule allows a MissionSe-
quencer to be instantiated if the infrastructure is currently executing Safelet.getSe-
quencer.) The infrastructure arranges to begin executing the managedSchedulables
registered by the initialize method upon return from the initialize method.

Besides initiating the associated managedSchedulables, this method may also in-
stantiate and/or initialize certain mission-relevant data structures. Note that objects
shared between managedSchedulables typically reside within the MissionMemory
scope. Individual managedSchedulables gain access to these objects by consulting
reference arguments passed to their constructors from the Mission.initialize method,
or by obtaining a reference to the current Mission (by invoking Mission.getCurrent-
Mission method) and coercing this reference to the known Mission subclass. It is
better style to pass references to shared objects as constructor arguments, as this al-
lows the same managedSchedulables to be reused as elements of multiple distinct
Mission subclasses.

@SCJAllowed()
public void requestTermination()

This method provides a standard interface for requesting termination of a mission.
The description of semantics that follows makes reference to several internal details
that are not part of the public SCJ API. This description makes reference to terms
that are defined in the Real-Time Specification for Java. An SCJ implementation that
does not incorporate the full implementation of the Real-Time Specification for Java
shall emulate the relevant capabilities in order to implement the specified semantics.
The default implementation has the effect of setting internal state so that subsequent
invocations of terminationPending shall return true. Additionally, this method has
the effect of (1) disabling all periodic event handlers associated with this Mission, (2)
invoking the removeHandler service on each AsyncEvent associated with this Mis-
sion for every BoundAsynchronousEventHandler affiliated with the AsyncEvent, and
(3) clearing the pending fire count for each of this Mission’s event handlers so that
the event handler threads can terminate following completion of any event handling
code that is currently active.

An application-specific subclass of Mission may override this method in order to
insert application-specific code to communicate the intent to shutdown to specific

8 July 2010 Version 0.76
Confidentiality: Public Distribution

29

Safety Critical Specification for Java

managedSchedulables. It is especially useful to override requestTermination within
Missions that include ManagedThread or nested MissionSequencers as communi-
cating the shutdown request may rely on application-specific protocols. When over-
riding this method, it is generally advisable to invoke super.requestTermination ei-
ther before or after executing the application-specific implementation of request-
Termination.

@SCJAllowed()
public final void requestSequenceTermination()

Ask for termination of the current Mission and its MissionSequencer. The effect of
this method is to invoke requestSequenceTermination on the MissionSequencer that
is responsible for execution of this Mission.

@SCJAllowed()
public void terminationPending()

Check if the current mission is trying to terminate.

Returns true if and only if this Mission’s requestTermination method has been in-
voked.

@SCJAllowed()
public final boolean sequenceTerminationPending()

Check if the current MissionSequencer is trying to terminate.

Returns true if and only if the requestSequenceTermination method for the Mission-
Sequencer that controls execution of this Mission has been invoked.

@SCJAllowed()
abstract public long missionMemorySize()

Returns the desired size of the MissionMemory associated with this Mission. Note
that the MissionMemory is allocated initially with a very large size, and then is trun-
cated to the size returned from this method, which is invoked by the infrastructure
immediately following return from instantiation and construction of this Mission ob-
ject.

@SCJAllowed
public static Mission getCurrentMission()

Returns the instance of the Mission to which the currently running managedSchedu-
lable belongs.

3.3.4 Cyclet

Declaration

30 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

@SCJAllowed
public class Cyclet implements Safelet

Description

Every Level 0 SCJ application is represented by a Cyclet or a subclass of Cyclet
which identifies the outer-most MissionSequencer. This outer-most MissionSequen-
cer takes responsibility for running the sequence of Missions that comprise this SCJ
application.

The mechanism used to identify the Safelet to a particular SCJ environment is im-
plementation defined.

Given class app of type Cyclet or a subclass of Cyclet that represents a particular SCJ
application, the SCJ infrastructure invokes in sequence app.setUp() followed by
app.getSequencer(). For the MissionSequencer returned from app.getSequencer(),
the SCJ infrastructure arranges for an independent thread to begin executing the code
for that MissionSequencer and then waits for that thread to terminate its execution.
Upon termination of the MissionSequencer’s thread, the SCJ infrastructure invokes
app.tearDown().

Constructor

@SCJAllowed(LEVEL 0)
public Cyclet()

Construct a Cyclet.

Methods

@SCJAllowed
@SCJRestricted({INITIALIZATION})
protected Level0Sequencer getSequencer()

Returns the MissionSequencer that oversees execution of Missions for this applica-
tion.

The default implementation of getSequencer returns a SingleMissionSequencer which
runs the Level0Mission represented by getPrimordialMission exactly once. The val-
ues for this thread’s priority and StorageConfigurationParameters are specified at
configuration time in an implementation-defined way.

@SCJAllowed
public void setUp()

The infrastructure invokes setUp before invoking getSequencer. Application de-
velopers place code to be executed before the MissionSequencer begins to execute
within this method. Upon entry into this method, the current allocation context is
ImmortalMemoryArea. User code may introduce nested PrivateMemory areas for
temporary computations.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

31

Safety Critical Specification for Java

@SCJAllowed
public void tearDown()

The infrastructure invokes tearDown after the MissionSequencer returned from get-
Sequencer completes its execution. Application developers place code to be exe-
cuted following MissionSequencer execution within this method. Upon entry into
this method, the current allocation context is ImmortalMemoryArea. User code may
introduce nested PrivateMemory areas for temporary computations.

@SCJAllowed()
public static Level0Mission getPrimordialMission()

At configuration time, the developer has the option of specifying a primordial mis-
sion, which is identified by a fully qualified class name. Configuration parameters
might be specified as options to the SCJ compiler or linker, or might be specified
on the command line that starts up execution of the SCJ application. The Single-
MissionSequencer’s getNextMission method, which is invoked by the infrastructure
with the MissionMemory dedicated to this Mission as the active allocation area, in-
vokes getPrimordialMission. If a primordial mission was specified at configuration
time, this method returns a reference to an instance of the primordial mission, allo-
cated in the dedicated MissionMemory area. If no primordial mission was specified,
this method returns null.

In the case that this method returns a non-null result, the returned object is allocated
at the time of the first invocation of this method. This method will be called following
an invocation of setUp.

3.3.5 CyclicSchedule

Declaration

@SCJAllowed
public class CyclicSchedule

Description

A CyclicSchedule represents a time-driven sequence of firings for deterministic schedul-
ing of periodic event handlers. The static cyclic scheduler repeatedly executes the
firing sequence.

Constructor

@SCJAllowed
public CyclicSchedule(CyclicSchedule.Frame[] frames)

Construct a CyclicSchedule by copying the frames array into a private array within
the same memory area as this newly constructed CyclicSchedule object. Under nor-

32 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

mal circumstances, the CyclicSchedule is constructed within the same MissionMem-
ory area that holds the Level0Mission that is to be scheduled.

The frames array represents the order in which event handlers are to be scheduled.
Note that some Frame entries within this array may have zero PeriodicEventHandlers
associated with them. This would represent a period of time during which the Lev-
el0Mission is idle.

Methods

3.3.6 CyclicSchedule.Frame

Declaration

@SCJAllowed
final public static class CyclicSchedule.Frame

Description

Constructor

@SCJAllowed
public Frame(RelativeTime duration, PeriodicEventHandler[] handlers)

Allocates and retains private shallow copies of the duration and handlers array within
the same memory area as this. The elements within the copy of the handlers array
are the exact same elements as in the handlers array. Thus, it is essential that the el-
ements of the handlers array reside in memory areas that enclose this. Under normal
circumstances, this Frame object is instantiated within the MissionMemory area that
corresponds to the Level0Mission that is to be scheduled.

Within each execution frame of the CyclicSchedule, the PeriodicEventHandler ob-
jects represented by the handlers array will be fired in same order as they appear
within this array. Normally, PeriodicEventHandlers are sorted into decreasing prior-
ity order prior to invoking this constructor.

Methods

3.3.7 Level0Mission

Declaration

@SCJAllowed
public abstract class Level0Mission extends Mission

Description

A Level 0 SCJ application is comprised of one or more Level0Mission. Each Lev-
el0Mission is implemented as a subclass of this abstract Level0Mission class.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

33

Safety Critical Specification for Java

Constructor

@SCJAllowed
public Level0Mission()

Constructor for a Level0Mission. Normally, application-specific code found within
the application-defined subclass of MissionSequencer instantiates a new Level0Mis-
sion in the MissionMemory area that is dedicated to that Level0Mission. Upon entry
into the constructor, this same MissionMemory area is the current allocation area.

Note that this class inherits missionMemorySize, initialize, requestTermination, termination-
Pending, requestSequenceTermination, sequenceTerminationPending, and cleanup
methods from Mission.

Methods

@SCJAllowed
protected abstract CyclicSchedule getSchedule()

Return the CyclicSchedule for this Level0Mission, residing in the same scope as this
Level0Mission object. Under normal circumstances, this method is only invoked
from the SCJ infrastructure. The infrastructure invokes getSchedule after control
returns from Mission.initialize and before the infrastructure “starts up” execution of
the managedSchedulables instantiated and registered by the initialize method.

3.3.8 Level0MissionSequencer

Declaration

@SCJAllowed
public class Level0MissionSequencer extends MissionSequencer

Description

A Level0MissionSequencer differs from a MissionSequencer in that all of the Mis-
sions returned from getNextMission are instances of Level0Mission. This class inher-
its requestSequenceTermination and sequenceTerminationPending from MissionSe-
quencer.

Constructor

@SCJAllowed
@SCJRestricted({INITIALIZATION})
public Level0MissionSequencer(PriorityParameters priority,

StorageConfigurationParameters storage)

Construct a Level0MissionSequencer to run at the priority and with memory re-
sources specified by its parameters.

34 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

Throws IllegalStateException if not invoked during initialization of a Level 2 Mission
or during the infrastructure’s invocation of an SCJ application’s Safelet.getSequen-
cer method.

Methods

@SCJAllowed
protected abstract Level0Mission getNextMission()

This method is called by the Level 0 infrastructure to select the initial Level0Mission
to execute, and subsequently, each time one Level0Mission terminates, to determine
the next Level0Mission to execute.

Prior to each invocation of getNextMission by the infrastructure, the infrastructure
instantiates and enters a very large MissionMemory allocation area. The typical be-
havior is for getNextMission to return a Level0Mission object that resides in this Mis-
sionMemory area.

Returns the next Level0Mission to run, or null if no further Level0Missions are to run
under the control of this Level0MissionSequencer.

3.3.9 SingleMissionSequencer

Declaration

@SCJAllowed
public class SingleMissionSequencer extends Level0MissionSequencer

Description

The SingleMissionSequencer class simplifies development of simple Level 0 appli-
cations comprised of a single Level0Mission that executes only once.

Constructor

@SCJAllowed
@BlockFree
@SCJRestricted({INITIALIZATION})
public SingleMissionSequencer(PriorityParameters priority,

StorageConfigurationParameters storage)

Construct a SingleMissionSequencer to run at the priority and with memory re-
sources specified by its parameters.

Throws IllegalStateException if invoked during initialization of a Level 1 or Level 2
Mission.

Methods

@SCJAllowed
protected Level0Mission getNextMission()

8 July 2010 Version 0.76
Confidentiality: Public Distribution

35

Safety Critical Specification for Java

On the first invocation, this returns the result of invoking the static Cyclet.getPrimordialMission
method. On subsequent invocations, this returns null.

3.4 Application Initialization Sequence Diagram

A traditional standard edition Java application begins with execution of the static
main method. The startup sequence for an SCJ application is a bit more complicated.
The sequence diagram below illustrates the interactions between the infrastructure
and application code during the execution of a Level 1 application.

3.5 A Sample Level 0 Application

The following example illustrates how a simple Level 0 application could be written.

MyLevel0Mission

The starting point in Level 0 application is a subclass of Level0Mission, in this case
we name it MyLevel0Mission. It must provide implementations of the abstract meth-
ods declared in its parent class.

@SCJAllowed(members=true)
class MyLevel0Mission extends Level0Mission {

PeriodicEventHandler[] pehs = null;

public long missionMemorySize() { return 10000L; }

/∗∗
∗ Create the event handlers that will be used in the application.
∗ These periodic event handlers are recorded by the infrastructure
∗ as they are created and do not need to be explicitly registered.
∗/

public synchronized void initialize() {
pehs = new PeriodicEventHandler[3];

pehs[0] = new MyPEH(”A”,new RelativeTime(0,0),new RelativeTime(500,0));
pehs[1] = new MyPEH(”B”,new RelativeTime(0,0),new RelativeTime(1000,0));
pehs[2] = new MyPEH(”C”,new RelativeTime(0,0),new RelativeTime(500,0));

pehs[0].register();
pehs[1].register();
pehs[2].register();

}

36 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

:Safelet :MissionSequencer :Mission:MissionMemory

setUp

getSequencer

getNextMission

start
new

handleAsyncEvent

new

enter(:Runnable)

initialize

request
Termination

tearDown

new

missionMemorySize

LevelOneStartUp

:PeriodicEventHandler

new

register

 handleAsyncEvent

start all handlers

handleAsyncEvent

notify termination

deschedule all handlers

cleanUp

cleanUp

Repeated for
next mission

run()

resize

:Runnable

new

Cleanup

Initialization

Figure 3.2: Sequence diagram for a level 1 application

8 July 2010 Version 0.76
Confidentiality: Public Distribution

37

Safety Critical Specification for Java

// note that getSchedule may be invoked from a different thread than
// initialize, so access to pehs needs to be synchronized. Or, do we
// want to spec that this is always the same thread?
protected synchronized CyclicSchedule getSchedule() {

return VendorCyclicSchedule.generate(this, pehs);
}

}

MyPEH

The application logic is defined in subclasses of PeriodicEventHandler. For this sam-
ple application we define a single subclass called MyPEH which has a handleAsync-
Event method that simply increments a counter.

@SCJAllowed(members=true)
class MyPEH extends PeriodicEventHandler {

static final int priority = 13, mSize = 10000;
int eventCounter;

MyPEH(String nm, RelativeTime start, RelativeTime period) {
super(new PriorityParameters(priority),

new PeriodicParameters(start, period), mSize);
}

public void handleAsyncEvent() {
++eventCounter;

}
}

The schedule provided is intended to be a tool-generated schedule.

VendorCyclicSchedule

A sample implementation of a cyclic schedule, generated by a vendor-specific tool,
is shown next. In this example, the generated schedule is for an application that has
three asynchronous event handlers that are dispatched. There are two frames for the
application. The first frame has an offset of 0 from the start time and runs PEH A
followed by PEH B, in order. The second frame has an offset of 500ms from the start
time and runs PEH A followed by PEH C, in order.

@SCJAllowed(members=true)
class VendorCyclicSchedule {

static Level0Mission cache key;

38 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

static CyclicSchedule cache schedule;

private PeriodicEventHandler[] peh;

/∗∗
∗ Instantiate a vendor−specific cyclic schedule and return it.
∗ Note that in normal usage, this executes in MissionMemory.
∗/

static CyclicSchedule generate(PeriodicEventHandler[] peh,
Level0Mission m) {

if (m == cache key)
return cache schedule;

else {
// ideally, the following five allocations would be taken from
// a PrivateMemory as they are not needed following return from
// this method, but it’s too much work to write it that way, so
// we’ll just leave a bit of ‘‘pollution’’ in the MissionMemory.
CyclicSchedule.Frame frames[] = new CyclicSchedule.Frame[2];
PeriodicEventHandlers frame1 handlers[] = new PeriodicEventHandlers[3];
PeriodicEventHandlers frame2 handlers[] = new PeriodicEventHandlers[2];
RelativeTime frame1 duration = new RelativeTime(500, 0);
RelativeTime frame2 duration = new RelativeTime(500, 0);

frame1 handlers[0] = peh[0]; // A
frame1 handlers[1] = peh[2]; // C scheduled before B due to RMA
frame1 handlers[2] = peh[1]; // B

frame2 handlers[0] = peh[0]; // A
frame2 handlers[1] = peh[2]; // C

frames[0] = new CyclicSchedule.Frame(frame1 duration, frame1 handlers);
frames[1] = new CyclicSchedule.Frame(frame2 duration, frame2 handlers);

cache schedule = new CyclicSchedule(frames);
cache key = m;

return cache schedule;
}

}

Configuration of the Level 0 Application

Vendor-specific tools are used to configure a Java application. The parameters that
must be specified to properly configure execution of this sample application are de-
scribed below:

• The class that represents the primordial Level0Mission that comprises this sim-
ple application. It is assumed that the class has a no-argument constructor. If

8 July 2010 Version 0.76
Confidentiality: Public Distribution

39

Safety Critical Specification for Java

a Level 0 application’s Level0Mission constructor requires arguments, an al-
ternative approach configuration option is available, as described in the next
section.

• The priority at which the application’s Level0MissionSequencer is intended to
run.

• The value of the StorageConfigurationParameters for the application’s Level0-
MissionSequencer thread. Note that the resources budgeted for the Level0Mis-
sionSequencer thread must be large enough to be divided into the memory
for each of the Level0Missions represented by the Level0MissionSequencer.
Each Level0Mission requires resources for the MissionMemory and it needs re-
sources to satisfy the StorageConfigurationParameters demand of each man-
agedSchedulable associated with the Level0Mission.

Assume, for illustration, that configuration parameters are supplied to a build-time
tool. One possible implementation technique would arrange for automatic generation
of a package-access class to represent the specified configuration parameters. Sup-
pose that the system developer specifies the following values for the configuration
parameters.

• The primordial Level0Mission is MyLevel0Mission.
• The desired priority for execution of the Level0MissionSequencer is 18.
• The desired StorageConfigurationParameters for the Level0MissionSequencer

is (totalBackingStore = 100000), (nativeStackSize = 10000), (javaStackSize =
5000), (messageLength = 80), and (stackTraceLength = 512).

At configuration time, a tool outputs the following class definition:

class Configuration {

static Level0Sequencer getSequencer() {
return new SingleMissionSequencer(sequencerPriority(), sequencerStorage());

}

static Level0Mission primordialMission() {
return new MyLevel0Mission();

}

static PriorityParameters sequencerPriority() {
return new javax.realtime.PriorityParameters(18);

}

static StorageParameters sequencerStorage() {
return new StorageParameters(100000, 10000, 5000, 80, 512);

}
}

40 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

The compatible implementation of Cyclet.getSequencer might consist of the follow-
ing.

@SCJAllowed
@SCJRestricted({INITIALIZATION})
public Level0MissionSequencer getSequencer()
{

return new SingleMissionSequencer(Configuration.sequencerPriority(),
Configuration.sequencerStorage());

}
The compatible implementation of Cyclet.getPrimordialMission might consist of the
code that follows:

public static Level0Mission getPrimordialMission() {
return Configuration.primordialMission();

}

3.6 A Slightly More Complex Level 0 Application

This sample application implements similar functionality to the preceding example.
It uses an application-defined Level0MissionSequencer instead of SingleMissionSe-
quencer. Add to the code described above the following classes.

@SCJAllowed(members=true)
class MyLevel0App extends Cyclet {

public MyLevel0App() {
super();

}

@SCJRestricted({INITIALIZATION})
public Leve0MissionSequencer getSequencer() {

PriorityParameters p = new PriorityParameters(18);
StorageParameters s = new StorageParameters(100000, 10000, 5000, 80, 512);
return new MyLevel0Sequencer(p, s);

}
}

@SCJAllowed(members=true)
class MyLevel0Sequencer extends Level0MissionSequencer {

public MyLevel0Sequencer(PriorityParameters p, StorageParameters s) {
super(p, s);

}

8 July 2010 Version 0.76
Confidentiality: Public Distribution

41

Safety Critical Specification for Java

protected Level0Mission getNextMission() {
if (providedInitialMission) {

return null;
}
else {

return new MyLevel0Mission();
}

}
}

This application runs the same as the preceding example except that if MyLevel0Mission
terminates, MyLevel0Sequencer causes the mission to restart instead of ending the
application.

When application developers provide their own implementation of Cyclet and Lev-
el0MissionSequencer, configuration of the application does not have to specify the
primordial mission, nor the priority or StorageConfigurationParameters of the Lev-
el0MissionSequencer, because these values are hard-coded into the implementation
of the application-specific Cyclet subclass. It is however necessary in this case for
the application developer to specify at configuration time the subclass of Cyclet that
represents the application.

3.7 Level 2 Example

The following example illustrates how a simple Level 2 application could be written
with nested missions.

3.7.1 MyLevel2App.java

@SCJAllowed(members=true, value=LEVEL 2)
public class MyLevel2App implements Safelet {

static final private int PRIORITY = PriorityScheduler.instance().getNormPriority();

public MissionSequencer getSequencer() {
StorageConfigurationParameters sp =

new StorageConfigurationParameters(100000L, 1000L, 1000L);
return new MainMissionSequencer(new PriorityParameters(PRIORITY), sp);

}

public void setup() {}
public void teardown() {}

}

42 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

3.7.2 MainMissionSequencer.java

@SCJAllowed(members=true, value=LEVEL 2)
public class MainMissionSequencer extends MissionSequencer {

private boolean initialized, finalized;

MainMissionSequencer(PriorityParameters priorityParameters,
StorageConfigurationParameters storageParameters) {

super(priorityParameters, storageParameters);
initialized = finalized = false;

}

protected Mission getNextMission() {
if (finalized)

return false;
else if (initialized) {

finalized = true;
return new CleanupMission();

}
else {

initialized = true;
return new PrimaryMission();

}
}

}

3.7.3 PrimaryMission.java

@SCJAllowed(members=true, value=LEVEL 2)
public class PrimaryMission extends Mission {

static final private int PRIORITY = PriorityScheduler.instance().getNormPriority();

public void initialize() {
PriorityParameters pp = new PriorityParameters(PRIORITY);
StorageConfigurationParameters sp =

new StorageConfigurationParameters(100000L, 1000L, 1000L);
SubMissionSequencer sms = new SubMissionSequencer(pp, sp);
sms.register();
(new MyPeriodicEventHandler(”AEH A”, new RelativeTime(0, 0),

new RelativeTime(500, 0))).register();
(new MyPeriodicEventHandler(”AEH B”, new RelativeTime(0, 0),

new RelativeTime(1000, 0))).register();
(new MyPeriodicEventHandler(”AEH C”, new RelativeTime(500, 0),

new RelativeTime(500, 0))).register();
}

public long missionMemorySize() { return 10000; }
}

8 July 2010 Version 0.76
Confidentiality: Public Distribution

43

Safety Critical Specification for Java

3.7.4 CleanupMission.java

@SCJAllowed(members=true, value=LEVEL 2)
public class CleanupMission extends Mission {

static final private int PRIORITY = PriorityScheduler.instance().getNormPriority();

public void initialize() {
PriorityParameters pp = new PriorityParameters(PRIORITY);
StorageConfigurationParameters sp =

new StorageConfigurationParameters(100000L, 1000L, 1000L);
MyCleanupThread t = new MyCleanupThread(pp, sp);

}

public long missionMemorySize() { return 10000; }
}

3.7.5 SubMissionSequencer.java

@SCJAllowed(members=true, value=LEVEL 2)
public class SubMissionSequencer extends MissionSequencer {

private boolean initialized, finalized;

SubMissionSequencer(PriorityParameters priorityParameters,
StorageConfigurationParameters storageParameters) {

super(priorityParameters, storageParameters);
initialized = finalized = false;

}

protected Mission getNextMission() {
if (finalized)

return null;
else if (initialized) {

finalized = true;
return new StageTwoMission();

}
else {

initialized = true;
return new StageOneMission();

}
}

}

3.7.6 StageOneMission.java

@SCJAllowed(members=true, value=LEVEL 2)
public class StageOneMission extends Mission {

public void initialize() {
(new MyPeriodicEventHandler(‘‘stage1.eh1’’,

new RelativeTime(0, 0),

44 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

new RelativeTime(1000, 0))).register();
}
public long missionMemorySize() { return 100;}

}

3.7.7 StageTwoMission.java

@SCJAllowed(members=true, value=LEVEL 2)
public class StageTwoMission extends Mission {

public void initialize() {
(new MyPeriodicEventHandler(‘‘stage2.eh1’’,

new RelativeTime(0, 0),
new RelativeTime(500, 0))).register();

}
public long missionMemorySize() { return 100; }

}

3.7.8 MyPeriodicEventHandler.java

@SCJAllowed(members=true, value=LEVEL 2)
class MyPeriodicEventHandler extends PeriodicEventHandler {

private static final int priority = 17;
private static final int memSize = 5000;
private int eventCounter;

public MyPeriodicEventHandler(String aehName,
RelativeTime startTime,
RelativeTime period) {

super(new PriorityParameters(priority),
new PeriodicParameters(startTime, period), memSize);

}

public void handleAsyncEvent() {
++ eventCounter;

}

public void cleanup() {}
}

3.7.9 MyCleanupThread.java

@SCJAllowed(members=true, value=LEVEL 2)
class MyCleanupThread extends ManagedThread {

public MyCleanupThread(PriorityParameters pp, StorageParameters sp) {
super(pp, sp);

}

public void run() {

8 July 2010 Version 0.76
Confidentiality: Public Distribution

45

Safety Critical Specification for Java

cleanupThis();
cleanupThat();

}

void cleanupThis() {
// code not shown

}

void cleanupThat() {
// code not shown

}

}

46 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Chapter 4

Concurrency and Scheduling Models

A schedulable object executes in response to a sequence of invocation requests (known
as release requests or release events), with the resulting execution of the associated
logic referred to as a release (or a job). Release requests are usually categorized as
follows:1

• periodic—usually time-triggered,
• sporadic—usually event-triggered, or
• aperiodic—usually event-triggered.

Communication between schedulable objects is supported using shared variables and
therefore requires synchronization and priority inversion management protocols. On
multi-processor platforms2, the assumption is that all processors can access all shared
data, although not necessarily with uniform access times.

SCJ specifies the constraints placed on the RTSJ concurrency and scheduling mod-
els. It supports this constrained model by defining its own classes, all of which are
implementable in the RTSJ. SCJ also requires priority ceiling emulation (PCE). It
should be noted that this is a departure from the RTSJ standard, as in the RTSJ pri-
ority inheritance is the default priority inversion management protocol and priority
ceiling emulation is optional.

SCJ extends the RTSJ to support

• storage parameters – this allows, for example, the Java stack size of a schedu-
lable object to be specified;

1Please refer to the RTSJ specification [?] for a rigorous definition.
2The term processor is used in this chapter to indicate a logical processing element that is capable

of physically executing a single thread of control at any point in time. Hence, multicore platforms
have multiple processors, platforms that support hyperthreading also have more than one processor.
It is assumed that all processors are capable of executing the same instruction sets. Hence virtual and
logical processor are supported.

47

Safety Critical Specification for Java

• scheduling allocation domains – each of these defines a set of processors on
which schedulable objects executions can be constrained; they are implemented
in terms of RTSJ AffinitySets; A scheduling allocation domain is one or more
processors on which schedulable objects are globally scheduled. A processor
cannot exist in more than one scheduling allocation domain.

• missions – all schedulable objects execute in the context and confines of a
mission (see Chapter 2).

4.1 Semantics and Requirements

The goals for the SCJ concurrency model are to facilitate schedulability analysis
techniques that are acceptable to certification authorities, and to aid the construction
and deployment of small and efficient Java runtime systems. SCJ also support tra-
ditional cyclic scheduling in order to support the migration from current sequential
systems to concurrent systems.

The following requirements apply across all conformance levels.

• The number of processors allocated to Java platform shall be fixed and non
changing.

• The number of scheduling allocation domains shall be fixed.
• Only no-heap and non-daemon RTSJ schedulable objects shall be supported

(Java threads are not supported).
• All schedulable objects shall have periodic or aperiodic release parameters –

schedulable objects with sporadic release parameters are not supported. Schedu-
lable objects without release parameters as considered to be aperiodic. There
is no support for CPU-time monitoring and processing group parameters.

• The thread of control provided by the real-time virtual machine that executes
the initialization phase is a bound aperiodic asynchronous event handler. This
is a departure from standard RTSJ semantics where the main method is exe-
cuted by a Java thread.

• The default ceiling for locks used by the application and the infrastructure shall
be set to javax.safetycfritical.PriorityScheduler.instance().getMaxPriority() (that
is, the maximum value for local ceilings – see Section 4.6.6)

• A preempted schedulable object shall be placed at the front of the run queue
for its active priority level. This is a recommendation in the RTSJ but is a
requirement for SCJ.

The following lists the main requirements on application designers:

1. Shared objects are represented by classes with synchronized methods. No use
of the synchronized statement is allowed.

48 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

2. Use of the Object.wait in level 2 code should only name this.

3. Nested calls from one synchronized method to another are allowed. The ceiling
priority associated with a nested synchronized method call must be greater than
or equal to the ceiling priority associated with the outer call.

4. At all levels synchronized code is not allowed to self suspend (for example as a
result of an IO request or the sleep method call). An IllegalMonitorStateExcep-
tion is thrown if this constraint is violated. Requesting a lock (via the synchro-
nized method) is not considered self-suspension.

4.2 Level Considerations

The following defines those semantics that apply at different levels.

4.2.1 Level 0
• Only periodic bound asynchronous event handlers (class PeriodicEventHandler)

shall be supported.
• There are a fixed number of implementation-predefined affinity sets, each of

which contains only a single processor. No dynamic creation of affinity sets is
allowed.

• Calls to Object.wait, Object.notify and Object.notifyAll are not allowed.
• Only one thread of control shall be provided by the real-time virtual machine

to execute handlers. The handlers shall be executed non preemptively. A table-
driven approach is acceptable, with the schedule being computed statically off-
line in an implementation-defined manner.

• No locking is required for the implementation of synchronized code, but it
is recommended that the applications use synchronized methods to support
portability of code between levels.

• There is no deadline miss detection facility.

4.2.2 Level 1
• Aperiodic asynchronous event handlers (class AperiodicEventHandler) shall

be supported.
• Each event handler shall be permanently bound to its own implementation-

defined thread of control, and each thread of control shall only be bound to a
single event handler.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

49

Safety Critical Specification for Java

• There are a fixed number of implementation-predefined affinity sets, each of
which contains only a single processor. No dynamic creation of affinity sets is
allowed.

• Calls to Object.wait, Object.notify and Object.notifyAll are not allowed.
• Full preemptive scheduling shall be supported. The only scheduler is the de-

fault RTSJ preemptive priority-based scheduler with at least 28 (software and
hardware) priorities and priority ceiling emulation (although if portability is a
main concern, no more than 28 priorities should be used). There is no support
for changing base priorities.

• Deadline miss detection shall be supported. An implementation is required to
document the granularity at which missed deadlines are detected (see Section
4.7.5). The deadline miss shall be signalled no earlier that the deadline of the
associated managed event handler.

4.2.3 Level 2
• NoHeapRealtimeThreads shall be supported but be managed (the Managed-

Thread class).
• There are a fixed number of implementation-predefined affinity sets. Each

affinity set may contain one or more processors. However, no processor can
appear in more than one affinity set.

• Dynamic creation of affinity sets is allowed during the mission initialization
phase, but each set shall only contain a single processor.

• Calls to Object.wait, Object.notify and Object.notifyAll are allowed. However,
calling Object.wait from nested synchronization code is illegal.

4.3 The Parameter Classes

The run-time behaviours of SCJ schedulable objects are controlled by their associ-
ated parameter classes (see Figure 4.1):

• StorageParameters — these allow, for example, the stack size of a schedulable
object to be specified.

• The ReleaseParameters class hierarchy — these allow the release characteris-
tics of a schedulable object to be specified, for example whether it is periodic
or aperiodic.

• The SchedulingParameters class hierarchy — these allow the priorities of the
schedulable objects to be set.

50 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

javax.realtime::AperiodicParameters

«constructor»
+AperiodicParameters(deadline :RelativeTime,
 missHandler :.AsyncEventHandler

javax.realtime::ReleaseParameters

 +getDeadline() : RelativeTime
+getMisshandler() : AsynchronousEventHandler

«Constructors»
#ReleaseParameters()
#ReleaseParameters(deadline :RelativeTime,
 missHandler :.AsyncEventHandler)

javax.realtime::PeriodicParameters

+getStart():HighResolutionTime
+getPeriod():RelativeTime

«constructor»
+PeriodicParameters(start: HighResolutionTime,
 period: RelativeTime)
+PeriodicParameters(start: HighResolutionTime,
 period: RelativeTime,
 deadline :RelativeTime,
 missHandler :.AsyncEventHandler)javax.realtime::SchedulingParameters

javax.realtime::PriorityParameters

+getPriority(): int

«constructor»
PriorityParameters(priority: int)

javax.safetycritical::StorageParameters

+getTotalBackingStoreSize(): long
+getNativeStackSize(): int
+getJavaStackSize(): int
+getmessageLength(): int
+getStackTraceLength(): int

 «constuctors»
+StorageParameters(storeSz: long,
 nativeSz: int, javaSz: int)
+StorageParameters(storeSZ: long,
 nativeSz: int, javaSz: int, messageLen:int, traceLen:int)

Figure 4.1: Parameter classes

4.3.1 Class java.safetycritical.StorageParameters

Declaration

@SCJAllowed
public class StorageParameters

Description

Each schedulable object has several associated types of storage. As well as its Java
run-time execution stack, there is also a native method stack (if this memory is dis-
tinct from the run-time stack). In addition, each schedulable object has: a backing
store that is used for any scoped memory areas it may create and a number of bytes
dedicated to the message associated with this Schedulable object’s ThrowBoundary-
Error exception plus all the method names/identifiers in the stack backtrace.

This class allows the programmer to set the sizes of these memory stores only at
construction time (the objects are immutable). It is assumed that these sizes are

8 July 2010 Version 0.76
Confidentiality: Public Distribution

51

Safety Critical Specification for Java

obtained from vendor-specific tools.

Constructors

@SCJAllowed
public StorageParameters(long storeSz, int nativeSz, int javaSz)

Stack sizes for schedulable objects and sequencers passed as parameter to the con-
structor of mission sequencers and schedulable objects.

Parameter storeSz is the size of the backing store reservation in bytes.

Parameter nativeSz is the size of the native stack in bytes.

Parameter javaSz is the size of the Java stack in bytes.

The default messageLen and traceLen values are set during the configuration of the
virtual machine.

Throws IllegalArgumentException if one or more of the parameters are less than zero.

@SCJAllowed
public StorageParameters(long storeSz, int nativeSz, int javaSz,

int messageLen, int traceLen)

Stack sizes for schedulable objects and sequencers passed as parameter to the con-
structor of mission sequencers and schedulable objects.

Parameter storeSz is the size of the backing store reservation in bytes.

Parameter nativeZs is the size of the native stack in bytes.

Parameter javaSz is the size of the Java stack in bytes.

Parameter messageLen is the space in bytes dedicated to message associated with
this Schedulable object’s ThrowBoundaryError exception plus all the method names
and identifiers in the stack backtrace.

Parameter traceLen is the number of bytes for theStackTraceElement array dedicated
to stack backtrace associated with this Schedulable object’s ThrowBoundaryError
exception.

Throws IllegalArgumentException if one or more of the parameters are less than zero.

Methods

@SCJAllowed
public long getTotalBackingStoreSize()

Returns the size of the total backing store available for scoped memory areas created
by the assocated Schedulable object.

@SCJAllowed
public int getNativeStackSize()

52 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

Returns the size of native method stack available to the assocated Schedulable object.

@SCJAllowed
public int getJavaStackSize()

Returns the size of Java method stack available to the assocated Schedulable object.

@SCJAllowed
public int getMessageLength()

Returns the length of the message buffer in bytes.

@SCJAllowed
public int getStackTraceLength()

Returns the length of the stack trace buffer in bytes.

4.3.2 Class javax.realtime.ReleaseParameters

Declaration

@SCJAllowed
public abstract class ReleaseParameters implements Cloneable

Description

All analysis of safety critical software is performed off line. Although the RTSJ
allows on-line schedulability analysis, SCJ assumes any such analysis is performed
off line and that the on-line environment is predictable. Consequently, the failure
hypothesis is that deadlines should not be missed. However, to facilitate fault-tolerant
applications, SCJ does support a deadline miss detection facility at Levels 1 and 2.
SCJ provides no direct mechanisms for coping with cost overruns. These decisions
are reflected in the ReleaseParameters class and its subclasses.

The ReleaseParameters class is restricted so that it allows the parameters to be set
and queried but not changes. Note that the values in parameters classes passed to the
constructors are those that will be used by the infrastructure. Changing these values
after construction will have no impact on the created event handler.

Constructors

@SCJAllowed
protected ReleaseParamters()

Construct an object which has no deadline checking facility. There is no default for
deadline in this class. The default is set in by the subclasses.

@SCJAllowed(LEVEL 1)
protected ReleaseParamters(RelativeTime deadline, AsyncEventHandler missHandler)

8 July 2010 Version 0.76
Confidentiality: Public Distribution

53

Safety Critical Specification for Java

Construct an object which has deadline checking facility.

Parameter deadline is the deadline to be checked.

Parameter missHandler is the event handler to be released when the deadline miss
has been detected.

Methods

@SCJAllowed(LEVEL 1)
public Object clone()

@SCJAllowed(LEVEL 1)
public RelativeTime getDeadline()

Returns the deadline set at construction time.

@SCJAllowed(LEVEL 1)
public AsyncEventHandler getDeadlineMissHandler()

Returns the handler set at construction time. Returns null if there is no deadline miss
detection facility.

4.3.3 Class java.realtime.PeriodicParameters

Declaration

@SCJAllowed
public class PeriodicParameters extends ReleaseParameters

Description

This class is restricted so that it allows the start time and the period to be set and
queried but not changed.

Note that the values in parameters classes passed to the constructors are those that
will be used by the infrastructure. Changing these values after construction will have
no impact on the created event handler.

Constructors

@SCJAllowed
public PeriodicParameters(HighResolutionTime start, RelativeTime period)

Construct a new object within the current memory area. The default deadline is the
same value as period.

@SCJAllowed(LEVEL 1)
public PeriodicParameters(HighResolutionTime start, RelativeTime period

RelativeTime deadline, AsyncEventHandler missHandler)

54 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

Construct a new object within the current memory area.

Methods

@SCJAllowed
public HighResolutionTime getStart()

Returns a newly created object whose time is the same as the start time passed at
construction.

@SCJAllowed
public RelativeTime getPeriod()

Returns a newly created object whose time is the same as the period time passed at
construction.

4.3.4 Class javax.realtime.AperiodicParameters

Declaration

@SCJAllowed(LEVEL 1)
public class AperiodicParameters extends ReleaseParameters

Description

SCJ supports no detection of minimum inter-arrival time violations, therefore only
aperiodic parameters are needed. Hence the RTSJ SporadicParameters class is
absent. Deadline miss detection is supported. However there the arrival time queue
length is assumed to be 1, and the overflow behaviour is throw an exception on firing
the associated event.

Constructors

@SCJAllowed(LEVEL 1)
public AperiodicParameters(RelativeTime deadline, AsyncEventHandler missHandler)

Construct a new object within the current memory area.

4.3.5 Class javax.realtime.SchedulingParameters

Declaration

@SCJAllowed
public abstract class SchedulingParameters

Description

The RTSJ potentially allows different schedulers to be supported and defines this
class as the root class for all scheduling parameters. In SCJ this class is empty.

There is no ImportanceParameters subclass in SCJ.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

55

Safety Critical Specification for Java

4.3.6 Class javax.realtime.PriorityParameters

Declaration

@SCJAllowed
public class PriorityParameters extends SchedulingParameters

Description

The class is restricted so that it allows the priority to be created and queried but not
changed.

In SCJ the range of priorities is separated into software priorities and hardware
priorities (see Section 4.6.6). Hardware priorities have higher values than software
priorities. Schedulable objects can be assigned only software priorities. Ceiling
priorities can be either software or hardware priorities.

Constructor

@SCJAllowed
public PriorityParameters(int priority)

Create an object within the current allocation context with the value priority.

Methods

@SCJAllowed
public int getPriority()

Returns the integer priority value that was passed at construction time.

4.4 Asynchronous Events and their Handlers

javax.realtime::AsyncEvent

+fire()

javax.safetycriticalAperiodicEvent

«constructors»
+AperiodicEvent(handler:AperiodicEventHandler)
+AperiodicEvent(handler[]:AperiodicEventHandler)

Figure 4.2: Async Event Classes

The event based programming paradigm in SCJ is implemented using the RTSJ
asynchronous event handling mechanisms (see Figures 4.2 and 4.3). The types of
events and event handlers have very constrained use cases in SCJ. Consequently

56 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

new subclasses are defined to support these. Direct use of the RTSJ classes by the
application is therefore disallowed.

All asynchronous-events related classes in SCJ are rooted the AsyncEvent class.

SCJ supports two types of events and their handlers:

• periodic events — the only form of periodic events that is supported are those
that are generated by the passage of time. SCJ does not provide visibility
to the infrastructure code that generates these timing events. Hence, it only
provides a PeriodicEventHandler class.

• aperiodic events and their handlers — both software generated events and ex-
ternal events are support. The latter is discussed in the context of external
events in section 5.

4.4.1 Class javax.realtime.AsyncEvent

Declaration

@SCJAllowed(LEVEL 1)
public class AsyncEvent

Description

In SCJ only aperiodic event are available at the application level. Hence, construc-
tors are hidden from public view. Handlers must be attached when events are created.
Consequently the related methods have been removed. There is also no support for
binding to external happenings using this class.

Methods

@SCJAllowed(LEVEL 1)
public void fire()

Fire this event, i.e., releases all the handlers that have been added to this event.

4.4.2 Class javax.safetycritical.AperiodicEvent

Declaration

@SCJAllowed(LEVEL 1)
public class AperiodicEvent extends AsyncEvent

Description

A class of events that enables code to release the execution of AperiodicEventHandlers.
The event is software-triggered. As there is no support for minimal inter-arrival time
monitoring, there is no support for sporadic events and their handlers.

Constructors

8 July 2010 Version 0.76
Confidentiality: Public Distribution

57

Safety Critical Specification for Java

@SCJAllowed(LEVEL 1)
@SCJRestricted(INITIALIZATION)
public AperiodicEvent(AperiodicEventHandler handler)

Constructor for an aperiodic event that is linked to a given handler.

Throws IllegalArgumentException if handler is null.

@SCJAllowed(LEVEL 1)
@SCJRestricted(INITIALIZATION)
public AperiodicEvent(AperiodicEventHandler[] handlers)

Constructor for an aperiodic event that is linked to multiple handlers.

Throws IllegalArgumentException if handlers is null.

4.4.3 Class javax.realtime.Schedulable

Declaration

@SCJAllowed
public interface Schedulable extends Runnable

Description

In keeping with the RTSJ, SCJ event handlers are schedulable objects. However,
the Schedulable interface in the RTSJ is mainly concerned with on-line feasibility
analysis and the getting and setting of the parameter classes. In SCJ, it provides no
extra functionality over the Runnable interface.

4.4.4 Class javax.safetycritical.ManagedSchedulable

Declaration

@SCJAllowed
public interface ManagedSchedulable extends Schedulable

Description

In SCJ, all schedulable objects are managed by a mission.

Methods

@SCJAllowed
public void register()

Register this schedulable object with the current mission.

@SCJAllowed
public void cleanUp()

Runs any end-of-mission clean up code associated with this schedulable object.

58 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

4.4.5 Class javax.realtime.AsyncEventHandler

Declaration

«interface»
javax.realtime::Schedulable

«interface»
Runnable

run(): void

javax.realtime::AsyncEventHandler

+handleAsyncEvent()

javax.realtime::BoundAsyncEventHandler

javax.safetycritical::ManagedEventHandler

#register
#cleanup()
+getName() : String

«constructor»
#ManagedEventHandler(
 priority:PriorityParameters, release:ReleaseParameters
 scp: StorageParameters,memsize: long, name:String)

javax.safetycritical::AperiodicEventHandler

«constructors»
+AperiodicEventHandler(
 release:AperiodicParameters,
 priority: PriorityParameters,
 memInfo: StorageParameters
 memSize:long)
+AperiodicEventHandler(
 release:AperiodicParameters,
 priority: PriorityParameters,,
 memInfo: StorageParameters,
 memSize:long,name:String)

javax.safetycritical::PeriodicEventHandler

«constructors»
+PeriodicEventHandler(
 priority: PriorityParameters,
 parameters: PeriodicParameters,
 scp: StorageParameters, memSize:long)
+PeriodicEventHandler(
 priority: PriorityParameters,
 parameters: PeriodicParameters,
 scp: StorageParameters,
 memSize:long, name:String)

«interface»
ManagedSchedulable

register()
cleanup()

MissionSequencer
getNextMission():Mission

Figure 4.3: Handler classes

8 July 2010 Version 0.76
Confidentiality: Public Distribution

59

Safety Critical Specification for Java

@SCJAllowed
public class AsyncEventHandler implements Schedulable

Description

In SCJ, all asynchronous events must have their handlers bound when they are cre-
ated (during the initialization phase). The binding is permanent. Thus, the AsyncEvent-
Handler constructors are hidden from public view in the SCJ specification.

Methods

@SCJAllowed
public void handleAsyncEvent()

This is overridden by the application to provide the handling code.

4.4.6 Class javax.realtime.BoundAsyncEventHandler

Declaration

@SCJAllowed
public class BoundAsyncEventHandler extends AsyncEventHandler

Description

The BoundAsyncEventHandler class is not used directly by the application. Hence
none of its methods or constructors are publicly available.

4.4.7 Class javax.safetycritical.ManagedEventHandler

Declaration

@SCJAllowed
public abstract class ManagedEventHandler extends BoundAsyncEventHandler

implements ManagedSchedulable

Description

In SCJ, all handlers must be known by the mission manager, hence applications
use classes that are based on the ManagedEventHandler class hierarchy. This class
hierarchy allows a mission to keep track of all the handlers that are created during
the initialization phase.

Note that the values in parameters classes passed to the constructors are those that
will be used by the infrastructure. Changing these values after construction will have
no impact on the created event handler.

Constructor

60 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

@SCJAllowed
@SCJRestricted(INITIALIZATION)
protected ManagedEventHandler(PriorityParameters priority,

ReleaseParameters release,
StorageParameters storage,
long memSize, String name)

Constructor to create an event handler.

Parameter priority specifies the priority parameters for this periodic event handler.

Parameter release specifies the non-null release parameters.

Parameter storage describes the organization of memory dedicated to execution of
the underlying thread.

Parameter memSize is the size in bytes of the private scoped memory area to be used
for the execution of this event handler. 0 for an empty memory area.

Throws IllegalArgumentException if either priority or release is null or if memSize is
negative.

Methods

@SCJAllowed
@SCJRestricted(CLEANUP)
protected void cleanup()

Application developers override this method with code to be executed when this
event handler’s execution is disabled (upon termination of the enclosing mission).

@SCJAllowed
public String getName()

Returns a string name for this handler, including its priority.

4.4.8 Class javax.safetycritical.PeriodicEventHandler

Declaration

@SCJAllowed
public abstract class PeriodicEventHandler extends ManagedEventHandler

Description

This class permits the automatic periodic execution of code. It is automatically bound
to an infrastructure periodic timer in the constructor. This class is abstract, non-
abstract sub-classes must implement the methods handleAsyncEvent and cleanup.

Note that the values in parameters classes passed to the constructors are those that
will be used by the infrastructure. Changing these values after construction will have
no impact on the created event handler.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

61

Safety Critical Specification for Java

All time-triggered events are subject to release jitter. See section 4.7.4 for a discus-
sion of the impact of this on application scheduling.

Constructors

@SCJAllowed
@SCJRestricted(INITIALIZATION)
public PeriodicEventHandler(PriorityParameters priority, PeriodicParameters release,

StorageParameters storage, long memSize)

Constructor to create a periodic event handler.

Parameter priority parameter specifies the priority parameters for this periodic event
handler. Must not be null.

Parameter release specifies the periodic release parameters, in particular the start
time, period, deadline and deadline miss handler. Note that a relative start time is not
relative to NOW but relative to the point in time when initialization is finished and
the timers are started. This argument must not be null.

Parameter storage parameter describes the organization of memory dedicated to ex-
ecution of the underlying thread.

Parameter memSize is the size in bytes of the memory area to be used for the execu-
tion of this event handler. 0 for an empty memory area. Must not be negative.

Throws IllegalArgumentException if either priority, release is null, or if memSize is
negative.

@SCJAllowed(LEVEL 1)
@SCJRestricted(INITIALIZATION)
public PeriodicEventHandler(PriorityParameters priority, PeriodicParameters release,

StorageParameters storage, long memSize, String name)

Constructor to create a periodic event handler.

Parameter priority specifies the priority parameters for this periodic event handler.
Must not be null.

Parameter release specifies the periodic release parameters, in particular the start
time, period, deadline and deadline miss handler. Note that a relative start time is not
relative to NOW but relative to the point in time when initialization is finished and
the timers are started. This argument must not be null.

Parameter storage parameter describes the organization of memory dedicated to ex-
ecution of the underlying thread.

Parameter memSize is the size in bytes of the private scoped memory area to be used
for the execution of this event handler. 0 for an empty memory area. Must not be
negative.

Throws IllegalArgumentException if either priority, release is null, or if memSize is
negative.

62 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

4.4.9 Class javax.safetycritical.AperiodicEventHandler

Declaration

@SCJAllowed(LEVEL 1)
public abstract class AperiodicEventHandler extends ManagedEventHandler

Description

This class permits the automatic execution of code that is bound to an aperiodic
event. It is abstract. Concrete subclasses must implement the handleAsyncEvent and
override the default cleanup methods. Note, there is no programmer access to the
RTSJ fireCount mechanisms, so the associated methods are missing.

Note that the values in parameters classes passed to the constructors are those that
will be used by the infrastructure. Changing these values after construction will have
no impact on the created event handler.

Constructors

@SCJAllowed(LEVEL 1)
@SCJRestricted(INITIALIZATION)
public AperiodicEventHandler(PriorityParameters priority,

StorageParameters storage, long memSize)

Constructor to create an aperiodic event handler.

Parameter priority specifies the priority parameters for this aperiodic event handler;
it must not be null.

Parameter storage parameter describes the organization of memory dedicated to ex-
ecution of the underlying thread.

Parameter memSize is the size in bytes of the memory area to be used for the execu-
tion of this event handler. 0 for an empty memory area. Must not be negative.

Throws IllegalArgumentException if priority or storage is null, or if memSize is neg-
ative.

@SCJAllowed(LEVEL 1)
@SCJRestricted(INITIALIZATION)
public AperiodicEventHandler(PriorityParameters priority,

StorageParameters storage, long memSize, String name)

Constructor to create an aperiodic event handler.

Parameter priority specifies the priority parameters for this aperiodic event handler;
it must not be null.

Parameter storage parameter describes the organization of memory dedicated to ex-
ecution of the underlying thread.

Parameter memSize is the size in bytes of the memory area to be used for the execu-
tion of this event handler. 0 for an empty memory area. Must not be negative.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

63

Safety Critical Specification for Java

java.lang::Thread

getDefaultUncaughtExceptionHandler() : UncaughtExceptionHandler
interrupted():boolean
yield()

+interrupt(): void
+isAlive(): boolean {leaf}
+isInterrupted() : boolean
getDefaultUncaughtExceptionHandler() : UncaughtExceptionHandler
toString() : String

«interface»
Runnable

run(): void

javax.realtime::RealtimeThread

+currentRealtimeThread(): RealtimeThread
+getCurrentMemoryArea(): MemoryArea
+getMemoryArea(): MemoryArea
+sleep()

javax.safetycritical::NoHeapRealtimeThread

javax.safetycritical::ManagedThread

+start()
+cleanup()
+register()

«constructors»
+ManagedThread(scheduling:PriorityParameters,
 scp:StorageParameters)
+ManagedThread(scheduling:PriorityParameters,
 scp:StorageParameters,
 logic:Runnable)

«interface»
ManagedSchedulable

register()
cleanuo()

Figure 4.4: Thread classes

Throws IllegalArgumentException if priority or storage is null, or if memSize is neg-
ative.

4.5 Threads and Real-Time Threads

In keeping with the approach outlined above for events and their handlers, the threads
APIs are equally simple. They are shown in Figure 4.4.

4.5.1 Class java.lang.Thread

Declaration

64 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

@SCJAllowed
public class Thread implements Runnable

Description

The Thread class is not directly available to the application. However, some of the
static methods are used, and the infrastructure will extend from this class and hence
some of its methods are inherited.

Static Methods

@SCJAllowed(LEVEL 2)
public static UncaughtExceptionHandler getDefaultUncaughtExceptionHandler()

Returns the default handler for uncaught exceptions.

@SCJAllowed(LEVEL 2)
public static boolean interrupted()

Returns true if the current thread has been interrupted.

@SCJAllowed(LEVEL 2)
public static void yield()

Causes the currently executing thread object to temporarily pause and allow other
threads to execute.

Methods

@SCJAllowed(LEVEL 2)
public void interrupt()

Interrupts this thread.

@SCJAllowed(LEVEL 2)
public final boolean isAlive()

Returns true if this thread is alive. False otherwize.

@SCJAllowed(LEVEL 2)
public boolean isInterrupted()

Returns true if this thread has been interrupted. False otherwize.

@SCJAllowed(LEVEL 2)
public UncaughtExceptionHandler getUncaughtExceptionHandler()

Returns the handler invoked when this thread abruptly terminates due to an uncaught
exception.

@SCJAllowed
public String toString()

8 July 2010 Version 0.76
Confidentiality: Public Distribution

65

Safety Critical Specification for Java

Returns a string representation of this thread, including the thread’s name and prior-
ity.

4.5.2 Class java.lang.Thread.UncaughtExceptionHandler

Declaration

@SCJAllowed(LEVEL 2)
public static interface UncaughtExceptionHandler

Interface for handlers invoked when a Thread abruptly terminates due to an uncaught
exception.

Methods

void uncaughtException(Thread t, Throwable e)

Method invoked when the given thread terminates due to the given uncaught excep-
tion.

4.5.3 Class javax.realtime.RealtimeThread

Declaration

@SCJAllowed(LEVEL 1)
public class RealtimeThread extends Thread implements Schedulable

Description

Real-time threads cannot be directly created by the application. However, they are
needed by the infrastructure to support ManagedThreads. The getCurrentMemory-
Area method can be used at Level 1, hence the class is visible at Level 1.

Static Methods

@SCJAllowed(LEVEL 2)
public static RealtimeThread currentRealtimeThread()

Returns a reference to the RealtimeThread calling this method.

@SCJAllowed(LEVEL 1)
public static MemoryArea getCurrentMemoryArea()

Returns a reference to the current allocation context.

@SCJAllowed(LEVEL 2)
@SCJRestricted{MAY BLOCK)
public static void sleep(HighResolutionTime time) throws InterruptedException

66 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

Remove the currently execution schedulable object from the set of runnable schedu-
lable object until time.

Throws java.lang.IllegalArgumentException if time is based on a user-defined clock.

Methods

@SCJAllowed(LEVEL 2)
public MemoryArea getMemoryArea()

Returns a reference to the allocation context represented by this.

4.5.4 Class javax.realtime.NoHeapRealtimeThread

Declaration

@SCJAllowed(LEVEL 2)
public class NoHeapRealtimeThread extends RealtimeThread

Description

NoHeapRealtimeThreads cannot be directly created by the application. However,
they are needed by the infrastructure to support ManagedThreads at Level 2.

4.5.5 Class javax.safetycritical.ManagedThread

Declaration

@SCJAllowed(LEVEL 2)
public class ManagedThread extends RealtimeThread

implements ManagedSchedulable

Description

This class allows a mission to keep track of all the no-heap real-time threads that are
created during the initialization phase.

Note that the values in parameters classes passed to the constructors are those that
will be used by the infrastructure. Changing these values after construction will have
no impact on the created no-heap real-time thread. Managed threads have no release
parameters.

Constructors

@SCJAllowed(LEVEL 2)
@SCJRestricted(INITIALIZATION)
public ManagedThread(PriorityParameters priority,

StorageParameters storage,
long memsize)

8 July 2010 Version 0.76
Confidentiality: Public Distribution

67

Safety Critical Specification for Java

Creates a thread that is managed by the enclosing mission.

Parameter priority specifies the priority parameters for this managed thread; it must
not be null.

Parameter storage parameter describes the organization of memory dedicated to ex-
ecution of this managed thread.

Parameter memSize is the size in bytes of the memory area to be used for the execu-
tion of this managed thread. 0 for an empty memory area. Must not be negative.

Throws IllegalArgumentException if priority, parameters or if memSize is negative.

@SCJAllowed(LEVEL 2)
@SCJRestricted(INITIALIZATION)
public ManagedThread(PriorityParameters priority,

StorageParameters storage,
long memsize
Runnable logic)

Creates a thread that is managed by the enclosing mission.

Parameter priority specifies the priority parameters for this managed thread; it must
not be null.

Parameter storage parameter describes the organization of memory dedicated to ex-
ecution of this managed thread.

Parameter memSize is the size in bytes of the memory area to be used for the execu-
tion of this managed thread. 0 for an empty memory area. Must not be negative.

Parameter code is the code for this managed thread.

Methods

@SCJAllowed(LEVEL 2)
@SCJRestricted(INITIALIZATION)
public void start()

Start this managed thread.

@SCJAllowed
public void cleanUp()

Execute any clean up code associated with this managed thread.

@SCJAllowed
public void register()

Register this managed thread.

68 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

4.6 Scheduling and Related Activities

Level 0 applications are assumed to be scheduled by a cyclic executive where the
schedule is created by static analysis tools offline. Level 1 and 2 applications are
assumed to be scheduled by the RTSJ base level priority scheduler.

4.6.1 Class java.safetycritical.CyclicExecutive

Declaration

@SCJAllowed
public abstract class CyclicExecutive extends Mission implements Safelet

Level 0 applications are assumed to be scheduled by a cyclic executive where the
schedule is created by static analysis tools offline.

Constructors

@SCJAllowed
public CyclicExecutive()

Level 0 Applications need to extend CyclicExecutive and define a getSchedule method.

Methods

@SCJAllowed
public abstract CyclicSchedule getSchedule(PeriodicEventHandler[] peh);

Returns the schedule to be used by the application. This will typically be tooling-
generated.

@SCJAllowed
public MissionSequencer getSequencer()

Returns The sequencer to be used for the Level 0 application. By default this is a
SingleMissionSequencer, although this method can be overridden by the application
if an alternative sequencer is desired.

4.6.2 Class javax.safetycritical.CyclicSchedule

Declaration

@SCJAllowed
public class CyclicSchedule

Description

8 July 2010 Version 0.76
Confidentiality: Public Distribution

69

Safety Critical Specification for Java

At Level 0, a cyclic schedule is represented by this class. There is one schedule for
each processor in the system. The current class assumes a single processor.

Constructor

@SCJAllowed
public CyclicSchedule(CyclicSchedule.Frame[] frames)

Constructs a cyclic schedule. All the frames must be based on the same clock.

Methods

@SCJAllowed
public RelativeTime getCycleDuration()

Returns a newly allocated RelativeTime object, taken from the current memory area
of the caller. This is the sum of the duration of all the frames’ durations.

@SCJAllowed
protected Frame[] getFrames()

Returns an array that will contain references to the same Frame objects that are used
internally by the infrastructure.

4.6.3 Class javax.safetycritical.CyclicSchedule.Frame

Declaration

@SCJAllowed
final public static class Frame

Constructor

@SCJAllowed
public Frame(RelativeTime duration, PeriodicEventHandler[] handlers)

Allocates private copies of the handlers within the same memory area as this. The
elements within the copy of the handlers array are the exact same elements as in the
handlers array.

Methods

@SCJAllowed
public RelativeTime getDuration()

Returns a reference to the internal representation of the frame duration.

@SCJAllowed
public PeriodicEventHandler[] getHandlers()

Returns an array allocated in the memory area of the caller. This array holds refer-
ences to the same PeriodicEventHandler objects that were passed during construc-
tion.

70 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

4.6.4 Class javax.realtime.Scheduler

Declaration

@SCJAllowed
public abstract class Scheduler

Description

The RTSJ supports generic on-line feasibility analysis via the Scheduler class. SCJ
supports off-line analysis, hence most of the methods in this class are omitted. Only
the static method getCurrentSO is provided.

Static Methods

public static Schedulable getCurrentSo()

Returns the current asynchronous event handler or real-time thread of the caller.

4.6.5 Class javax.realtime.PriorityScheduler

Declaration

@SCJAllowed
public class PriorityScheduler extends Scheduler

Description

Priority-based dispatching is supported at Levels 1 and 2. The only access to the
priority scheduler is for obtaining the maximum software priority.

Methods

@SCJAllowed
public int getMaxPriority()

Returns the maximum software real-time priority supported by this virtual machine.

@SCJAllowed
public int getNormPriority()

Returns the normal software real-time priority supported by this virtual machine.

@SCJAllowed
public int getMinPriority()

Returns the minimum software real-time priority supported by this virtual machine.

4.6.6 Class javax.safetycritical.PriorityScheduler

Declaration

8 July 2010 Version 0.76
Confidentiality: Public Distribution

71

Safety Critical Specification for Java

@SCJAllowed
public class PriorityScheduler extends javax.realtime.PriorityScheduler

Description

The SCJ priority scheduler support the notion of both software and hardware priori-
ties.

Methods

@SCJAllowed
public int getMaxHardwarePriority()

Returns the maximum hardware real-time priority supported by this virtual machine.

@SCJAllowed
public int getMinHardwarePriority()

Returns the minimum hardware real-time priority supported by this virtual machine.

4.6.7 Class javax.realtime.AffinitySet

Declaration

@SCJAllowed
public final class AffinitySet

Description

This class is the API for all processor-affinity-related aspects of SCJ.

Static Methods

@SCJAllowed(LEVEL 2)
public static AffinitySet generate(BitSet bitSet)

Returns an AffinitySet representing a subset of the processors in the system. The re-
turned object may be dynamically created in the current memory area or preallocated
in immortal memory.

Throws NullPointerException if bitSet is null, and java.lang.IllegalArgumentException
if bitSet is not a valid set of processors.

@SCJAllowed(LEVEL 1)
public static AffinitySet getAffinitySet(BoundAsyncEventHandler handler)

Returns an AffinitySet representing the set of processors on which handler can be
scheduled. The returned object may be dynamically created in the current memory
area or preallocated in immortal memory.

Throws NullPointerException if handler is null.

@SCJAllowed(LEVEL 2)
public static AffinitySet getAffinitySet(Thread thread)

72 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

Returns an AffinitySet representing the set of processors on which thread can be
scheduled. The returned object may be dynamically created in the current memory
area or preallocated in immortal memory.

Throws NullPointerException if thread is null.

@SCJAllowed(LEVEL 1)
public static BitSet getAvailableProcessors()

Equivalent to getAvailableProcessors(BitSet dest) with a null argument.

@SCJAllowed(LEVEL 1)
public static BitSet getAvailableProcessors(BitSet dest)

Returns the set of processors available to the SCJ application either in dest, or if dest
is null, the returned object may be dynamically created in the current memory area
or preallocated in immortal memory.

@SCJAllowed(LEVEL 1)
public static AffinitySet getNoHeapSoDefaultAffinity()

Returns the default AffinitySet representing the set of processors on which no-heap
schedulable objects can be scheduled. The returned object may be dynamically cre-
ated in the current memory area or preallocated in immortal memory.

@SCJAllowed(LEVEL 1)
public static int getPredefinedAffinitySetCount()

Returns the size of the predefined affinity sets.

@SCJAllowed(LEVEL 1)
public static AffinitySet[] getPredefinedAffinitySets()

Equivalent to getPredefinedAffinitySets(AffinitySet[] dest) with a null argument.

@SCJAllowed(LEVEL 1)
public static AffinitySet[] getPredefinedAffinitySets(AffinitySet[] dest)

Returns an array of predefined AffinitySet, either in dest, or if dest is null, the returned
object may be dynamically created in the current memory area or preallocated in
immortal memory.

Throws java.lang.IllegalArgumentException if dest is not large enough to hold the
set.

@SCJAllowed(LEVEL 1)
public static void setProcessorAffinity(AffinitySet set, BoundAsyncEventHandler handler)

Set the set of processors on which aeh can be scheduled to that represented by set.

Throws ProcessorAffinityException if set is not a valid processor set, and NullPointer-
Exception if handler is null

@SCJAllowed(LEVEL 2)

8 July 2010 Version 0.76
Confidentiality: Public Distribution

73

Safety Critical Specification for Java

public static void setProcessorAffinity(AffinitySet set, Thread thread)

Set the set of processors on which thread can be scheduled to that represented by set.

Throws ProcessorAffinityException if set is not a valid processor set, and NullPointer-
Exception if thread is null

Methods

@SCJAllowed(LEVEL 1)
public final BitSet getBitSet()

Equivalent to getProcessors(BitSet dest) with a null argument.

@SCJAllowed(LEVEL 1)
public final BitSet getProcessors(BitSet dest)

Returns the set of processors associated with this Affinity set, either in dest, or if dest
is null, the returned object may be dynamically created in the current memory area
or preallocated in immortal memory.

@SCJAllowed(LEVEL 2)
public final boolean isProcessorInSet(int processorNumber)

Returns true if if and only if the processorNumber is in this affinity set.

4.6.8 Class jaxax.safetycritical.Services

Declaration

@SCJAllowed
public class Services

Description

This class provides a collection of static helper methods.

Static Methods

@SCJAllowed(LEVEL 1)
public static int getDefaultCeiling();

Returns the default ceiling priority. The default ceiling priority is the PrioritySched-
uler.getMaxPriority.3

@SCJAllowed(LEVEL 1)
@SCJRestricted(INITIALIZATION)
public static void setCeiling(Object o, int pri);

Sets the ceiling priority of the first argument. The priority can be in the software or
hardware priority range. Ceiling priorities are immutable.

3Although it is assumed that this can be changed with a virtual machine configuration option.

74 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

@SCJAllowed
public static void captureBackTrace(Throwable association)

Captures the stack back trace for the current thread into its thread-local stack back
trace buffer and remembers that the current contents of the stack back trace buffer is
associated with the object represented by the association argument. The size of the
stack back trace buffer is determined by the StorageParameters object that is passed
as an argument to the constructor of the corresponding Schedulable. If the stack back
trace buffer is not large enough to capture all of the stack back trace information, the
information is truncated in an implementation dependent manner.

static void overwriteBackTraceAssociation(Class class)

This method is invoked by infrastructure to change the association for the thread-
local stack back trace buffer to the Class that represents a Throwable that has crossed
its scope boundary, at the time that Throwable is replaced with a ThrowBoundary-
Error.

@SCJAllowed(LEVEL 1)
public static int getInterruptPriority(int InterruptId)

Every interrupt has an implementation-defined integer id.

Returns The priority of the code that the first-level interrupts code executes. The
returned value is always greater than javax.safetycritical.PriorityScheduler.getMax-
Priority().

Throws IllegalArgumentException if unsupported InterruptId

@SCJAllowed
public static Level getDeploymentLevel()

Returns the deployment level.

@SCJAllowed(LEVEL 2)
@SCJMayBlock\issue{check}
public static void delay(HighResolutionTime delay)

This is like sleep except that it is not interruptible and it uses a HighResolutionTime.

Parameter if delay is a RelativeTime type then it represents the number of millisec-
onds and nanoseconds to suspend. If it is an AbsoluteTime type then delay is the
absolute time at which the delay finishes. If delay is time in the past, the method
returns immediately.

Throws java.lang.IllegalArgumentException if the clock associated with delay does
not drive events.

@SCJAllowed(LEVEL 2)
public static void delay(int delay)

This is like sleep except that it is not interruptible and it uses nanoseconds instead of
milliseconds.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

75

Safety Critical Specification for Java

Parameter delay is the the number of nanoseconds to suspend.

@ICS
@SCJAllowed(LEVEL 1)
public static void spin(HighResolutionTime delay)

Busy wait spinning loop.

Parameter if delay is a RelativeTime type then it represents the number of millisec-
onds and nanoseconds to spin. If it is an AbsoluteTime type then delay is the absolute
time at which the spin finishes. If delay is time in the past, the method returns imme-
diately.

@SCJAllowed(LEVEL 1)
public static void spin(int nanos) {}

Spin for nanos nanoseconds.

4.7 Rationale

Traditional safety critical systems have been small and sequential, relying on cyclic
executive scheduling to manually interleave the execution of any activities with time
constraints. Demonstration that timeliness requirements have been met has been
through construction and testing. The limitations of this approach are well known.

As systems have become larger, there has been a gradual migration to computational
models that support simple concurrent activities (be they, threads, tasks, event han-
dlers etc) that share an address space with each other. Whereas testing may have
adequate to prove reliable operations of sequential programs, it is not sufficient to
demonstrate that timing constraints are met in a concurrent program. This is because
of the large number of computational states possible in a concurrent program.

The transition from sequential to concurrent safety-critical systems has been accom-
panied by a shift from deterministic scheduling to predictable scheduling. Verifica-
tion of timing requirements relies on schedulability analysis (called “feasibility anal-
ysis” in the RTSJ). Many of these techniques are now mature for single processor
systems, with firm mathematical foundation, and are accepted by certification author-
ities (e.g., simple utilization-based or response-time analysis using rate-monotonic
or deadline-monotonic priority ordering of threads). They rely on the ability to de-
termine the worst-case execution time of threads and the amount of time they are
blocked for resources. The techniques for schedulability analysis, worst-case execu-
tion time analysis and blocking time analysis are beyond the scope of this specifi-
cation. However, they may be including as evidence in any certification process for
applications written according to this specification.

76 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

Specifying subsets of languages for use in safety system system is accepted practice,
as to is constraining the way that subset is used. The Ada programming language
has led the way in using concurrent activities (which it refers to as tasks) for real-
time, embedded programs, and the most recent version of the language standard (Ada
2005) includes an explicit subset of tasking constructs, called the Ravenscar profile,
that are amenable to formal certification against standards such as DO-178B.

The SCJ concurrency model aims to ease the migration from sequential to concur-
rent safety critical systems. Level 0, effectively is a static cyclic scheduler, where as
levels 1 and 2 offers more dynamic flexible scheduling.

4.7.1 Scheduling and Synchronization Issues

For schedulability analysis, all non periodic activities must have bound minimum in-
terarrival time. The SCJ specification does not provide the policing of inter-arrival
times. In the RTSJ the use of sporadic release parameters requires that the imple-
mentation supports policing. Hence, the SCJ specification uses the aperiodic param-
eter class.

The priority ceiling emulation (PCE) protocol is optional in the RTSJ as many real-
time OSs only support priority inheritance. However, the priority ceiling protocol
has emerged in recent years as a preferred approach on a single processor (under the
assumption that schedulable objects do not execute lock retaining blocking opera-
tions) because it has an efficient implementation and has the potential to guarantee
that the program is deadlock free. It also ensures that a schedulable object is blocked
only once (at the start of its execution request).

SCJ only supports the priority ceiling emulation protocol. As the priority ceiling
emulation protocol is optional in the RTSJ and compulsory in SCJ, SCJ defines it
own interface. It simply provides a static method in the javax.safetycritical.Services
class that just allows the ceiling of an object to be set.

The application of the priority ceiling emulation protocol to Java synchronized meth-
ods is not straightforward. Java allows lock retaining blocking operations, for exam-
ple the sleep and join methods when called from synchronized code. Furthermore,
nested synchronized calls that call the wait method can release only one of the locks
being held. For these reasons, self suspension of any type is not allowed at all Lev-
els. At Level 2, if the use of wait method is allowed. The following approaches are
possible.

1. Prohibit all nested synchronized calls. This seems draconian.

2. Prohibit the call of the wait method from nested synchronized methods. This
would probably be difficult to test statically and would require a run-time ex-
ception to be raised (presumably IllegalMonitorStateException).

8 July 2010 Version 0.76
Confidentiality: Public Distribution

77

Safety Critical Specification for Java

3. Allow with the standard Java semantics. On a single processor system, the
PCE protocol would have to degrade to priority inheritance in this case (hence
multiple possible blocking and the potential for deadlock). For multiprocessor
systems, spinning for a lock would no longer be bounded.

4. Allow, but provide an annotation to indicate when synchronized code is sus-
pension free.

4.7.2 Multiprocessors

Although the techniques for analyzing the timing properties of multiprocessor sys-
tems are still in their infancy, there is general acceptance on the growing importance
of multicore platforms for real-time and embedded systems. For this reason, this
specification provides support for programming multiprocessor platforms.

On a single processor, the priority ceiling emulation protocols has the following prop-
erties if schedulable objects do not self suspend holding the lock:

• no deadlocks can occur from the use of Java monitors.
• each schedulable object can be blocked at most once during its release as a

result of sharing a Java monitor with another schedulable object.

The ceiling of each shared object is at least the maximum of all the schedulable
objects that access that shared object.

On a multi-processor system, the above properties still hold as long as Java monitors
are not shared between schedulable objects executing on separate processors.

If schedulable objects on separate processors are sharing objects and they do not
self suspend whilst holding the monitor lock, then blocking can be bounded but the
absence of deadlock cannot be assured by the protocol alone.

The usual approach to waiting for a lock that is help by a schedulable object on a
different processors is to spin (busy-wait). There are different approaches that can
be used by an implementation, for example, maintaining a FIFO/Priority queue of
spinning processors, and whether the processors spin non-preemptively. SCJ does
not mandate any particular approach but requires an implementation to document its
approach.

To avoid unbounded priority inversion it is necessary to carefully set the ceiling val-
ues.

On a Level 1 system, the processors are fully partitioned using the scheduling allo-
cation domain concept. The ceilings of every object that is accessible by more than
one processor has to be set so that its synchronized methods execute in a non pre-
emptive manner. This is because there is no relationship between the priorities in one
allocation domain and those in another.

78 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

On a Level 2 system, within an scheduling allocation domain, the priority of the
ceiling must be higher than all the schedulable objects on all the processors in that
scheduling allocation domain that can access the shared object. For monitors shared
between scheduling allocation domains, the monitor methods must run in a non pre-
emptive manner.

Nested calls of synchronized methods, where the inner call block by calling the wait
method, results in the outer lock being held. Usually, in multiprocessor systems, this
should be avoided if spinning is used for lock acquisition.

A lock is always required; using the priority model for locking is not sustainable with
multiprocessors.

4.7.3 Feasibility Analysis and Multi-Processors

While feasibility analysis techniques are mature for single processor systems, they
are less mature for multi-processor systems. Consequently, SCJ take a very conser-
vative approach. SCJ introduces the notion of a scheduling allocation domain.

Scheduling allocation domains are represented by AffinitySets. As a schedulable ob-
ject can only have one affinity set, it follows that each schedulable object can be
executed only in a single allocation domain.

At Level 0, each scheduling allocation domain is implemented as a cyclic scheduler.

At Level 1, each scheduling allocation domain is scheduled using fixed priority pre-
emptive scheduling. The feasibility analysis is equivalent to single processor feasi-
bility analysis.

At level 2, schedulable objects are globally scheduled according to fixed priority
preemptive scheduling. The feasibility analysis for these systems is emerging and
expected to mature over the next few years.

In all cases the implementation-predefined affinity sets of the RTSJ are the schedul-
ing allocation domains. Only Level 2 allows a new affinity set to be created.

4.7.4 Impact of Clock Granularity

All time-triggered computation can suffer from release jitter. This is defined to be the
variation in the actual time the computation becomes available for execution from its
scheduled release time. The amount of release jitter depends on two factors. The
first is the granularity of the clock/timer used to trigger the release. For example, a
periodic event handler that is due to be released at absolute time T will actually be
release at time T + ∆. ∆ is the difference between T and the first time the timer
clock advances to T ′, where T ′ ≥ T . The second contribution to release jitter is also

8 July 2010 Version 0.76
Confidentiality: Public Distribution

79

Safety Critical Specification for Java

related to the clock/timer. It is the duration of interval between T ′ being signaled by
the clock/timer and the time this event is noticed by the underlying operating system
or platform (perhaps because interrupts have been have been disabled). Figure 4.5
taken from [?] illustrates the delays that can occur.

Time specified by program

Granularity

difference

between

and delay

disabled

interrupts
executing

clock

but not executing

Time

Thread runnable here Thread

Figure 4.5: Granularity of delays (taken from [?])

A compliant implementation of SCJ should document the maximum value of ∆ for
the real-time clock.

4.7.5 Deadline Miss Detection

Although SCJ supports deadline miss detection, it is important to understand the in-
trinsic limitations of the facility. The SCJ facility is supported using a time-triggered
event. As explained in Section 4.7.4, all time-triggered computation can suffer from
release jitter. Hence, any deadline miss handler may not be released until some-
time after the deadline has expired. The handlers actual execution will depend on its
priority relative to other schedulable objects.

The second limitation is due to the inherent race condition that is present when check-
ing for deadline misses. A deadline miss is defined to occur if a managed event han-
dler has not completed the computation associated with its release before its dead-
line. This completion event is signalled in the application code by the return of the
handleAsyncEvent method. When this method returns, the infrastructure resched-
ules/cancels the timing event that signals the miss of a deadline. This is clearly a
race condition. The timer event could fire between the last statement of the han-
dleAsyncEvent method and the rescheduling/canceling of the timer event. Hence a
deadline miss could be signalled when arguably the application had performed all of
its computation.

80 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

For the above reasons, the SCJ deadline miss detection should be used with caution.

4.8 Compatibility

The following incompatibilities exist with RTSJ Version 1.1.

• PCE is the default monitor control policy in SCJ where as priority inheritance
is the default in the RTSJ

• There are no facilities in the RTSJ to facilitate the specification of the SCJ
StorageParameters.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

81

Safety Critical Specification for Java

82 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Chapter 5

Interaction with External Devices

This chapter presents the facilities provided by SCJ to aid in the handling of inter-
rupts and accessing memory-mapped (and port-mapped) input/output devices. The
former is supported by the Happening class hierarchy and the latter by the raw mem-
ory access-related classes.

5.1 Happenings and Interrupt Handling

5.1.1 Semantics and Requirements

In the RTSJ and in SCJ, all external events are represented by happenings1. A
happening represents a class of events that is detected by the hardware (interrupts),
the real-time JVM or the system software.

Happenings may be assigned unique names and ids by the application, or the system
will assign names and ids when they are not provided. The name space for system
names is all strings beginning with the bullet character (\ u2022). The name space
for system assigned ids is all integers less than zero.

In the RTSJ only second level handlers for happenings are supported and can be
mapped to the release of asynchronous event handlers. In SCJ, both first-level and
second-level handlers are supported. First-level handlers are associated with interrupt
happenings (an extension to the RTSJ framework). Furthermore, all handlers are
managed in the context of a mission.

Unlike the RTSJ, SCJ fully defines its underling model of happenings. The model
is heavily influenced by the Ada interrupt handling model, and borrows most of its
definitions from that model. The following definitions are used in the SCJ model.

1The happening model in jsr282 may change in the near future. If it does there many be some
repercussions for the material presented in this chapter.

83

Safety Critical Specification for Java

• An occurrence of an external event consists of its generation and delivery.
• Generation of the external event is the mechanism in the underlying hardware,

real-time JVM or system that makes the external event available to the Java
program.

• Delivery is the action that invokes the associated trigger method in response to
the occurrence of the external event. This may be performed by the JVM or
application native code linked with the JVM.

• Between generation and delivery, the external event is pending.
• Some or all external event occurrences may be inhibited. When an external

event occurrence is inhibited, all occurrences of that event are prevented from
being delivered.

• Certain implementation-defined external events are reserved. Reserved exter-
nal events are either external events for which user-defined Happenings are
not supported, or those that already have registered Happenings by some other
implementation-defined means. A clock interrupt is an example of reserved
external event.

• Happenings can be connected to non-reserved external events. While con-
nected, the happening is said to be registered to that happening. The trigger
method, is invoked upon delivery of a registered happening occurrence.

• While a happening is registered to an external event, it’s trigger method is
called once for each delivery of that external event. While the trigger method
executes, the corresponding external event is inhibited. While an external event
is inhibited, all occurrences of that external event are prevented from being de-
livered. Whether such occurrences remain pending or are lost is implementa-
tion defined.

• Each external event has a default implementation-defined registered Happ-
ening.

• An exception propagated from a trigger method that is invoked by an external
handler results in the uncaughtException method being called in the associated
ManageInterruptHandler class.

•

The implementation shall document the following items:

1. For each external event, whether it can be inhibited or not, and the effects of
attaching Happenings to non inhibitable external events (if this is permitted)

2. Which run-time stack the trigger method uses when it executes; if this is con-
figurable, what is the mechanism to do so; how to specify how much space to
reserve on that stack.

3. Any implementation- or hardware-specific activity that happens before a user-
defined happenings gets control (e.g., reading device registers, acknowledging

84 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

devices).

4. The state (inhibited/uninhibited) of the non-reserved external events when the
program starts; if some external events are uninhibited, what is the mechanism
a program can use to protect itself before it can register the corresponding
Happening.

5. The treatment of external event occurrences that are generated while the exter-
nal event is inhibited; i.e., whether one or more occurrences are held for later
delivery, or all are lost.

6. Whether predefined or implementation-defined exceptions are raised as a result
of the occurrence of any external event (for example, a hardware trap resulting
from a segmentation error), and the mapping between the external event and
the predefined exceptions.

7. On a multi-processor, the rules governing the delivery of an external event
occurrence to a particular processor.

Writing first-level interrupt handlers requires a restricted use of the Java language. To
support their introduction, SCJ defines the notion of an Interrupt Safe(IS) method.
An IS method is one that does no allocation and does not block (see Chapter 9).
Furthermore, any native code called from an IS method should not block or interact
with the underlying operating system (if present). The following are examples of
methods that are IS.

• Happening.Trigger
• Object.notify/notifyAll
• RawMemory access

Note that any exception thrown will be lost if the IS method is called from a first-level
interrupt handler.

SCJ also defines the notion of interrupt priorities. Interrupt priorities can only be
used to define ceiling priorities.

The revised happening framework is shown in Figure 5.1.

The Use Case diagram in 5.2 shows how the classes are used during mission initial-
ization and interrupt handling processing.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

85

Safety Critical Specification for Java

Happening

getHappening(name: String): Happening
getId() : int {frozen}
getId(name: String) : int
getName() : String {frozen}
isHappening(name: String) : boolean
isRegistered() : boolean
register() {frozen}
boolean trigger(happeningId: int) : boolean {frozen}
unRegister() {frozen}

EventHappening

attach (ae: AsyncEvent)
dettach (ae: AsyncEvent

ManagedInterruptHappening

ManagedInterruptHappening()
ManagedInterruptHappening(id: int)
ManagedInterruptHappening(id: int, name: String)
Managed InteruptHappening(name: String)

AutonomousHappening ControlledHappening

#process()
takeControl() {frozen}
#Object visit(EventExaminer logic) {frozen}

ManagedAutonomousHappening

ManagedAutonomousHappening()
ManagedAutonomousHappening(id: int)
ManagedAutonomousHappening(id: int, name:String)
ManagedAutonomousHappening(name: String)
attach(ae: AsyncEvent) {frozen}
detach(ae: AsyncEvent) {frozen}

ManagedControlledHappening

ManagedControlledHappening()
ManagedControlledHappening(id: int)
ManagedControlledHappening(id: int, name: String)
ManagedControlledHappening(name: String)
attach(ae: AsyncEvent) {frozen}
detach(ae: AsyncEvent) {frozen}

InterruptHappening

process()
getPriority(int id): int

«interface»
EventExaminer

visit(ae:AsyncEvent):Object

Figure 5.1: Happening classes

5.1.2 Level Considerations

Level 0
• Non-reserved happenings of any kind are prohibited at Level 0. All interaction

with the external embedded environment must be performed in a synchronous
manner.

Level 1
• ManagedInterruptHappenings and ManagedAutonomousHappenings are sup-

ported.
• Only one asynchronous event can be attached to each autonomous happening.
• Each autonomous happening may be attached to only one asynchronous event.
• The registration of a happening can only be performed during the mission

initialization phase by the mission manager. The deregistration of an asyn-
chronous event can only be performed during the cleanup phase.

86 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

Interrupt Management

creates a managed
happening

registers a managed
happening

gets the id
of the generated

happening

checks if registered

triggers managed
 happening

Mission Initializer

JVM/Native Code
Delivery Mechanism

Figure 5.2: Managed Happening Use Case

• The attachment of a happening to an asynchronous event can only be per-
formed during the mission initialization phase. The detachment of an asyn-
chronous event can only be performed during the cleanup phase.

• The RTSJ bindTo mechanisms is not supported. item

Level 2
• ManagedControlledHappenings are supported.
• More than one asynchronous event can be attached to each autonomous hap-

pening.

5.2 The Happening Class Hierarchy

5.2.1 Class javax.realtime.Happening

Declaration

@SCJAllowed(LEVEL 1)
public abstract class Happening {

8 July 2010 Version 0.76
Confidentiality: Public Distribution

87

Safety Critical Specification for Java

Description

In SCJ, all external events are represented by the Happening class.

Static Methods

@SCJAllowed(LEVEL 1)
public static Happening getHappening(String name)

Returns the happening denoted by name.

@SCJAllowed(LEVEL 1)
public static int getId(java.lang.String name);

Returns the ID of the happening denoted by name. If there is no happening with that
name returns 0.

@SCJAllowed(LEVEL 1)
public static boolean isHappening(java.lang.String name)

Returns true if there a Happening denoted by name. False otherwize.

@SCJAllowed(LEVEL 1)
public static final boolean trigger(int happeningId) {return true; }
Causes the happening corresponding to happeningId to occur. The trigger method
is responsible for determining the type of happening. For autonomous happenings,
the associated asynchronous events are fired. For controlled happenings or inter-
rupt happenings, the process method is called. Returns true if a happening with id
happeningId was found, false otherwise. Methods

@SCJAllowed(LEVEL 1)
public final int getId()

Returns the id of this happening.

@SCJAllowed(LEVEL 1)
public final String getName()

Returns the string name of this happening.

@SCJAllowed(LEVEL 1)
public boolean isRegistered()

Returns true if this happening is presently registered. False otherwize.

@SCJAllowed(LEVEL 1)
@SCJRestricted(INITIALIZATION)
public final void register();

Register this Happening.

Throws IllegalStateException if called from outside the mission initialization phase.

@SCJAllowed(LEVEL 1)

88 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

@SCJRestricted(CLEANUP)
public final void unRegister();

Unregister this Happening.

Throws IllegalStateException if called from outside the mission clean-up phase.

5.2.2 javax.realtime.EventHappening

Declaration

@SCJAllowed(LEVEL 1)
public abstract class EventHappening extends Happening

Description

Event happenings are happenings that can be associated with asynchronous events
(via the attach method).

Constructors

Methods

@SCJAllowed(LEVEL 1)
@SCJRestricted(INITIALIZATION)
public void attach(AsyncEvent ae)

Attach the AsyncEvent ae to this Happening.

@SCJAllowed(LEVEL 1)
@SCJRestricted(CLEANUP)
public void detach(AsyncEvent ae)

Detach the AsyncEvent ae from this Happening.

Throws IllegalStateException if called from outside the mission initialization phase.

5.2.3 javax.realtime.AutonomousHappening

Declaration

@SCJAllowed(LEVEL 1)
public class AutonomousHappening extends EventHappening

Description Autonomous happenings are those that when triggered automatically fire
the attached asynchronous events. In SCJ, all happenings are managed, hence there
are no visible constructors for the class.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

89

Safety Critical Specification for Java

5.2.4 javax.safetycritical.ManagedAutonomousHappening

Declaration

@SCJAllowed(LEVEL 1)
public class ManagedAutonomousHappening extends AutonomousHappening

Description Managed autonomous happenings automatically, on call of a constructor,
associates itself with the current mission.

Constructors

@SCJAllowed(LEVEL 1)
public ManagedAutonomousHappening()

Creates a happening in the current memory area with a system assigned name and id.

@SCJAllowed(LEVEL 1)
public ManagedAutonomousHappening(int id) {};

Creates a Happening in the current memory area with the specified id and a system-
assigned name.

@SCJAllowed(LEVEL 1)
public ManagedAutonomousHappening(int id, String name) {};

Creates a Happening in the current memory area with the name and id given.

@SCJAllowed(LEVEL 1)
public ManagedAutonomousHappening(String name) {};

Creates a Happening in the current memory area with the given name and a system-
assigned id.

Methods

@SCJAllowed(LEVEL 1)
@SCJRestricted(INITIALIZATION)
public final void attach(AsyncEvent ae)

Attach the AsyncEvent ae to this Happening.

Throws IllegalStateException if called from outside the mission initialization phase.

@SCJAllowed(LEVEL 1)
@SCJRestricted(CLEANUP)
public final void detach(AsyncEvent ae)

Detach the AsyncEvent ae from this Happening.

Throws IllegalStateException if called from outside the mission clean-up phase.

90 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

5.2.5 javax.realtime.EventExaminer

Declaration

@SCJAllowed(LEVEL 2)
public interface EventExaminer

Description

An interface used in conjunction with controlled happenings

Methods

@SCJAllowed(LEVEL 2)
Object visit(AsyncEvent ae);

5.2.6 javax.realtime.ControlledHappening

Declaration

@SCJAllowed(LEVEL 2)
public class ControlledHappening extends EventHappening

Description Controlled happenings are those that when triggered allow the applica-
tion to take control. The application schedulable object calls one of the takeControl
methods. That method calls the process method each time the happening is triggered.
The takeControl method returns when the happening is unregistered.

In SCJ, all happenings are managed, hence there are no visible constructors for the
class. Methods

@SCJAllowed(LEVEL 2) protected void process()

This method should be overridden if the application wishes to use some non-default
behavior on being triggered, for example by adding some operation before or after in-
voking super.process, by ignoring attached events, or by using visit(EventExaminer)
to fire a subset of the attached async events or take some other action for the attached
async events.

The default process method behaves effectively like: visit(logic) where the EventEx-
aminer.visit(AsyncEvent) method in logic is

ae.fire();
return null;

@SCJAllowed(LEVEL 2)
public final void takeControl()

8 July 2010 Version 0.76
Confidentiality: Public Distribution

91

Safety Critical Specification for Java

The application supplies a SO to the happening using this method. The happening
shall use the calling SO to process happenings. The takeControl method does not re-
turn until the happening is deregistered. The takeControl method behaves effectively
as if it were implemented:

while(isRegistered){
// waitForTrigger
process()

}
Throws java.lang.IllegalStateException if this happening is already controlled by an
SO, if the calling SO’s current memory area is not the memory area containing this
happening, or if the happening is not registered.

@SCJAllowed(LEVEL 2)
protected final Object visit(EventExaminer logic)

Executes logic on each attached async event until either logic.visit returns non-null or
all happenings have been visited.

Returns null if all async events were visited, the non-null object reference returned
by the last call to the async event examiner otherwise.

Throws java.lang.IllegalStateException - if the caller is not the SO controlling this
happening, see the takeControl method.

5.2.7 javax.safetycritical.ManagedControlledHappening

Declaration

@SCJAllowed(LEVEL 2)
public class ManagedControlledHappening extends ControlledHappening

Description Managed controlled happenings automatically, on call of a constructor,
associates itself with the current mission.

Constructors

@SCJAllowed(LEVEL 2)
public ManagedControlledHappening()

Creates a happening in the current memory area with a system assigned name and id.

@SCJAllowed(LEVEL 2)
public ManagedControlledHappening(int id)

Creates a Happening in the current memory area with the specified id and a system-
assigned name.

@SCJAllowed(LEVEL 2)
public ManagedControlledHappening(int id, String name)

92 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

Creates a Happening in the current memory area with the name and id given.

@SCJAllowed(LEVEL 2)
public ManagedControlledHappening(String name)

Creates a Happening in the current memory area with the specified id and a system-
assigned name.

@SCJAllowed(LEVEL 2)
@SCJRestricted(INITIALIZATION)
public final void attach(AsyncEvent ae)

Attach the AsyncEvent ae to this Happening.

Throws IllegalStateException if called from outside the mission initialization phase.

@SCJAllowed(LEVEL 2)
@SCJRestricted(CLEANUP)
public final void detach(AsyncEvent ae)

Detach the AsyncEvent ae from this Happening.

Throws IllegalStateException if called from outside the mission clean-up phase.

5.2.8 javax.realtime.InterruptHappening

Declaration

@SCJAllowed(LEVEL 1)
public class InterruptHappening extends Happening

In SCJ, all interrupts are managed, hence there are no visible constructors for the
class.

Methods

@SCJAllowed(LEVEL 1)
protected void process()

This method should be overridden to provide the interrupt handler.

@SCJAllowed(LEVEL 1)
public final int getPriority()

Returns the priority at which the process method is executed.

5.2.9 javax.safetycritical.ManagedInterruptHappening

Declaration

8 July 2010 Version 0.76
Confidentiality: Public Distribution

93

Safety Critical Specification for Java

@SCJAllowed(LEVEL 1)
public class ManagedInterruptHappening extends InterruptHappening

In SCJ all interrupt handlers must be known by the mission manager, hence applica-
tions use classes that are based on javax.safetycritical.ManagedInterruptHappening.

Constructors

@SCJAllowed(LEVEL 1)
public ManagedInterruptHappening()

Creates a Happening in the current memory area with a system assigned name and
id.

@SCJAllowed(LEVEL 1)
public ManagedInterruptHappening(int id) {};

Creates a Happening in the current memory area with the specified id and a system-
assigned name.

@SCJAllowed(LEVEL 1)
public ManagedInterruptHappening(int id, String name) {};

Creates a Happening in the current memory area with the given name and id given.

@SCJAllowed(LEVEL 1)
public ManagedInterruptHappening(String name) {};

Creates a Happening in the current memory area with the given name and a system-
assigned id.

Methods

@SCJAllowed(LEVEL 1)
public void uncaughtException(Exception E)

Called by the Infrastructure if an interrupt handler throws an uncaught exception

5.3 Raw Memory Access

5.3.1 Semantics and Requirements

RTSJ standardizes two means of accessing memory with specific properties: phys-
ical memory and raw memory. Physical memory provides a way of ensuring that
specific objects get specific properties tied to particular areas of physical memory
(e.g. non-cached memory areas). Raw Memory provides means of accessing par-
ticular physical memory addresses as variables of Java’s primitive data types, and

94 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

thereby allows the application direct access to, for example, memory-mapped I/O or
memory into which DMA can be performed.

SCJ restricts the RTSJ API by not requiring any of the classes related to physical
memory and removable memory.

• Each type of raw memory access is identified by a tagging interface called
RawMemoryName.

• The raw memory name MEM ACCESS facilitates access to memory locations
that are outside the main memory used by the JVM. It is used to access input
and output device registers when such registers are memory mapped.

• The raw memory name IO PORT MAPPED facilitates access to location that
are outside the main memory used by the JVM. It is used to access input and
output device registers when such registers are port-based and can only be
accessed by special hardware instructions.

• The raw memory name IO MEMORY MAPPED facilitates access to memory
location that are used to access input and output device registers when such
registers are memory mapped.

• The raw memory name DMA ACCESS facilitates access to memory location
that are outside the main memory used by the JVM. It is used in conjunction
with devices which allow DMA transfers.

• Access to raw memory is policed by implementation-defined objects that are
created by implementation-defined factory objects. Each factory is identified
by its raw memory name.

• Only Java integral types are supported.

An overview of the supported classes and interfaces is shown in Figure: 5.3 and their
interactions in Figure: 5.4.

5.3.2 Level Considerations

The defined facilities are available at all levels.

5.3.3 javax.realtime.RawMemoryName

Declaration

@SCJAllowed(LEVEL 0)
public interface RawMemoryName

Description RawMemoryName is a tagging interface for objects that identify raw
memory types.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

95

Safety Critical Specification for Java

RawMemory
IO_PORT_MAPPED: RawMemoryName {frozen}
IO_MEMORY_MAPPED_: RawMemoryName {frozen}
DMA_ACCESS: RawMemoryName{frozen}
MEM_ACCESS: RawMemoryName{frozen}
createRaw|IntegralAccessInstance(type:RawMemoryName, base:long, size:long) : RawRealAccess
registerRawIntegralAccessFactory (factory:RawIntegralAccessFactory)
unregister?

«interface»
RawIntegralAccess

+getByte(offset:long) : byte
+setByte(offset:long, value:byte)
...

«interface»
RawIntegralAccessFactory

+getName:RawMemoryName
+newRawIntegralAccess(base:long, size:long):RawIntegralAccess

«interface»
RawMemoryName

Figure 5.3: Raw memory classes

5.3.4 javax.realtime.RawIntegralAccess

Declaration

@SCJAllowed(LEVEL 0)
public interface RawIntegralAccess

Description

An interface that facilitates access to raw memory using with scalar data types.
Implementation-defined objects that implement this interface police access to a con-
tiguous area of physical memory. Offsets are used to access instance or arrays of the
primitive Java scalar types.

SCJ supports this interface in its entirety. The full interface is given in Section ??,
here an abbreviated version is shown:

Methods

@SCJAllowed(LEVEL 0)
@SCJRestricted{InterruptSafe}
public byte getByte(long offset);

Get the byte at the given offset in the raw memory area associated with this object..

Parameter offset is the offset at which to read the byte.

Returns the byte from raw memory.

Throws SizeOutOfBoundsException if the byte falls in an invalid address range.

Throws OffsetOutOfBoundsException if the offset is negative or greater than the size
of the raw memory area.

96 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

:Mission :RawMemory :RawIntegralAccessFactory

RaMemory

new

registerRawIntegralAccessFactory(
factory : rawIntegralAcessFactory)

createRawIntegralAccess(
MEM_ACCESS: RawMemoryName

addr: long, len: long)

newRawIntegralAccess(
addr: long, len: long)

RawIntegralAccess
RawIntegralAccess

getname

Figure 5.4: Raw memory classes interactions

@SCJAllowed(LEVEL 0)
@SCJRestricted{InterruptSafe}
public void getBytes(long offset, byte[] bytes, int low, int number);

Gets number bytes starting at the given offset and assigns them to the byte array
passed starting at position low. Each byte is loaded from memory in a single atomic
operation. Groups of bytes may be loaded together, but this is unspecified.

Caching of the memory access is controlled by the factory that created this RawInte-
gralAccess instance. If the memory is not cached, this method guarantees serialized
access (that is, the memory access at the memory occurs in the same order as in the
program. Multiple writes to the same location may not be coalesced.)

Parameter offset is the offset in bytes from the beginning of the raw memory from
which to start loading.

Parameter bytes is the array into which the loaded items are placed.

Parameter low is the offset which is the starting point in the given array for the loaded
items to be placed.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

97

Safety Critical Specification for Java

Parameter number is the number of items to load.

Throws OffsetOutOfBoundsException if the offset is negative or greater than the size
of the raw memory area.

Throws SizeOutOfBoundsException if the bytes falls in an invalid address range.
This is checked at every entry in the array to allow for the possibility that the memory
area could be unmapped or remapped. The bytes array could, therefore, be partially
updated if the raw memory is unmapped or remapped mid-method.

Throws java.lang.ArrayIndexOutOfBoundsException if low is less than 0 or greater
than bytes.length - 1, or if low + number is greater than or equal to bytes.length.

@SCJAllowed(LEVEL 0)
@SCJRestricted{InterruptSafe}
public void setByte(long offset, byte value);

Sets the byte at the given offset in the raw memory area associated with this object.

This memory access may involve a load and a store, and it may have unspecified
effects on surrounding bytes in the presence of concurrent access.

Caching of the memory access is controlled by the factory that created this RawInte-
gralAccess instance. If the memory is not cached, this method guarantees serialized
access (that is, the memory access at the memory occurs in the same order as in the
program. Multiple writes to the same location may not be coalesced.)

Parameter offset is the offset in bytes from the beginning of the raw memory area to
which to write the byte.

Parameter value is the byte to write.

Throws OffsetOutOfBoundsException if the offset is negative or greater than the size
of the raw memory area.

Throws SizeOutOfBoundsException if the byte falls in an invalid address range.

@SCJAllowed(LEVEL 0)
@SCJRestricted{InterruptSafe}
public void setBytes(long offset, byte[] bytes, int low, int number);

Sets number bytes starting at the given offset in the raw memory area associated
with this object from the byte array passed starting at position low. This memory
access may involve multiple load and a store operations, and it may have unspecified
effects on surrounding bytes (even bytes in the range being stored) in the presence of
concurrent access.

Caching of the memory access is controlled by the factory that created this RawInte-
gralAccess instance. If the memory is not cached, this method guarantees serialized
access (that is, the memory access at the memory occurs in the same order as in the
program. Multiple writes to the same location may not be coalesced.)

98 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

Parameter offset is the offset in bytes from the beginning of the raw memory area
to which to start writing. Parameter bytes is the array from which the items are
obtained. Parameter low is the offset which is the starting point in the given array for
the items to be obtained. Parameter number is the number of items to write.

Throws OffsetOutOfBoundsException if the offset is negative or greater than the size
of the raw memory area.

Throws SizeOutOfBoundsException if the object is not mapped, or if the a byte falls
in an invalid address range.

Throws java.lang.ArrayIndexOutOfBoundsException if low is less than 0 or greater
than bytes.length - 1, or if low + number is greater than or equal to bytes.length.

5.3.5 javax.realtime.RawIntegralAccessFactory

Declaration

@SCJAllowed(LEVEL 0)
public interface RawIntegralAccessFactory

Description An interface that describes factory classes that create classes that imple-
ment RawIntegralAccess.

Methods

@SCJAllowed(LEVEL 0)
public RawMemoryName getName();

Returns a reference to an object that implements the RawMemoryName interface.
This “name” is associated with this factory and indirectly with all the objects created
by this factory.

@SCJAllowed(LEVEL 0)
public RawIntegralAccess newIntegralAccess(long base, long size); ∗∗∗CHECK THIS

Gets an instance of a class that implements the RawIntegralAccess interface and can
access raw memory starting at the base address and extending for size bytes. It need
not be a new instance.

Returns an instance of RawIntegralAccess supporting access to the requested range
of memory (and only that range of memory.)

Throws java.lang.IllegalArgumentException if base is negative, or size is not greater
than zero.

Throws OffsetOutOfBoundsException if base is invalid.

ThrowsSizeOutOfBoundsException if size extends into an invalid range of memory.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

99

Safety Critical Specification for Java

Throws MemoryTypeConflictException if base does not point to memory that matches
the type served by this factory.

Throws java.lang.OutOfMemoryError if any part of the memory starting at base for
length size has already been allocated or claimed for raw access.

5.3.6 javax.realtime.RawMemory

Declaration

@SCJAllowed(LEVEL 0)
public final class RawMemory

Description

This class is the hub of a system that constructs special-purpose objects that ac-
cess particular types and ranges of raw memory. This facility is supported by the
registerAccessFactory and createRawIntegralAcessInstance methods. In SCJ, four
raw-integral-access factories are supported: two for accessing the DEVICE memory
(called IO PORT MAPPED and IO MEMORY MAPPED), one for accessing memory
that can be used for DMA (called DMA ACCESS) and the other for accesses to the
memory (called MEM ACCESS). These can be accessed via static methods in the
RawMemoryAccess class.

Static Fields

@SCJAllowed(LEVEL 0)
public static final RawMemoryName DMA ACCESS

This raw memory name is used to call for access memory using DMA.

@SCJAllowed(LEVEL 0)
public static final RawMemoryName MEM ACCESS

This raw memory name is used to call for access memory.

@SCJAllowed(LEVEL 0)
public static final RawMemoryName IO PORT MAPPED

This raw memory name is used to call for access to all I/O devices that are accessed
by special instructions.

@SCJAllowed(LEVEL 0)
public static final RawMemoryName IO MEM MAPPED

This raw memory name is used to call for access to devices that are memory mapped.

Static Methods

100 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

@SCJAllowed(LEVEL 0)
public static RawIntegralAccess createRawIntegralInstance(

RawMemoryName type, long base, long size)

Create (or find) an immortal instance of a class that implements RawIntegralAccess
and accesses (only) memory of type type in the address range described by base and
size.

Returns an object that implements RawIntegralAccess and supports access to the
specified range of physical memory.

Throws

• java.lang.IllegalArgumentException if base is negative, or size is not greater
than zero.

• java.lang.SecurityException if application doesn’t have permissions to access
physical memory, the specified range of addresses, or the type of memory sup-
ported by this factory.

• OffsetOutOfBoundsException if base is invalid.
• SizeOutOfBoundsException if size extends into an invalid range of memory.
• MemoryTypeConflictException if base does not point to memory that matches

the type served by this factory.
• java.lang.OutOfMemoryError if any part of the memory starting at base for

length size has already been allocated or claimed for raw access.
• java.lang.InstantiationException
• java.lang.IllegalAccessException
• java.lang.reflect.InvocationTargetException

public static void registerAccessFactory(RawIntegralAccessFactory factory)

Make factory known to the factory as the class that should be used to access type
RawIntegralAccessFactory.getName(). Only at most one factory per type is permit-
ted (though one factory may handle many types). An attempt to add another factory
will throw an illegal argument exception.

Throws java.lang.IllegalArgumentException if factory is null or its name is served by
a factory that has already been registered.

5.4 Rationale

Many safety critical real-time systems have to interact with the embedded environ-
ment. This can be done either at a low level through device registers and interrupt
handling, or via some higher-level input and output mechanisms.

There are at least four execution (run-time) environments for SCJ:

8 July 2010 Version 0.76
Confidentiality: Public Distribution

101

Safety Critical Specification for Java

1. On top of a high-integrity real-time operating system where the Java applica-
tion runs in user mode.

2. As part of an embedded device where the Java application runs stand-alone on
a hardware/software virtual machine.

3. As a “kernel module” incorporated into a high-integrity real-time kernel where
both kernel and application run in supervisor mode.

4. As a stand-alone cyclic executive with minimal operating system support.

In execution environment 1), interaction with the embedded environment will usually
be via operating system calls using connection-oriented APIs. The Java program
will typically have no direct access to the IO devices (although some limited access
to physical memory may be provided, it is unlikely that interrupts can be directly
handled). Connection-oriented input output mechanisms are discussed in Chapter 6.

In execution environments 2), 3) and 4), the Java program may be able to directly
access devices and handle interrupts. Low-level device access is the topic of this
chapter.

A device can be considered to be a processor performing a fixed task. A computer
system can, therefore, be considered to be a collection of parallel threads. There are
several models by which the device ‘thread’ can communicate and synchronize with
the tasks executing inside the main processor. All models must provide[?]:

1. A suitable representation of interrupts (if interrupts are to be handled), and

2. Facilities for representing, addressing and manipulating device registers.

In the RTSJ, the former is provided by the notion of happenings and the latter via the
physical and raw memory access facilities. Happenings in the RTSJ do not allow the
programmer to write first-level interrupt handlers. SCJ extends the RTSJ model to
allow this. The RTSJ physical and raw memory access facilities allow broad support
for accessing memory with different characteristics. SCJ restricts these facilities to
focus on those that can be used for accessing registers that are both memory mapped
and port mapped.

5.5 Compatibility

It depends if RTSJ does support Interrupt happenings or not.

102 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Chapter 6

Input and Output Model

Safety-critical systems often have limited input and output capabilities. The capa-
bilities they do have are tailored to the task of the system. This makes it difficult
to provide a common set of I/O classes for safety-critical applications. The stan-
dard file and socket classes are too heavy weight for many safety-critical systems.
Fortunately, Java Micro Edition provides a basis for a flexible I/O mechanism.

6.1 Semantics and Requirements

Since there is no I/O facility that can be found on every safety-critical system, what
is needed is a flexible mechanism for adding I/O capabilities. The Micro Edition I/O
Connector and Connection classes, with the StreamConnection, InputConnection,
and OutputConnection interfaces, provide a good basis.

A Connection relates a URL string to a factory for creating a connection for the given
URL. The protocol part of a URL passed to Connector, e.g. http at the beginning of
a web address, is used to select the proper factory. The rest of the URL is used as
arguments to a factory to create a connection of the proper type.

The protocol console defines the default console. The console can be used to read
from and send output to some system-defined data source or sink, so that test har-
nesses can use them for getting feedback on whether tests succeed or fail.

6.2 Level Considerations

There are no level considerations for I/O.

103

Safety Critical Specification for Java

«interface»
javax.microedition.io.Connection

close()

«interface»
javax.microedition.io.InputConnection

openInputStream() : InputStream

«interface»
javax.microedition.io.OutputConnection

openOutputStream() : OutputStream

«interface»
javax.microedition.io.StreamConnection

javax.microedition.io.Connector
+ int READ_WRITE {frozen}
+ int READ {frozen}
+ int WRITE {frozen}

+open(name : String) : Connection
+openConnection(name : String, mode : int) : Connection
+openInputStream() : InputStream
+openOutputStream() : OutputStream

Figure 6.1: Interfaces and classes supporting streaming I/O

6.3 APIs

The API is a subset of the API as defined in package javax.microedition.io of the Java
Micro Edition.

6.3.1 Interface javax.microedition.io.Connection

Declaration

@SCJAllowed
public abstract interface Connection

104 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

Description

A generic connection that just provides the ability to be closed. No open method is
defined as the connection is opened by Connector.open().

Methods

@SCJAllowed
public void close() throws IOException

Close the connection. Closing an already closed connection has no effect.

6.3.2 Class javax.microedition.io.Connector

Declaration

@SCJAllowed
public class Connector

Description

This class is the factory for creating connection objects. The connection type and
channel is defined by the parameter string, which describes the target in the URL
form. The general form is scheme:[target][params] where scheme is the protocol
name such as http. target specifies the destination address (e.g., a serial port number);
and params can be used for additional parameters (e.g., the baud rate).

An SCJ implementation shall provide at least a console connection for debugging
and test output. The parameter string for the console connection is ”console:”.

Constructors

No public visible constructors, as the class has only static factory methods.

Fields

@SCJAllowed
public final static int READ = 1;

@SCJAllowed
public final static int WRITE = 2;

@SCJAllowed
public final static int READ WRITE = (READ|WRITE);

Access mode for read, write, and read/write passed to open().

Methods

@SCJAllowed
public static Connection open(String name)

throws IllegalArgumentException, ConnectionNotFoundException, IOException

8 July 2010 Version 0.76
Confidentiality: Public Distribution

105

Safety Critical Specification for Java

Create and open a Connection.

@SCJAllowed
public static Connection open(String name, int mode)

throws IllegalArgumentException, ConnectionNotFoundException, IOException

Create and open a Connection.

@SCJAllowed
public static InputStream openInputStream(String name)

throws IllegalArgumentException, ConnectionNotFoundException, IOException

Create and open a connection input stream.

@SCJAllowed
public static OutputStream openOutputStream(String name)

throws IllegalArgumentException, ConnectionNotFoundException, IOException

Create and open a connection output stream.

6.3.3 Class javax.microedition.io.ConnectionNotFoundException

Declaration

@SCJAllowed
public class ConnectionNotFoundException extends Exception

Description

An exception to throw when the connection for a given URL cannot be created be-
cause the resources are not available or no factory exists.

Constructors

@SCJAllowed
public ConnectionNotFoundException(String message)

Create this exception with a text description.

@SCJAllowed
public ConnectionNotFoundException()

Create this exception with no description.

6.3.4 Interface javax.microedition.io.InputConnection

Declaration

@SCJAllowed
public interface InputConnection extends Connection

106 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

Description

An interface for connections that can input data.

Methods

@SCJAllowed
public InputStream openInputStream() throws IOException

Open and return an input stream for a connection.

6.3.5 Interface javax.microedition.io.OutputConnection

Declaration

@SCJAllowed
public interface OutputConnection extends Connection

An interface for connections that can output data.

Methods

@SCJAllowed
public OutputStream openOutputStream() throws IOException;

Open and return an output stream for a connection.

6.3.6 Interface javax.microedition.io.StreamConnection

Declaration

@SCJAllowed
public interface StreamConnection extends InputConnection, OutputConnection

An interface for Connections that can both read and write data.

6.4 Rationale

This API provides the best tradeoff between compatibility and light weight. Using
the I/O facilities in java.io, java.net, and java.file, or java.nio would require too many
classes, many of which could not be supported on all systems.

6.5 Compatibility

These classes are a subset of the Java Micro Edition connection framework.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

107

Safety Critical Specification for Java

108 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Chapter 7

Memory Management

As with standard Java, all memory allocation in RTSJ and SCJ programs is per-
formed from within an allocation context. This defines the space from which a new
object should be taken. Whereas standard Java implicitly defines a single heap as al-
location context, the RTSJ generalizes allocation contexts through the classe Memo-
ryArea and the interface AllocationContext, where the heap is just one instance of this
class and this interface respectively. Furthermore, additional allocation contexts are
defined. SCJ restricts the use of allocation contexts defined by the RTSJ to the use
of special subclasses of LTMemory: MissionMemory and PrivateMemory. In SCJ,
neither of these areas can be created directly by calling its constructor.

7.1 Semantics and Requirements

As discussed in Chapter 3, SCJ supports the notion of a mission and a mission
life cycle. An application with this model has three phases as shown in Figure 3.1:
initialization, execution, and cleanup.

The data structures that are needed for a given mission are allocated in a special
scoped memory area called mission memory. This scope remains active for the du-
ration of the mission and acts like an immortal memory for that mission. Normally
mission memory allocation takes place in the initialization phase and those structures
persist during the life of the mission. Ephemeral structures are usually allocated in a
private scoped memory during the execution phase.

Nested missions are supported, so an application may have more than one active
mission memory.

109

Safety Critical Specification for Java

7.1.1 Memory Model

The following defines the requirements for the SCJ memory model.

• Only linear-time scoped memory and the immortal memory areas are sup-
ported. Variable time scoped memory and the heap areas are not supported.

• A linear-time scope memory area (using the MissionMemory class) is provided
which is entered at the beginning of mission initialization and exited after mis-
sion clean-up before the next mission is initialized.

• Objects allocated in the initialization phase are never collected throughout the
duration of a given mission unless they are explicitly allocated in a private
linear-time scoped memory area (using the PrivateMemory class).

• A private memory area is owned by a single schedulable object and it can only
be entered by that schedulable object.

• Every schedulable object has one preallocated private memory area and all al-
locations performed during a release (see Chapter 4) of that schedulable object
will, by default, be performed in this private scoped memory. The memory
allocated to objects created in this private scoped memory will be reclaimed at
the end of the release.

• Schedulable objects can create and enter into nested private memory areas.
These memory areas are, by definition, not shared and must be entered directly
from the scope in which there are created.

• The backing store for a scoped is taken from the backing store reservation of
it’s schedulable object.

• Backing store is managed via reservations of backing store for use by schedula-
ble objects, where the initial schedulable object partitions portions of its back-
ing store reservation to pass on to schedulable objects created in its thread of
control.

• Backing Store size reservation is managed via StorageParameters objects.
• SCJ does not support object finalizers. The same effect can be obtained with

try statement that includes a finally clause for any given scope.
• SCJ conforms to the Java memory model. In addition, access to raw memory

is considered as volatile access (see Section 5.3).

Figure 7.1 illustrates the limited use of hierarchical memory areas in the RTSJ.

7.2 Level Considerations

7.2.1 Level 0

Level 0 supports only a single mission sequence. The same mission memory is
reused for each mission in the sequence, however, the size of the mission mem-

110 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

Private

Memory

Private

MemoryPrivate

MemoryPrivate

Memory

Private

MemoryPrivate

Memory

ASEH A

ASEH B

ASEH C

ASEH D ASEH F

ASEH E

Nested

Private

Memory

Immortal Memory

Mission Memory

Figure 7.1: Example of Memory Areas used by a Level 1 Application

ory may change between missions. The contents is cleared between missions. Each
AsyncEventHandler has its own PrivateMemory that is entered into for the duration
of its handleAsyncEvent method called within its frame. This corresponds to release
and completion in higher levels. The application programmer may allocate Private-
Memory within a frame, so simple nesting of scopes is possible.

7.2.2 Level 1

Level 1 supports sequences of missions and private memory for each handler as well,
but the handlers are run asynchronously.

7.2.3 Level 2

Level 2 adds the ability to nest MissionMemory. A MissionMemory may not be cre-
ated or entered from a PrivateMemory. A nested MissionMemory is created by its
MissionSequencer.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

111

Safety Critical Specification for Java

7.3 Memory related APIs

SCJ supports only a subset of the RTSJ memory model. Consequently many of the
methods are absent (and, therefore complexity of the overall model is reduced). The
application can only create SCJ-defined private memory areas. Figure 7.2 provides
an overview of the supported interfaces and classes.

7.3.1 Interface javax.realtime.AllocationContext

Declaration

@SCJAllowed
public interface AllocationContext

All memory allocation takes places from within an allocation context. This interface
defines the operations available on all allocation contexts. Allocation contexts are
implemented by memory areas.

Methods

@SCJAllowed
public void enter(Runnable logic)

Execute logic with this memory area as the current allocation context.

@SCJAllowed
public void executeInArea(Runnable logic)

Execute logic with this memory area as the current allocation context.

@SCJAllowed
public long memoryConsumed()

Returns the number of bytes consumed so far in this memory area.

@SCJAllowed
public long memoryRemaining()

Returns the number of bytes remaining in this memory area.

@SCJAllowed
public Object newArray(Class type, int number)

Create an array object of class typeand length number in this memory area.

Throws IllegalArgumentException if number is less than zero, type is null, or type is
java.lang.Void.TYPE.

Throws OutOfMemoryError if space in the memory area is exhausted.

@SCJAllowed
public Object newInstance(Class type)

112 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

javax.realtime.ImmortalMemory{leaf}
+instance() : ImmortalMemory

javax.realtime.MemoryArea

+getMemoryArea(object:Object) : MemoryArea
+enter(logic : Runnable)
+executeInArea(logic:Runnable)
+newInstance(type:Class) : Object
newInstance(c : Constructor c,args: Object[]):Object
+newArray(type : Class, n : int) : Object
+memoryConsumed() : long
+memoryRemaining():long)
+size() : long

javax.realtime.ScopedMemory

javax.realtime.LTMemory
+getPortal() : Object
+setPortal(object:Object)

javax.safetycritical.ManagedMemory
+ enterPrivateMemory(size : long, logic : Runnable)
+getOwner() : ManageSchedulable

+getCurrentManagedMemory() : ManagedMemory

javax.safetycritical.PrivateMemory {leaf}javax.safetycritical.MissionMemory{leaf}
+getPortal() : Object
+setPortal(object:Object)

«interface»
javax.realtime.ScopedAllocationContext

getPortal() : Object
setPortal(object:Object)

«interface»
javax.realtime.AllocationContext

enter(logic : Runnable)
executeInArea(logic : Runnable)
memoryConsumed() : long
memoryRemaining():long)
newArray(type : Class, number : int) : Object
newInstance(type : Class) : Object
newInstance(c : Constructor c,args: Object[]):Object
size() : long

SizeEstimator {leaf}
+getSize() : long
+reserve(C: Class, number : int)
+reserve(size: SizeEstimator)
+reserve(estimator: SizeEstimator, number : int)
+reserveArray(length : int)
+reserveArray(length : int, type : Class)

«constructor>
+SizeEstimator()

Figure 7.2: Overview of MemoryArea-Related Classes

8 July 2010 Version 0.76
Confidentiality: Public Distribution

113

Safety Critical Specification for Java

Create an object of class type in this memory area.

Throws IllegalAccessException if the class or initializer is inaccessible.

Throws InstantiationException if the specified class object could not be instantiated.

Throws OutOfMemoryError if space in the memory area is exhausted.

@SCJAllowed
public Object newInstance(Constructor c, Object[] args)

Create an object of class type in this memory area.

Throws IllegalAccessException if the class or initializer is inaccessible.

Throws InstantiationException if the specified class object could not be instantiated.

Throws OutOfMemoryError if space in the memory area is exhausted.

@SCJAllowed
public long size()

Returns the current size in bytes of this memory area.

7.3.2 Interface javax.realtime.ScopedAllocationContext

Declaration

@SCJAllowed
public interface ScopedAllocationContext extends AllocationContext

A scoped allocation context is one whose associated objects have their memory re-
claimed when no schedulable object is active within it.

Methods

@SCJAllowed
public Object getPortal()

Returns the portal object of this memory area.

@SCJAllowed
public void setPortal(Object value)

Sets the portal object of this memory area.

7.3.3 Class javax.realtime.MemoryArea

Declaration

@SCJAllowed
public abstract class MemoryArea implements AllocationContext

114 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

All allocation contexts are implemented by memory areas. This is the base-level
class for all memory areas.

Static Methods

@SCJAllowed
public static MemoryArea getMemoryArea(Object object)

Returns the memory area in which object is allocated.

Methods

public void enter(Runnable logic);

Execute logic with this memory area as the current allocation context. Only the
infrastructure calls this method directly.

@SCJAllowed
public void executeInArea(Runnable logic) throws InaccessibleAreaException

Execute logic with this memory area as the current allocation context. This memory
area must already be active in the calling schedulable object’s scope stack.

Throws java.lang.IllegalArgumentException when logic is null.

@SCJAllowed
public long memoryConsumed()

Returns the memory consumed in this memory area.

@SCJAllowed
public long memoryRemaining()

Returns the memory remaining in this memory area.

@SCJAllowed
public Object newInstance(Class type)

Returns a new object of class type allocated in this memory area.

Throws IllegalArgumentException, InstantiationException, OutOfMemoryError, Inac-
cessibleAreaException

@SCJAllowed
public Object newInstance(Constructor c, Object[] args)

Create an object of class type in this memory area.

Throws IllegalAccessException if the class or initializer is inaccessible.

Throws InstantiationException if the specified class object could not be instantiated.

Throws OutOfMemoryError if space in the memory area is exhausted.

@SCJAllowed
public Object newArray(Class type, int n)

8 July 2010 Version 0.76
Confidentiality: Public Distribution

115

Safety Critical Specification for Java

Returns a new array of type type and size n allocated in this memory area.

@SCJAllowed
public long size()

The size of a memory area is always equal to the memConsumed() + memoryRe-
maining().

Returns the total size of this memory area.

7.3.4 Class javax.realtime.ImmortalMemory

Declaration

@SCJAllowed
public final class ImmortalMemory extends MemoryArea

This class represents immortal memory. Objects allocated in immortal memory are
never reclaimed during the lifetime of the application.

Static Methods

@SCJAllowed
public static ImmortalMemory instance()

Returns the singleton instance of the immortal memory class. The returned object is
preallocated in immortal memory.

7.3.5 Class javax.realtime.ScopedMemory

Declaration

@SCJAllowed
public abstract class ScopedMemory extends MemoryArea

implements ScopedAllocationContext

Scoped memory implements the scoped allocation context.

For the following reasons, this class has no visible methods in SCJ.

• In SCJ, all scoped memory areas are private to a schedulable object. Conse-
quently, none of the RTSJ methods associated with sharing scoped memory
areas are supported.

• The only sharable scoped memory area is the mission memory, and this be-
haves as if it is immortal memory for the lifetime of the mission.

• Only the infrastructure can resize a scoped memory area.

116 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

7.3.6 Class javax.realtime.LTMemory

Declaration

@SCJAllowed
public class LTMemory extends ScopedMemory

Description

This class can not be instantiated in SCJ. It is subclassed by MissionMemory and
PrivateMemory. None of its methods are visible.

Methods

@SCJAllowed
public Object getPortal()

Returns the portal object.

@SCJAllowed
public void setPortal(Object value)

Set the portal object.

7.3.7 Class javax.safetycritical.ManagedMemory

Declaration

@SCJAllowed
public class ManagedMemory extends LTMemory

Description Managed memory is a scoped memory area that is managed by a mission

Static Methods

@SCJAllowed
public ManagedMemory getCurrentManageMemory()

Returns the current managed memory.

Throws IllegalStateException when called from immortal.

Methods

@SCJAllowed
public void enterPrivateMemory(int size, Runnable logic)

If private memory does not exist, create one; otherwise set its size; then, enter the
private memory; and finally, set the size of private memory to zero.

Throws IllegalStateException when called from another memory area or from a thread
that does not own the current managed memory.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

117

Safety Critical Specification for Java

@SCJAllowed
public ManagedSchedulable getOwner()

Returns the ManagedSchedulable that owns this managed memory.

7.3.8 Class javax.safetycritical.MissionMemory

Declaration

@SCJAllowed
public final class MissionMemory extends ManagedMemory

Description

Mission memory is a linear-time scoped memory area that remains active through
the lifetime of a mission.

This class is final. It is instantiated by the infrastructure and entered by the infras-
tructure. Hence, non of its constructors are visible in the SCJ public API.

Methods

@SCJAllowed
public Object getPortal()

Returns the portal object.

@SCJAllowed
public void setPortal(Object value)

Set the portal object for sharing between managed schedulable objects.

7.3.9 Class javax.safetycritical.PrivateMemory

Declaration

@SCJAllowed
public final class PrivateMemory extends ManagedMemory

Description

This class cannot be directly instantiated by the application; hence there are no public
constructors. Every PeriodicEventHandler is provided with one instance of Private-
Memory, its root private memory area. A schedulable object active within a private
memory area can create nested private memory areas through the static enterPrivate-
Memory method on ManagedMemory.

The rules for nested entering into a private memory are that the private memory area
must be the current allocation context, and the calling schedulable object has to be
the owner of the memory area. The owner of the memory area is defined to be the
schedulable object that created it.

118 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

7.3.10 Class javax.realtime.SizeEstimator

Declaration

@SCJAllowed
public final class SizeEstimator

Description

This class maintains an estimate of the amount of memory required to store a set of
objects.

SizeEstimator is a floor on the amount of memory that should be allocated. Many ob-
jects allocate other objects when they are constructed. SizeEstimator only estimates
the memory requirement of the object itself, it does not include memory required for
any objects allocated at construction time. If the instance itself is allocated in several
parts (if for instance the object and its monitor are separate), the size estimate shall
include the sum of the sizes of all the parts that are allocated from the same memory
area as the instance.

Alignment considerations, and possibly other order-dependent issues may cause the
allocator to leave a small amount of unusable space, consequently the size estimate
cannot be seen as more than a close estimate.

Constructor

@SCJAllowed
public SizeEstimator()

Creates a new object in the current allocation context.

Methods

@SCJAllowed
public long getEstimate()

Gets an estimate of the number of bytes needed to store all the objects reserved.

Returns the estimated size in bytes.

@SCJAllowed
public void reserve(Class c, int number)

Take into account additional number instances of Class c when estimating the size.

Parameter c is the class to take into account.

Parameter number is the number of instances of c to estimate.

Throws IllegalArgumentException if c is null.

@SCJAllowed
public void reserve(SizeEstimator estimator, int number)

8 July 2010 Version 0.76
Confidentiality: Public Distribution

119

Safety Critical Specification for Java

Take into account additional number instances of SizeEstimator size when estimating
the size.

Parameter estimator is the given instance of SizeEstimator.

Parameter number is the number of times to reserve the size denoted by estimator.

Throws IllegalArgumentException if estimator is null.

@SCJAllowed
public void reserve(SizeEstimator size)

Take into account an additional instance of SizeEstimator size when estimating the
size.

Parameter size is the given instance of SizeEstimator.

Throws IllegalArgumentException if size is null.

@SCJAllowed
public void reserveArray(int length)

Take into account an additional instance of an array of length reference values.

Parameter length is the number of entries in the array.

Throws IllegalArgumentException if length is null.

@SCJAllowed
public void reserveArray(int length, Class type)

Take into account an additional instance of an array of length primitive values.

Class values for the primitive types are available from the corresponding class types;
e.g., Byte.TYPE, Integer.TYPE, and Short.TYPE.

Parameter length is the number of entries in the array.

Parameter type is the class representing a primitive type. The reservation will leave
room for an array of length of the primitive type corresponding to type.

Throws IllegalArgumentException if length is negative, or type does not represent a
primitive type.

7.4 Rationale

Traditionally, safety-critical applications allocate all their data structures before the
execution phase of the applications begin. As a rule, they do not deallocate objects,
since convincing a certification authority that dynamic allocation and deallocation of
memory is safely used is, in general, quite difficult. This paradigm is diametrically
opposed to standard Java, where the design of the language itself is predicated on

120 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

dynamic memory allocation and garbage collection. Traditionally, Java stores all
objects in a heap that is subject to garbage collection.

Java augmented by the RTSJ provides three types of memory areas: heap, immor-
tal, and scoped memory. In all types of memory, objects can be explicitly allocated
but not explicitly deallocated, thereby ensuring memory consistency. The heap is
the standard Java memory area, where a garbage collector is responsible for reclaim-
ing objects that are no longer referenced by the running program. Scoped mem-
ory provides region-based memory management similar to allocating objects on a
thread’s stack and deallocating them when the thread leaves that stack frame. Of
the RTSJ memory constructs, only immortal memory is familiar in concept to the
safety-critical software community; objects may be allocated there but not deallo-
cated. Once allocated, an object is never reclaimed. Objects may only be reused
explicitly by the application.

SCJ does not provide the full spectrum of RTSJ memory areas. Even though there
are efficient real-time garbage collectors that might be shown to be certifiable, the
jump from the current status quo to such an environment is perceived to be too large
for general acceptance, particularly for applications that need to be certified at the
highest levels. Likewise, the controversy over the complexity, the expressive power,
and the need for runtime checks of the full scoped memory model, along with the
required programming paradigm shift again suggests that such a “leap of faith” is
also beyond current safety-critical software practice.

SCJ provides only immortal memory and limited forms of scoped memory. These
limited forms of scoped memory are optimized for a conservative memory model
more familiar to safety critical programmers. The resulting memory model is quite
simple. A single nesting structure is provided such that a given scoped memory can
only be entered by a single thread at any given time and a scope may only be entered
from the memory area in which it was created. These rules simplify scope entry
analysis. Furthermore, although immortal memory is simple to understand, it has
the limitation that objects in immortal memory are not reclaimable. Therefore, each
application uses a global mission scope in the place of immortal memory to hold
global objects used during a mission. The advantage is that all objects allocated in
this mission memory can be reclaimed whenever the mission is restarted. Further-
more, it avoids fragmentation in the underlying memory management system. This
will enable confidence to be obtained with the use of dynamic memory, and for more
expressive models to be developed in the future.

Corresponding to an assumed three phase model of application execution, an SCJ
system will allocate objects in mission memory in the initialization phase and then in
scoped memory during the execution phase of the application. All class initialization
happens before the first initialization phase. Class objects are allocated in immortal
memory, as defined in the RTSJ, see Chapter 3.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

121

Safety Critical Specification for Java

7.4.1 Nesting Scopes

In the simplest case, the memory of a mission memory is just mapped immortal
memory, but when programmable restartability is required, a MissionMemory class
is used. MissionMemory is nothing other than a ScopedMemory which is provided
for the application during startup for holding objects that have a mission life span.
This acts like an immortal memory area, except that it can be reinitialized at the
end of each mission. All objects needed by the mission are allocated in the mission
memory area by the runnable given to initialize the application. The area is exited
only after all tasks have terminated. Optionally, some cleanup may be performed.

Since the MissionMemory is not cleared during the mission, it would be unsafe to
allocate object in the MissionMemory during the execution of the mission; therefore,
each schedulable object is given its own private scoped memory. Thus, the event han-
dler classes available to the programmer are managed in the sense that each instance
has its own PrivateMemory, that is entered on each release and exited at the end of
each release. Since PrivateMemory is based on LTMemory, this give a single level of
nesting for the application.

The RTSJ provides for calling finalizers when the last thread exits a scoped memory.
Since finalization can cause unpredictable delay, finalizers are not allowed in SCJ.
The same effect can be obtained with try statement that includes a finally clause for
any given scope.

In general, the SCJ conforms to the Java memory model. With respect to this mem-
ory model, AsyncEventHandlers behave like Java threads. Fields accessed from more
than one AsyncEventHandler should be synchronized or declared volatile to ensure
that changes made in the context of one handler are visible in all other handlers
which reference the field. Although at level 0, all AsyncEventHandlers are run in
single thread context, synchronization should still be done to aid portability.

7.5 Compatibility

122 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Chapter 8

Clocks, Timers, and Time

Many safety critical applications require precise timing mechanisms for maintaining
real-time response. The SCJ provides a restricted subset of the timing mechanisms
of the RTSJ.

8.1 Semantics and Requirements

The resolution returned by a clock’s getResolution() method is the resolution that
shall be used for all scheduling decisions based on that clock. The jitter and drift of
all vendor-supplied clocks should be documented by the vendor.

8.1.1 Clocks

SCJ supports a single system real-time clock and user-defined clocks. As in the
RTSJ, the real-time clock is monotonic and non-decreasing. The real-time clock
in the RTSJ (queried through Clock.getRealtimeClock()) has an Epoch of January
1st, 1970. In an SCJ system, the Epoch may represent the system start time. As
a consequence, absolute times based on the real-time clock may not correspond to
wall-clock time.

8.1.2 Time

Three time classes from the RTSJ are available for use in safety critical programs:
AbsoluteTime, RelativeTime, and HighResolutionTime. As in the RTSJ, the base
time class is HighResolutionTime. Both AbsoluteTime and RelativeTime are sub-
classes thereof. AbsoluteTime represents a specific point in time; RelativeTime rep-
resent a time interval.

123

Safety Critical Specification for Java

8.1.3 RTSJ Constraints

Time triggered application code is constructed using periodic events (PeriodicEventHandler).
The RTSJ classes OneShotTimer, PeriodicTimer, and Timer that can be used to
schedule application logic in the RTSJ are not available in SCJ.

As java.util.Date is not part of the SCJ library, the related constructor in Absolute-
Time is omitted.

8.2 Level Considerations

As wait and notify are available only in SCJ level 2, the method waitForObject() from
HighResolutionTime is available only at SCJ level 2.

8.3 API

Figure 8.1 gives an overview of the time related classes.

8.3.1 Class javax.realtime.Clock

Declaration

@SCJAllowed
public abstract class Clock

Description

A clock marks the passing of time. It has a concept of now that can be queried through
Clock.getTime(), and it can have events queued on it which will be fired when their
appointed time is reached. The Clock instance returned by getRealtimeClock() may
be used in any context that requires a clock.

User-defined clocks can be used for periodic event handlers, timed events, spin, and
delay.

Constructor

@SCJAllowed
public Clock()

Methods

@SCJAllowed
public static Clock getRealtimeClock()

124 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

AbsoluteTime

+add(millis:long nanos:int): AbsoluteTime
+add(millis:long nanos:int, dest:AbsoluteTime): AbsoluteTime
+add(time:RelativeTimet): AbsoluteTime
+add(time:RelativeTime, dest:AbsoluteTime): AbsoluteTime
+subtract(time:AbsoluteTime) : RelativeTime
+subtract(time:AbsoluteTime, dest : RelativeTime) : RelativeTime
+subtract(time:RelativeTime) : AbsoluteTime
+subtract(time:RelativeTime, dest : RelativeTime) : AbsoluteTime

«constructors»
+AbsoluteTime(millis:long nanos:int)
+AbsoluteTime(time : AbsolututeTime)
+AbsoluteTime(millis:long nanos:int, clock : Clock)
+AbsoluteTime(clock : Clock)

javax.realtime::HighResolutionTime

+getMilliseconds(): long {frozen}
+getNanoseconds(): int {frozen}
+set(time: HighResolutionTime)
+set(millis:long)
+set(millis:long, nanos: int)
+equals(time:HighResolutionTime) : boolean
+compareTo(time:HighResolution) : int

+waitForObject(target : Object, time:HighResolutionTime)
...

RelativeTime

+add(millis:long, nanos:int):RelativeTime
+add(time:RelativeTime):RelativeTime
+add(millis:long, nanos:int, dest:RelativeTime):RelativeTime
+add(time:RelativeTime, dest:RelativeTime):RelativeTime
+subtract(time:RelativeTime) : RelativeTime
+subtract(time:RelativeTime, dest:RelativeTime) : RelativeTime
«constructors»
RelativeTime()
RelativeTime(millis:long, nanos:int)
RelativeTime(clock:Clock)
RelativeTime(millis:long, nanos:int,clock:Clock)
RelativeTime(time:RelativeTime)

«interface»
java.lang.Comparable

javax.realtime::Clock

+getRealtimeClock():Clock
+getTime():AbsoluteTime
+getTime(dest:AbsoluteTime):AbsoluteTime
+getResolution():RelativeTime
+getResolution(dest:RelativeTime):RelativeTime
+drivesEvents():Boolean
+getEpochOffset():RelativeTime
+registerCallBack(time:AbsoluteTime, event:ClockCallBack)
/+resetTargetTime(time:AbsoluteTime):boolean

«constructors»
+clock()

«interface»
javax.realtime:ClockCallBack

atTime(clock:Clock)
discontinuity(clock:Clock, updatedTime:AbsoluteTime)

Figure 8.1: Abridged time classes

Returns the singleton instance of the default Clock.

@SCJAllowed
public abstract AbsoluteTime getTime()

Returns a newly allocated instance of AbsoluteTime in the current allocation context,
which representing the current time. The returned object is associated with this clock.
This method will return an absolute time value that represents the clock’s notion of
an absolute time. For clocks that do not measure calendar time this absolute time
may not represent a wall-clock time.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

125

Safety Critical Specification for Java

@SCJAllowed
public abstract AbsoluteTime getTime(AbsoluteTime dest)

Gets the current time in an existing object. The time represented by the given Ab-
soluteTime is changed at some time between the invocation of the method and the
return of the method. This method returns an absolute time value that represents the
clock’s notion of an absolute time. For clocks that do not measure calendar time this
absolute time may not represent a wall clock time.

Parameter dest is the instance of AbsoluteTime object which will be updated in place.
The clock association of the dest parameter is ignored. When dest is not null the
returned object is associated with this clock. If dest is null, then nothing happens.

Returns the instance of AbsoluteTime passed as parameter, representing the current
time, associated with this clock, or null if dest was null.

@SCJAllowed
public abstract RelativeTime getResolution()

Returns a newly allocated RelativeTime object that indicates the nominal interval
between ticks.

@SCJAllowed
public abstract RelativeTime getResolution(RelativeTime dest)

Gets the resolution of the clock, the nominal interval between ticks.

Parameter dest return the relative time value in dest. getTime with a destination null
ignores it and return null.

Returns dest set to values representing the resolution of this. The returned object is
associated with this clock.

@SCJAllowed
public abstract RelativeTime getEpochOffset()

Returns the relative time of the offset of the epoch of this clock from the Epoch. For
the real-time clock it will return a RelativeTime value equal to 0. A newly allocated
RelativeTime object with the offset past the Epoch for this clock is returned. The
returned object is associated with this clock.

Throws UnsupportedOperationException if the user-defined clock does not know its
relation to the real-time clock.

@SCJAllowed
protected abstract boolean drivesEvents()

Returns true if and only if this Clock is able to trigger the execution of time-driven
activities. Some user-defined clocks may be read-only, meaning the clock can be
used to obtain timestamps, but the clock cannot be used to trigger the execution of
events. If a clock that does not return drivesEvents() equal true is used to configure
spin() request, an IllegalArgumentException will be thrown by the infrastructure.

126 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

@SCJAllowed(LEVEL 1)
protected abstract void registerCallBack(AbsoluteTime t, ClockCallBack clockEvent)

Code in the abstract base Clock class makes this call to the subclass. The method is
expected to implement a mechanism that will invoke atTime() in clockEvent at time t,
and if this clock is subject to discontinuities, invoke clockEvent.discontinuity(Clock,
RelativeTime) each time a clock discontinuity is detected. Any already registered
call backs are overridden.

This method behaves effectively as if it and invocations of clock events by this clock
hold a common lock.

Parameter t is the absolute time value on this clock at which clockEvent.atTime(Clock)
should be invoked.

Parameter clockEvent is the object that should be notified at time. If clockEvent is
null, unregister the current clock event.

@SCJAllowed(LEVEL 1)
protected abstract boolean resetTargetTime(AbsoluteTime time)

Replace the target time being used by the ClockCallBack registered by registerCall-
Back(AbsoluteTime, ClockCallBack).

Returns false if no ClockCallBack event is currently registered.

8.3.2 Interface javax.realtime.ClockCallBack

Declaration

@SCJAllowed(LEVEL 1)
public interface ClockCallBack

Description

The ClockCallBack interface may be used by subclasses of Clock to indicate to the
clock infrastructure that the clock has either reached a designated time, or has expe-
rienced a discontinuity.

Invocations of the methods in ClockCallBack are serialized for the same clock. The
callback is de-registered before a method in it is invoked, and the clock blocks any
attempt by another thread to register another callback while control is in a callback.

Methods

@SCJAllowed(LEVEL 1)
void atTime(Clock clock)

The clock has reached the designated time. This clock event is de-registered before
this method is invoked.

Parameter clock is the clock that has reached a designated time.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

127

Safety Critical Specification for Java

@SCJAllowed(LEVEL 1)
void discontinuity(Clock clock, AbsoluteTime updatedTime)

The clock has experienced a time discontinuity. (It changed its time value other than
by ticking.) and clock has de-registered this clock event.

Parameter updatedTime is the (new) current time.

8.3.3 Class javax.realtime.HighResolutionTime

Declaration

@SCJAllowed
public abstract class HighResolutionTime implements Comparable

The base class for AbsoluteTime and RelativeTime. Used to express time with nanosec-
ond accuracy. This class is never used directly: it is abstract and has no public con-
structor.

Methods

@SCJAllowed
public Clock getClock()

Returns a reference to the clock associated with this.

@SCJAllowed
public final long getMilliseconds()

Returns the milliseconds component of the time represented by this.

@SCJAllowed
public final int getNanoseconds()

Returns the nanoseconds component of the time represented by this.

@SCJAllowed
public void set(HighResolutionTime time)

Change the value represented by this to that of the given time.

Parameter time is the new value for this.

@SCJAllowed
public void set(long millis)

Sets the millisecond component of this to the given argument, and the nanosecond
component of this to 0.

Parameter millis is the value of the millisecond component of this at the completion
of the call.

@SCJAllowed
public void set(long millis, int nanos)

128 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

Sets the millisecond and nanosecond components of this.

Parameter millis is the desired value for the millisecond component of this at the
completion of the call. The actual value is the result of parameter normalization.

Parameter nanos is the desired value for the nanosecond component of this at the
completion of the call. The actual value is the result of parameter normalization.

@SCJAllowed
public boolean equals(HighResolutionTime time)

Returns true if the parameter time is of the same type and has the same values as this.

@SCJAllowed
public int compareTo(HighResolutionTime time)

Compares this with the specified HighResolutionTime time.

@SCJAllowed(LEVEL 2)
public static void waitForObject(java.lang.Object target,

HighResolutionTime time) throws java.lang.InterruptedException

Behaves like wait() but with the enhancement that it waits with a precision of High-
ResolutionTime.

Parameter target is the object on which to wait. The current thread must have a lock
on the object.

Parameter time is the time for which to wait. If it is RelativeTime(0,0) or null then
wait indefinitely.

Throws java.lang.InterruptedException.

8.3.4 Class javax.realtime.AbsoluteTime

Declaration

@SCJAllowed
public class AbsoluteTime extends HighResolutionTime

Description

An object that represents a specific point in time given by milliseconds plus nanosec-
onds past some point in time fixed by the clock. For the default real-time clock, the
fixed point is the implementation dependent Epoch. The correctness of the Epoch as
a time base depends on the real-time clock synchronization with an external world
time reference.

A time object in normalized form represents negative time if both components are
nonzero and negative, or one is nonzero and negative and the other is zero. For add
and subtract operations, negative values behave as they do in arithmetic.

Constructors

8 July 2010 Version 0.76
Confidentiality: Public Distribution

129

Safety Critical Specification for Java

@SCJAllowed
public AbsoluteTime(long millis, int nanos)

Construct an AbsoluteTime object with time millisecond and nanosecond compo-
nents past the real-time clock’s Epoch.

Parameter ms and ns are the desired values for the millisecond component and the
nanosecond component, respectively, of this. The actual values are the result of
parameter normalization.

@SCJAllowed
public AbsoluteTime(AbsoluteTime time)

Make a new object that is a copy from the parameter time.

@SCJAllowed
public AbsoluteTime(long millis, int nanos, Clock clock)

Construct an AbsoluteTime object with time millisecond and nanosecond compo-
nents past the clock’s Epoch.

Parameter ms and ns are the desired values for the millisecond component and the
nanosecond component, respectively, of this. The actual values are the result of
parameter normalization.

Parameter clock is the clock providing the association for the newly constructed ob-
ject.

@SCJAllowed
public AbsoluteTime(Clock clock)

Equivalent to new AbsoluteTime(0,0,clock).

Methods

@SCJAllowed
public AbsoluteTime add(long millis, int nanos)

Create a new object representing the result of adding millis and nanos to the values
from this and normalizing the result.

Parameter millis is the number of milliseconds to be added to this.

Parameter nanos is the number of nanoseconds to be added to this.

Returns a new AbsoluteTime object whose time is the normalization of this plus millis
and nanos.

@SCJAllowed
public AbsoluteTime add(long millis, int nanos, AbsoluteTime dest)

Return an object containing the value resulting from adding millis and nanos to the
values from this and normalizing the result.

Parameter millis is he number of milliseconds to be added to this.

130 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

Parameter nanos is the number of nanoseconds to be added to this.

Parameter dest is the result is placed there and returned. If null, a new object is
allocated for the result.

Returns the result of the normalization of this plus millis and nanos in dest if dest is
not null, otherwise the result is returned in a newly allocated object.

@SCJAllowed
public AbsoluteTime add(RelativeTime time)

Create a new instance of AbsoluteTime representing the result of adding time to the
value of this and normalizing the result.

Parameter time is the time to add to this.

Returns a new object whose time is the normalization of this plus the parameter time.

@SCJAllowed
public AbsoluteTime add(RelativeTime time, AbsoluteTime dest)

Return an object containing the value resulting from adding time to the value of this
and normalizing the result.

Parameter time is the time to add to this.

Parameter dest is the result is placed there and returned. If null, a new object is
allocated for the result.

Returns the result of the normalization of this plus the RelativeTime parameter time
in dest if dest is not null, otherwise the result is returned in a newly allocated object.

@SCJAllowed
public RelativeTime subtract(AbsoluteTime time)

Create a new instance of RelativeTime representing the result of subtracting time
from the value of this and normalizing the result.

Parameter time is the time to subtract from this.

Returns a new RelativeTime object whose time is the normalization of this minus the
AbsoluteTime parameter time.

@SCJAllowed
public RelativeTime subtract(AbsoluteTime time, RelativeTime dest)

Return an object containing the value resulting from subtracting time from the value
of this and normalizing the result.

Parameter time is the time to subtract from this.

Parameter dest is the result is placed there and returned. If null, a new object is
allocated for the result.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

131

Safety Critical Specification for Java

Returns the result of the normalization of this minus the AbsoluteTime parameter
time in dest if dest is not null, otherwise the result is returned in a newly allocated
object.

@SCJAllowed
public AbsoluteTime subtract(RelativeTime time)

Create a new instance of AbsoluteTime representing the result of subtracting time
from the value of this and normalizing the result.

Parameter time is the time to subtract from this.

Returns a new AbsoluteTime object whose time is the normalization of this minus
the parameter time.

@SCJAllowed
public AbsoluteTime subtract(RelativeTime time, AbsoluteTime dest)

Return an object containing the value resulting from subtracting time from the value
of this and normalizing the result.

Parameter time is the time to subtract from this.

Parameter dest is where the result is placed and returned. If null, a new object is
allocated for the result.

Returns the result of the normalization of this minus the RelativeTime parameter time
in dest if dest is not null, otherwise the result is returned in a newly allocated object.

8.3.5 Class javax.realtime.RelativeTime

Declaration

@SCJAllowed
public class RelativeTime extends HighResolutionTime

Description

An object that represents a time interval milliseconds/103 + nanoseconds/109 seconds
long. It generally is used to represent a time relative to now.

Constructors

@SCJAllowed
public RelativeTime()

Equivalent to new RelativeTime(0,0).

@SCJAllowed
public RelativeTime(long ms, int ns)

Construct a RelativeTime object representing an interval based on the parameter millis
plus the parameter nanos.

132 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

Parameters ms and ns are the desired values for the millisecond and nanosecond
components of this. The actual values are the result of parameter normalization.

@SCJAllowed
public RelativeTime(Clock clock)

Equivalent to new RelativeTime(0, 0, clock).

Parameter clock is the clock providing the association for the newly constructed ob-
ject.

@SCJAllowed
public RelativeTime(long ms, int ns, Clock clock)

Construct a RelativeTime object representing an interval based on the parameter ms
plus the parameter nanos.

Parameters ms and ns are the desired values for the millisecond and nanosecond
components of this. The actual values are the result of parameter normalization.

Parameter clock is the clock providing the association for the newly constructed ob-
ject.

@SCJAllowed
public RelativeTime(RelativeTime time)

Make a new RelativeTime object from the given RelativeTime object.

Parameter time is the RelativeTime object which is the source for the copy.

Methods

@SCJAllowed
public RelativeTime add(long millis, int nanos)

Create a new object representing the result of adding millis and nanos to the values
from this and normalizing the result.

Parameter millis is the number of milliseconds to be added to this.

Parameter nanos is the number of nanoseconds to be added to this.

Returns a new RelativeTime object whose time is the normalization of this plus millis
and nanos.

@SCJAllowed
public RelativeTime add(RelativeTime time)

Create a new instance of RelativeTime representing the result of adding time to the
value of this and normalizing the result.

Parameter time is the time to add to this.

Returns a new RelativeTime object whose time is the normalization of this plus millis
and nanos.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

133

Safety Critical Specification for Java

@SCJAllowed
public RelativeTime add(long millis, int nanos, RelativeTime dest)

Return an object containing the value resulting from adding millis and nanos to the
values from this and normalizing the result.

Parameter millis is the number of milliseconds to be added to this.

Parameter nanos is the number of nanoseconds to be added to this.

Parameter dest is the result is placed there and returned. If null, a new object is
allocated for the result.

Returns the result of the normalization of this plus millis and nanos in dest if dest is
not null, otherwise the result is returned in a newly allocated object.

@SCJAllowed
public RelativeTime add(RelativeTime time, RelativeTime dest)

Return an object containing the value resulting from adding time to the value of this
and normalizing the result.

Parameter time is the time to add to this.

Parameter dest is where the result is placed and returned. If null, a new object is
allocated for the result.

Returns the result of the normalization of this plus the RelativeTime parameter time
in dest if dest is not null, otherwise the result is returned in a newly allocated object.

@SCJAllowed
public RelativeTime subtract(RelativeTime time)

Create a new instance of RelativeTime representing the result of subtracting time
from the value of this and normalizing the result.

Parameter time is the time to subtract from this.

Returns a new RelativeTime object whose time is the normalization of this minus the
parameter time.

@SCJAllowed
public RelativeTime subtract(RelativeTime time, RelativeTime dest)

Return an object containing the value resulting from subtracting the value of time
from the value of this and normalizing the result.

Parameter time is the time to subtract from this.

Parameter dest is where the result is placed and returned. If null, a new object is
allocated for the result.

Returns the result of the normalization of this minus the RelativeTime parameter time
in dest if dest is not null, otherwise the result is returned in a newly allocated object.

134 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

8.4 Rationale

A SCJ system may not have access to a time synchronization service. Therefore,
SCJ does not require any particular Epoch. On a system without the notion of cal-
ender time AbsoluteTime(0,0) may represent the system startup time.

8.5 Compatibility

The RTSJ restriction on not using user-defined clock for scheduling does not apply
for the SCJ runtime.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

135

Safety Critical Specification for Java

136 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Chapter 9

Java Metadata Annotations

This chapter describes Java Metadata annotations used by the SCJ. Java Metadata
annotations enable tool developers to add additional type-like information to a Java
program to enable more detailed functional and non functional analyses, both for
ensuring program consistency and for aiding the runtime system to produce more ef-
ficient code. The proposed metadata annotations provide a basis for additional checks
for ensuring the correctness and efficiency of safety critical Java programs. They are
retained in the compiled bytecode intermediate format and are thus available for per-
forming validation at class load-time. One interest in using metadata annotations is
to ensure memory safety, thus preventing several exceptions from being thrown at
runtime. They are also used for enforcement of compliance levels and restricting the
behavior of certain methods.

The specification differentiate between user code and infrastructure code. User code
is checked by the tool to abide by the restrictions outlined in this chapter. Infrastruc-
ture code is verified by the vendor. Infrastructure code includes the java and javax
packages as well as vendor specific libraries.

9.1 Semantics and Requirements

The SCJ annotations are addressing following three groups of properties:

• Compliance Levels – The SCJ specification defines three levels of compliance.
Both application and infrastructure code must adhere to one of these compli-
ance levels. Consequently, a code belonging to a certain level may access only
the code that is at the same or higher level. This ensures that an SCJ application
is consistent in respect to specified SCJ level.

• Memory Safety – To ease certification and improve safety of developed soft-
ware, SCJ dictates the memory management to be analyzable prior to system

137

Safety Critical Specification for Java

annotation parameters description

@SCJAllowed

level =
 Level_0, Level_1, Level_2,

 INFRASTRUCTURE,

 HIDDEN,

Specifies compliance level of
an element.

An SCJ-library element that is
API private.

An element non-accessible
both from user and
infrastructure.

@SCJAllowed

members =
 TRUE / FALSE

if TRUE the annotation value
is recursively inherited by
sub-elements.

Figure 9.1: Compliance Levels Annotation

execution. A set of memory safety annotations is designed. For every ob-
ject the area in which it is allocated must be statically determinable, allocation
context of every method must be also know prior to execution.

• Behavioral Restrictions – Since the execution of the missions are implemented
as a sequence of specific phases (initialization, execution, cleanup), the appli-
cation must clearly distinguish between these phases. Furthermore, it is illegal
to access SCJ functionality that is not provided for current execution phase of
a mission.

9.1.1 Annotations for Enforcing Compliance Levels

API visibility annotations are used to prevent client programmers from accessing
SCJ API methods that are intended to be internal. Since the SCJ specification spans
more package names (e.g. javax.realtime and javax.safetycritical), package-private
visibility is not an option.

The SCJ specification specifies three compliance levels which applications and im-
plementations may conform to. Each level specifies restrictions on what APIs may
be used, with lower levels being strictly more restrictive than higher levels. The
@SCJAllowed() metadata annotation is introduced to indicate the compliance level
of classes and members. The @SCJAllowed() annotation is summarized in Figure 9.1
and takes two arguments:

1. The default argument of type Level specifies the level of the annotation tar-
get. The options are LEVEL 0, LEVEL 1, LEVEL 2, INFRASTRUCTURE and
HIDDEN.

• LEVEL 0, 1 or 2 specifies that an element may only be visible by those
elements that are at the specified level or higher. Therefore, a method

138 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

that is @SCJAllowed(LEVEL 2) may invoke a method that is @SCJAl-
lowed(LEVEL 1), but not vice versa. In addition, a method annotated with
a certain level may not have a higher level than a method that it overrides.

• INFRASTRUCTURE specifies that a method is API private. Therefore,
methods outside of javax.realtime and javax.safetycritical packages may
not invoke methods that have this annotation.

• HIDDEN denotes classes and methods that are hidden and can not be ac-
cessed both from the user and infrastructure code. No element with this
annotation can be accessed from the SCJ application or infrastructure.

The default value when no value is specified is LEVEL 0. When no annota-
tion applies to a class or member, it takes on value HIDDEN. The ordering
on annotations is LEVEL 0 < LEVEL 1 < LEVEL 2 < INFRASTRUCTURE <

HIDDEN.

2. The second argument, members, determines whether or not the specified com-
pliance level recurses to nested members and classes. The default value is
false.

Compliance Level Reasoning

The compliance level of a class or member is the first of the following:

1. The level specified on its own @SCJAllowed() annotation, if it exists,

2. The level of the closest outer element with an @SCJAllowed() annotation, if
members = true,

3. HIDDEN.

If a class, interface, or member has compliance level C, it may only be used in code
that also has compliance level C or higher. It is legal for an implementation to not
emit code for methods and classes that may not be used at the chosen level of an SCJ
application, though it may be necessary to provide stubs in certain cases.

It is illegal for an overriding method to change the compliance level of the overridden
method. It is also illegal for a subclass to have a lower compliance level than its
superclass. Intuitively, all of enclosed elements of a class or member should have a
compliance level greater than or equal to the enclosing element.

Methods annotated HIDDEN or INFRASTRUCTURE may not be overridden in user
code.

Static initializers have the same compliance level as their defining class, regardless
of the members argument.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

139

Safety Critical Specification for Java

annotation parameters description

@SCJRestrict MAY_BLOCK
MAY_ALLOCATE

ALLOCATE_FREE
BLOCK_FREE

Specifies behavior of methods.@SCJRestrict

INITIALIZATION
ANY_TIME

EXECUTION
CLEANUP

Specifies mission context in which a
certain method can be executed.

Figure 9.2: Annotation for Restricting Behavior

Class Constructor Rules

For a class that is annotated @SCJAllowed, all constructors have to be annotated
@SCJAllowed as well.

If a class has a default constructor, the constructor’s compliance level is that of the
class if the annotation has members = true, or HIDDEN otherwise.

Other Rules

The exceptions thrown by a method must be visible at the compliance level of that
method.

9.1.2 Annotations for Restricting Behavior

The following set of annotations is dedicated to express behaviors and characteristics
of methods. For example, some methods may only be called in a certain mission
phase. Others may be restricted from allocation or blocking calls. In both cases, the
restricted behavior annotation @SCJRestricted is used, see Figure 9.2.

The default argument is a list of restrictions of type Restrict. Supported restrictions
and the intended semantics of these annotations are:

• MAY ALLOCATE denotes a method which may allocate memory,
• ALLOCATE FREE is annotated on methods that perform no allocation in them-

selves and only call methods that are also annotated @SCJRestricted(ALLO-
CATE FREE). If a method is ALLOCATE FREE, then all of its overrides are
also considered to be ALLOCATE FREE.

• BLOCK FREE denotes a method which is guaranteed to not block,
• MAY BLOCK denotes a method which may perform a blocking operation,
• INITIALIZATION denotes a method which can only be called during the initial-

ization phase of a mission,

140 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

• CLEANUP denotes a method which may only be called during the clean-up
phase,

• EXECUTION denotes a method which may be called during the mission exe-
cution phase.

• ANY TIME denotes a method which may be called at any time.

When no annotations are present, the default value is MAY BLOCK, MAY ALLOCATE
and ANY TIME. Native methods have no defaults and thus must be fully annotated.

There is an ordering on annotations: MAY BLOCK < BLOCK FREE, MAY ALLOCATE
< ALLOCATE FREE, INITIALIZATION < ANY TIME, EXECUTION < ANY TIME,
CLEANUP < ANY TIME. A subclass is allowed to strengthen the annotations when
overriding a method.

A method annotated ALLOCATE FREE (respectively BLOCK FREE) may only call
methods that also have the ALLOCATE FREE (respectively BLOCK FREE) annota-
tion.

A method annotated MAY ALLOCATE (respectively MAY BLOCK, INITIALIZATION
and CLEANUP) can only be called from a method that also has the MAY ALLOCATE
(respectively MAY BLOCK, INITIALIZATION and CLEANUP) annotation.

Only methods that are annotated MAY ALLOCATE may contain expressions that re-
sult in allocation (e.g. at the source level new expressions, string concatenation, and
autoboxing).

Methods can have multiple restriction annotations and must abide by the constraints
of all of these restrictions. Annotations that are related by the ordering relation are
mutually exclusive. INITIALIZATION and CLEANUP are mutually exclusive annota-
tions.

Behavior Restriction Rules

Only methods annotated MAY ALLOCATE may contain expressions that result in al-
location. This includes new expressions, as well as string concatenation and auto-
boxing of primitive types to objects.

Methods annotated ALLOCATE FREE may only invoke other methods that are anno-
tated ALLOCATE FREE. A similar rule is necessary for BLOCK FREE. In addition,
BLOCK FREE methods may not have blocking statements, such as synchronized
blocks.

Methods annotated INITIALIZATION, CLEANUP, or EXECUTION may only invoke
other methods with the same annotation or ANY TIME. Methods annotated ANY TIME
may only invoke other methods annotated ANY TIME.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

141

Safety Critical Specification for Java

annotation parameters description

@DefineScope name - name of the scope
parent - parenting scope

Defines a scope and its parent.

@Scope name - name of the scope
where object lives

For an element specifies in
which scope it is allocated.

@RunsIn name - the scope where an
element is executed.

Specifies allocation context of a
method or class.

Figure 9.3: Memory Safety Annotations

9.1.3 Annotations for Memory Safety

The three SCJ annotations for memory safety, summarized in Figure 9.3, are:

• The @DefineScope annotation must be added to variable declarations holding
ScopedMemory objects. The annotation has the form @DefineScope(name=”A”,
parent=”B”) where A is the symbolic name of the scope and B is the name of
the direct ancestor of the scope. It is also used to annotate the Runnable passed
to enterPrivateMemory to name the new scope being created.

• The annotation @Scope is added to class declarations to indicate that instances
of the class are allocated in the named scope. The annotation has the form
@Scope(”A”) where A is the name of a scope introduced by @DefineScope.
All methods in the class run in the specified scope by default.

• The annotation @RunsIn can be annotated on either classes or methods, which
indicates an scope for the method or methods in question. When annotating a
class, it signifies the default allocation context for its methods. When attached
to a method, it specifies the context for that particular method, overriding any
annotations on its enclosing type. This can be used, for example, to annotate
event handlers, which always execute its event handling code in a different
scope from which it was allocated. This annotation follows the same form as
@Scope.

The special scope name Immortal is used to denote the singleton instance of Immortal-
Memory. For each class that inherits an SCJ class that creates its own private mem-
ory (MissionSequencer, PEH, APEH), a scope is added to the scope tree with the
name of the class as the name of the scope and the name specified by the @Scope
annotation on that class as the parent scope.

@DefineScope Rules

For each @DefineScope, the variable that it is attached to must be declared in the
allocation context specified by the parent argument to the annotation. Variable dec-

142 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

larations are checked to adhere to the following rules:

1. Every local variable or field annotated @DefineScope(name=”A”,parent=”B”)
must be assigned a freshly created scoped memory object or be assigned a
variable with the same annotation.

2. Variables of types annotated @Scope(a) are not allowed in any allocation con-
text that is an ancestor of scope a in the scope hierarchy.

3. Every static field must have types that are annotated @Scope(”Immortal”) or
are unannotated.

4. Lastly, Mission classes should also carry the @DefineScope annotation to
name the mission memory and define what the parent scope of the defined
mission is. It is not strictly necessary to annotate Mission objects; by default, a
scope named after the mission is created, with immortal memory as the parent.
Although event handlers also create implicit scoped memories, the necessary
addition to the scope tree can be inferred from the @Scope and @RunsIn an-
notation on the event handler class.

All @DefineScope are checked to ensure that scope names are unique and that the
parent relation forms a tree rooted at Immortal. During the first pass of checking, the
scope tree is constructed and checked for well-formedness. That is, there can be no
duplicates in the scope tree, or cycles. In addition, every chain of scopes must end at
the immortal scope.

Object Allocation Rules

Rules for using objects annotated with the @Scope annotation are following:

• Objects may only be allocated in the context specified by the annotation on
their types. This is the basis for all of the memory safety rules.

• Arrays may only be allocated in the same context as that of their element type.
• Variables of a specific type may not be declared in any scope that is a parent

of the scope specified by the type. Intuitively, if all objects are allocated in
a particular scope, a reference from a parent scope will result in a dangling
pointer.

• Static variables must have types with no @Scope annotation or @Scope(”immortal”).
This is because static variables never leave scope during the lifetime of a pro-
gram. Furthermore, no method running in any scope can store into a static
reference variable.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

143

Safety Critical Specification for Java

• Child classes inherit the scope of parent classes. However, if parent class has
no scope annotation, the child class may define the @Scope annotation arbi-
trarily.

• Each Schedulable class must have @Scope(”x”) and @RunsIn(”y”) annota-
tions, defining that the object is allocated in scope x while it is running in
scope y.

Class casting must follow special rules in order to not to lose the scope knowledge
associated with each variable. Therefore for the example below:

@Scope(”x”)
class A {...}

@Scope(”y”)
class B extends A {...}

A a = (A) b;

the following rules must apply. Either scope x == y or, in case of x == null, the scope
y must be equal to the current allocation context, otherwise a class-cast error must be
reported.

Method Allocation Context

The allocation context of a method is the first of:

1. s, if the method is annotated @RunsIn(s)

2. s, if the class that the method belongs to is annotated @RunsIn(s)

3. s, if the class that the method belongs to is annotated @Scope(s)

Furthermore, methods inherit any annotations from methods that they override and
are not allowed to change them.

Each method invocation must be checked for the following:

1. Invocation of a method is only allowed if its allocation context is the same as
the current context or is a parent to it and is allocation free. This is simply to
prevent objects from being allocated in the wrong scope.

2. The @Scope and @RunsIn annotations together define the allocation context
for each method in an SCJ program. Annotations on methods take precedence
over annotations on classes, with @RunsIn taking precedence over @Scope.

144 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

3. Calls to a scope’s executeInArea() method can only be made if the scoped
memory is a parent of the current context in the scope tree. In addition, the
Runnable object passed to the method must have a RunsIn annotation that
matches the name of the scoped memory. As with RTSJ, executeInArea() is
used to execute some logic in a scope below the current scope on the scope
stack.

4. Calls to a scope’s enterPrivateMemory() method are only valid if the annota-
tions are matching. In particular, the parent argument of the @DefineScope
on the Runnable must be the same as the allocation context of the call site.
The @RunsIn annotation of the Runnable must be the name of the scope being
defined by @DefineScope(name=n, parent=m). In addition when invoking en-
ter(), the current allocation context must be m In other words, m must be below
n on the scope stack. On the other hand, when invoking executeInArea(), the n
must be below the current allocation context in the scope stack.

5. If the method is MemoryArea.newInstance(), the created type must be com-
pletely unannotated or have be annotated @Scope(n), where n is the name
of the scope upon which newInstance() is called. If the method is Memor-
yArea.newArray(), a similar rule applies with the base element type.

6. When invoking a method with parameters of unannotated types, the method
must have the same allocation context as the current one.

7. When invoking a method where all the parameter types are annotated, the
method must have the same allocation context as the current one or must be
a parent allocation context and is Alloc restricted.

Methods that have allocation context s can only allocate objects whose types are an-
notated @Scope(s) or is completely unannotated. Likewise, they can only allocate
arrays whose base element type is annotated @Scope(s) or is completely unanno-
tated.

If a method has a return type that is unannotated, it is required that the object that is
returned be allocated in the allocation context of the method.

In a method of an object annotated @Scope(“A”), the valid operations on a reference
of a class annotated @Scope(“B”), where B is a parent of A, are reading and writ-
ing of primitive references, reading or writing of references annotated @Scope and
invocation of methods annotated @AllocFree.

Rules for Unannotated Classes

In order to handle object of unannotated types (types with no memory-related anno-
tations), we augment the above set of rules:

8 July 2010 Version 0.76
Confidentiality: Public Distribution

145

Safety Critical Specification for Java

• Objects of unannotated types may be allocated anywhere. Since we can stat-
ically determine the allocation context in any annotated class, the allocation
context of an unannotated object can subsequently be determined.

• Objects of unannotated types and, recursively, all of their fields of unannotated
types are assumed to reside in the scope in which the root object is declared.
All of its methods must also run in the same scope.

• Objects of unannotated types may not leave the allocation context in which
they were instantiated (i.e., may not be passed to a method which has a different
allocation context). Allowing an unannotated object to pass to a different scope
from the one in which it was created would lose scope information necessary
for determining assignability.

• When a method returns an object of an unannotated type, it must be allocated
in the method’s allocation context.

• Classes that are unannotated may not reference any annotated types. This pre-
vents objects of unannotated types, which can be allocated anywhere, from
allocating objects in a scope other than their designated one. In essence, unan-
notated code can be thought of as library code. Therefore, there is no reason
why the library have knowledge of client code.

Validation

The first step to validation of these annotations requires the construction of a reach-
able class set (RCS), this is the set of all classes that may be manipulated by a SCJ
schedulable object. The RCS is constructed by starting with all classes that are an-
notated @Scope and adding all classes that may be instantiated from run() methods
and methods called from run() methods.

9.2 Level Considerations

These annotations apply to all levels.

9.3 API

9.3.1 Class javax.safetycritical.annotate.SCJRestricted

Declaration

@Retention(CLASS)
@Target({ TYPE, FIELD, METHOD, CONSTRUCTOR })

146 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

public @interface SCJRestricted

Methods

public Restrict[] value() default {MAY BLOCK, MAY ALLOCATE, ANY TIME}
Declaration

This annotation distinguishes methods that may be called only from a certain context
(e.g. cleanup) or method that may be restricted to execute no memory allocation or
blocking.

9.3.2 Class javax.safetycritical.annotate.SCJAllowed

Declaration

@Retention(CLASS)
@Target({ TYPE, FIELD, METHOD, CONSTRUCTOR })
public @interface SCJAllowed

Description

This annotation distinguishes methods, classes, and fields that may be accessed from
within safety-critical Java programs. In some implementations of the safety-critical
Java specification, elements which are not declared with this annotation (and are
therefore not allowed in safety-critical application software) are present within the
declared class hierarchy. These are necessary for full compatibility with standard
edition Java, the Real-Time Specification for Java, and/or for use by the implemen-
tation of infrastructure software. The value field equals LEVEL 0 for elements that
may be used within safety-critical Java applications targeting levels 0, 1, or 2. The
value field equals LEVEL 1 for elements that may be used within safety-critical Java
applications targeting levels 1 or 2. The value field equals LEVEL 2 for elements
that may be used within safety-critical Java applications targeting level 2. Absence
of this annotation on a given Class, Field, Method, or Constructor declaration indi-
cates that the corresponding element may not be accessed from within a compliant
safety-critical Java application.

Methods

public Level value() default LEVEL 0

9.3.3 Class javax.safetycritical.annotate.Level

Declaration

public enum Level

8 July 2010 Version 0.76
Confidentiality: Public Distribution

147

Safety Critical Specification for Java

LEVEL 0
LEVEL 1
LEVEL 2
INFRASTRUCTURE
HIDDEN

Description

Provides a set of possible values for the @SCJAllowed annotation’s argument level.

9.3.4 Class javax.safetycritical.annotate.Restrict

Declaration

public enum Restrict

MAY ALLOCATE
MAY BLOCK
BLOCK FREE
ALLOCATE FREE
INITIALIZE
CLEANUP
ANY TIME

Description

Provides a set of possible values for the @SCJRestricted annotation value.

9.4 Rationale and Examples

It is expected that the metadata annotations will be checked at compile time as well
as at load time (or link time if class loading is integrated with the linking). Compile-
time checking is useful to provide rapid feedback to developers, while load or link
time checking is essential for ensuring safety. Virtual machines that use an ahead-
of-time compilation model are expected to perform the checks when the executable
image of the program is assembled. The virtual machine may omit memory access
checks for classes that have been successfully checked.

The scoped memory area classes extend Java to provide an API for circumventing
the need for garbage collection. In Java, the type system guarantees that every access
to an object is valid, the garbage collector only recycles objects that are not reach-
able. Since scoped memory is not garbage collected, it would be possible for the
application to retain a reference to a scoped-allocated object, and access the mem-
ory after the scope was reclaimed. This could lead to memory corruption and crash
the entire virtual machine. In order to ensure memory safety, the RTSJ mandates a
number of runtime checks on operations such as memory reads and writes as well

148 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

as calls to scoped memory enter() and executeInArea(). Exceptions will be thrown
if the program performs an operation that may lead to an unsafe memory access.
Practical experience with the RTSJ has shown that memory access rules are difficult
to get right because the allocation context is implicit and programmers are not used
to reasoning in terms of the relative position of objects in the scope hierarchy. In a
safety-critical context, these exceptions must never be thrown as they are likely to
lead to application failures. Validated programs are guaranteed to never throw any of
the following exceptions:

• IllegalAssignmentError occurs when an assignment may result in a dangling
pointer. In other words, it occurs when an attempt is made to store a reference
to an object where the reference is below the memory area in the scope stack.

• ScopedCycleException is thrown when an invocation of enter() on a scope
would result in a violation of the single parent rule, which basically states that
a scoped memory may only be entered from the same parent scope while it is
active.

• InaccessibleAreaException is thrown when an attempt is made to access a
memory area that is not on the scope stack (e.g., calling executeInArea() on
it).

9.4.1 Compliance Level Annotation Example

The following example illustrates application of the compliance level annotation on
a simple example. The example shows both user and infrastructure fragments of
source code, demonstrating the application of the compliance level annotations.

@SCJAllowed(LEVEL 0, members=true)
class MyMission extends

CyclicExecutive {
WordHandler peh;

public void initialize() {
peh = new MyHandler(...); // ERROR
peh.run(); // ERROR
}

}
As we can see, all the elements of the example are declared to reside in a specific
compliance level. At the user domain, we define class MyMission that is declared to
be at level 0. Every level 0 mission is composed of one or more periodic handlers; in
this case, we define the MyHandler class. The handler is, however, declared to be at
level 1, which is an error. Furthermore, MyMission’s initialization method attempts to
instantiate a MyHandler object and consequently tries to execute its functionality by
calling PeriodicEventHandler’s run() method. However, the method is annotated as

8 July 2010 Version 0.76
Confidentiality: Public Distribution

149

Safety Critical Specification for Java

@SCJAllowed(INFRASTRUCTURE), which indicates that it can be called only from
the SCJ infrastructure code.

@SCJAllowed (LEVEL 0)
public interface Schedulable

extends Runnable {
@SCJAllowed(LEVEL 2)
public ReleaseParameters getReleaseParameters();
}

@SCJAllowed(LEVEL 1)
class MyHandler extends

PeriodicEventHandler {

public void handleEvent() {
...

}
}

@SCJAllowed(LEVEL 0)
public abstract class

PeriodicEventHandler
extends ManagedEventHandler
implements Runnable {

@SCJAllowed(LEVEL 0)
public PeriodicEventHandler(..) {

super(...);
}

@SCJAllowed(LEVEL 0) // ERROR
public ReleaseParameters

getReleaseParameters() {
...

}
@SCJAllowed(INFRASTRUCTURE)
public final void run() {

...
}

}

Looking at the SCJ infrastructure code, the PeriodicEventHandler class implements
the Schedulable interface, both of which are defined as level 0 compliant. However,
PeriodicEventHandler is defined to override getReleaseParameters(), originally al-
lowed only at level 2. This results in an illegal attempt to decrease method visibility.

150 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

9.4.2 Memory Safety Annotations Example

The following user-level code snippet illustrated application of memory safety an-
notations. The example shows a user-domain source code fragment that defines a
MyMission class, where we explicitly declare a scope in which the mission is running
by @DefineScope(name=”MyMission”,parent=”immortal”). Furthermore, mission’s
handler MyHandler is defined to be allocated in mission’s memory by @Scope(”MyMission”),
while running in its own handler’s private memory by @RunsIn(”MyHandler”), thus
implicitly defining a new memory area.

@Scope(”immortal”)
@DefineScope(name=”MyMission”,

parent=”immortal”)
class MyMission extends CyclicExecutive {

public void initialize() {
new MyHandler(...);

}
}

@Scope(”MyMission”)
@RunsIn(”MyHandler”)
class MyHandler extends PeriodicEventHandler {

public void handleEvent() {
ManagedMemory.getCurrentManagedMemory().

enterPrivateMemory(3000, new
/∗@DefineScope(name=”MyTestRunnable”,

parent=”MyHandler”)∗/
MyTestRunnable());

}
}

@Scope(”MyHandler”)
@RunsIn(”MyTestRunnable”)
class MyTestRunnable implements Runnable {

public void run() {
}

}

The user is also expected to define a new scope area any time code enters a child
scope. This is illustrated by the MyTestRunnable class that is allocated in MyHan-
dler private memory while running in its own scope. Note, the specific approach to
annotation of the enterPrivateMemory. Since the Java annotation system does not al-
low to annotate method invocation, we place the annotation upon the instance of the
MyTestRunnable enclosed by the comments . Furthermore, notice that the memory
areas form a tree with the immortal scope in root.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

151

Safety Critical Specification for Java

9.4.3 A Large-Scale Example

This final large-scale example present a typical SCJ level 0 application with all three
types of SCJ annotations. On a simple user-level code snippet, we implement a
level 0 mission – MyMission and its periodic handler – MyHandler. The MyMis-
sion object is allocated in a scope named similarly and implicitly runs in the same
scope. A substantial portion of the class’ implementation is dedicated to the initial-
ize() method, which creates mission’s handler and then uses enterPrivateMemory()
to perform some initialization tasks in sub-scopes using ARunnable and BRunnable.

package mission;

@SCJAllowed(LEVEL 0)
@Scope(”MyMission”)
class MyMission extends Mission {

static Immortal instance = new Immortal();
A a = new A(); // ERROR

@SCJRestricted({MAY ALLOCATE, MAY BLOCK, INITIALIZATION})
void initialize() {
B aObj = new B();
handler.B bObj = new handler.B(); // ERROR
new MyHandler();

ManagedMemory.getCurrentManagedMemory().
enterPrivateMemory(1000, new
/∗@DefineScope(name=”MyMissionInit”, parent=”MyMission”)∗/
ARunnable()); // ERROR

ManagedMemory.getCurrentManagedMemory().
enterPrivateMemory(1000, new
/∗@DefineScope(name=”PrivateMemory”, parent=”MyMission”)∗/
BRunnable()); //ERROR

}

@SCJAllowed(LEVEL 1)
@Scope(”MyMission”)
@RunsIn(”MyMissionInit”)
class ARunnable implements Runnable { ... }

@SCJAllowed(LEVEL 0)
@Scope(”MyHandler”)
@RunsIn(”BRunnable”)
class BRunnable implements Runnable { ... }

@SCJAllowed(LEVEL 0)
@Scope(”MyMission”)

152 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

class B { ... }

The figure also highlights several errors that would be detected by the checker. First,
the user attempts to allocate instances of classes A and B in an allocation context that
is not consistent with those defined for these classes. In order to instantiate properly
the class B in MyMission class, the user has not other choice then to duplicate the class
implementation and provide each class declaration with a different scope annotation,
as it is shown in the example where B is defined in both packages with corresponding
scope annotations.

Furthermore, the usage of both handlers is also illegal. The ARunnable class is an-
notated to be level 1 and therefore is not accessible in the context of the level 0
MyMission. The BRunnable class is defined to run in the BRunnable scope; however,
the initialization method defines the instance of BRunnable class to run in Private-
Memory.

package handler;

@SCJAllowed(value=LEVEL 0, members=true)
@Scope(”MyMission”)
@RunsIn(”MyHandler”)
class MyHandler extends PeriodicEventHandler {

@SCJRestricted({MAY ALLOCATE,MAY BLOCK})
void handleEvent() {

A aObj = new A(); // ERROR
B bObj = new B();
@DefineScope(name=”MyHandler”, parent=”MyMission”)
ManagedMemory mem = ManagedMemory.getCurrentManagedMemory();

mem.enterPrivateMemory(1000, new
/∗@DefineScope(name=”MyMissionInit”, parent=”MyHandler”)∗/
ARunnable()); // ERROR

mem.enterPrivateMemory(1000, new
/∗@DefineScope(name=”BRunnable”, parent=”MyHandler”)∗/
BRunnable());

}
}

@SCJAllowed(LEVEL 0)
@Scope(”MyMission”)
class A {

@SCJRestricted({MAY ALLOCATE})
void bar() { }

}

@SCJAllowed(LEVEL 0)
@Scope(”MyHandler”)
class B {

8 July 2010 Version 0.76
Confidentiality: Public Distribution

153

Safety Critical Specification for Java

A a;
A a2 = new A(); // ERROR
Object o;

@SCJRestricted({ALLOCATE FREE})
void foo(A a) {

a.bar(); // ERROR
o = a; // ERROR

}
}

The MyHandler class implements functionality – the handleEvent() method – that
will be periodically executed throughout the mission. The allocation context of
this execution will be MyHandler scope, as the RunsIn annotation upon the MyHan-
dler class suggests. Looking at the handleEvent() method, we can see that some of
the functionality is designated to be executed in child scope memories through the
ARunnable and BRunnable classes. However, the checker will detect the error since
the ARunnable is declared to run in the MyMissionInit memory area, which is not a
child to the MyHandler memory area. Furthermore, the MyHandler and B classes try
to instantiate the A class in illegal contexts. Method bar() in B further tries to call
a.foo(), which is annotated as MAY ALLOCATE whereas the caller method prohibits
any allocation. Finally, the assignment o = a; is illegal, since the user is assigning
a variable from scope MyMission to a variable MyHandler. Assigning an instance of
an unannotated type into a variable in a different scope would cause lost of scope
knowledge related to this instance, which is illegal.

154 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Chapter 10

Class Libraries for Safety Critical
Applications

For safety critical systems, any libraries that the system uses must also be certifiable.
Given the costs of the certification process, it is desirable to keep the size of any
standard library as small as possible. Another consideration that argues for a smaller
set of core libraries is the desire to reduce the need by application developers to subset
from the official standard for particular applications. In addition, many safety-critical
software systems are missing certain features, such as file systems and networks.
Therefore, the standard needs to accommodate both systems that have these features
and those that do not.

SCJ is structured as a hierarchy of upwards compatible levels. Levels 1 and 2 are de-
signed to address the needs of systems that have more complexity and possibly more
dynamic behavior than level 0. Certain safety-critical library capabilities which are
available to level-2 programmers will not be available to level-1 and level-0 program-
mers. Likewise, certain level-1 libraries will not be available at level 0.

Beyond the core libraries defined for the 0, 1, and 2 levels of SCJ, vendors may offer
additional library support to complement the core capabilities.

See the javadoc sections for descriptions of the class libraries for safety critical ap-
plications.

The remainder of this chapter summarizes the differences between the SCJ speci-
fication and JDK 1.6. Where differences exist, a brief discussion of the rationale is
provided.

155

Safety Critical Specification for Java

Class Level Completeness Rationale
Foo 2 Full 4
Bar 1 Partial 5

10.1 Comparison of SCJ with JDK 1.6 java.io

Within the java.io package, the only definition provided by the SCJ specifi-
cation is the Serializable interface. This interface is the same as JDK 1.6.

SCJ includes the Serializable interface for compatibility with standard edition Java.
However, SCJ does not include any services to perform serialization, because such
services would add undesirable size and complexity. For the same reason, SCJ omits
other java.io services such as file access and formatted output.

10.2 Comparison of SCJ with JDK 1.6 java.lang pack-
age

Appendable interface: SCJ specification is the same as JDK 1.6.

CharSequence interface: SCJ specification is the same as JDK 1.6.

Cloneable interface: is omitted from SCJ specification. Though it is often desir-
able to make deep copies of certain objects when manipulating these objects within
nested memory scopes, it was agreed that the Cloneable interface does not represent
a reliable way to accomplish this.

Comparable interface: SCJ specification is the same as JDK 1.6.

Iterable interface present in JDK 1.6 is not included in SCJ to reduce size and
complexity.

TBD: James and Jan say no Iterator - Martin says this should be present if collec-
tions are present. I believe we wanted to leave this issue “open” until consensus is
achieved.

Readable interface present in JDK 1.6 is not included in SCJ specification to
reduce size and complexity.

Runnable interface: SCJ is the same as JDK 1.6.

Thread.UncaughtExceptionHandler interface: SCJ is the same as JDK
1.6.

class Boolean: SCJ is the same as JDK 1.6.

class Byte: SCJ is the same as JDK 1.6.

156 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

class Character: SCJ is the same as JDK 1.6 except that the SCJ specification
version does not define the following fields:

$DIRECTIONALITY ARABIC NUMBER$,
$DIRECTIONALITY BOUNDARY NEUTRAL$,
$DIRECTIONALITY COMMON NUMBER SEPARATOR$,
$DIRECTIONALITY EUROPEAN NUMBER$,
$DIRECTIONALITY EUROPEAN NUMBER SEPARATOR$,
$DIRECTIONALITY LEFT TO RIGHT$,
$DIRECTIONALITY LEFT TO RIGHT EMBEDDING$,
$DIRECTIONALITY LEFT TO RIGHT OVERRIDE$,
$DIRECTIONALITY NONSPACING MARK$,
$DIRECTIONALITY OTHER NEUTRALS$,
$DIRECTIONALITY PARAGRAPH SEPARATOR$,
$DIRECTIONALITY POP DIRECTIONAL FORMAT$,
$DIRECTIONALITY RIGHT TO LEFT$,
$DIRECTIONALITY RIGHT TO LEFT ARABIC$,
$DIRECTIONALITY RIGHT TO LEFT EMBEDDING$,
$DIRECTIONALITY RIGHT TO LEFT OVERRIDE$,
$DIRECTIONALITY SEGMENT SEPARATOR$,
$DIRECTIONALITY UNDEFINED$,
$DIRECTIONALITY WHITESPACE$,
$MAX CODE POINT$,
$MAX HIGH SURROGATE$,
$MAX LOW SURROGATE$,
$MAX SURROGATE$,
$MIN CODE POINT$,
$MIN HIGH SURROGATE$,
$MIN LOW SURROGATE$,
$MIN SUPPLEMENTARY CODE POINT$,
$MIN SURROGATE$

Nor does it define the following methods:

charCount(int codePoint),
codePointAt(char[], int),
codePointAt(char[], int, int),
codePointAt(CharSequence, int),
codePointBefore(char[], int),
codePointBefore(char[], int, int),
codePointBefore(CharSequence, int),
codePointCount(char, int, int),
codePointCount(CharSequence, int, int),
digit(int codePoint, int),

8 July 2010 Version 0.76
Confidentiality: Public Distribution

157

Safety Critical Specification for Java

forDigit(int, int),
getDirectionality(char),
getDirectionality(int),
getNumericValue(char),
getNumericValue(int),
getType(int codePoint),
isDefined(char),
isDefined(int),
isDigit(char),
isDigit(int),
isHighSurrogate(char),
isIdentifierIgnorable(char),
isIdentifierIgnorable(int codePoint),
isISOControl(char),
isISOControl(int codePoint),
isJavaIdentifierPart(char),
isJavaIdentifierPart(int),
isJavaIdentiferStart(char),
isJavaIdentifierStart(int codePoint),
isJavaLetter(char),
isJavaLetterOrDigit(char),
isLetter(int codePoint),
isLetterOrDigit(int codePoint),
isLowerCase(int codePoint),
isLowSurrogate(char),
isMirrored(char),
isMirrored(int codePoint),
isSpace(char),
isSupplementaryCodePoint(int codePoint),
isSurrogatePair(char, char),
isTitleCase(char),
isTitleCase(int codePoint),
isUnicodeIdentifierPart(char),
isUnicodeIdentifierStart(char),
isUnicodeIdentifierStart(int codePoint),
isUpperCase(int codePoint),
isWhitespace(int codePoint),
offsetByCodePoints(char[], int, int, int, int),
offsetByCodePoints(CharSequence, int, int),
reverseBytes(char),
toChars(int codePoint),
toChars(int codePoint, char[] int),

158 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

toCodePoint(char, char),
toLowerCase(int),
toTitleCase(char),
toTitleCase(int codePoint),
toUpperCase(int codePoint)

The rationale for these various ommissions was to reduce the size and complexity
of the Character class. The judgement of the SCJ expert group was that safety-
critical code would generally not be involved with text processing.

The class Character.Subset is omitted from the SCJ specification. The ratio-
nale for this ommission was to reduce the size and complexity of the java.lang
package. The judgement of the SCJ expert group was that safety-critical code would
generally not be involved with text processing.

The class Character.UnicodeBlock is omitted from the SCJ. The rationale
for this ommission was to reduce the size and complexity of the java.lang package.
The judgement of the SCJ expert group was that safety-critical code would generally
not be involved with text processing.

The class Class: the SCJ specification does not implement

AnnotatedElement, GenericDeclaration, or Type.

The SCJ specification omits the following methods:

asSubClass(Class),
cast(Object),
forName(String),
forName(String, boolean, ClassLoader),
getAnnotation(Class), getAnnotations(),
getCanonicalName(),
getClasses(),
getClassLoader(),
getConstructor(Class ...),
getConstructors(),
getDeclaredAnnotations(),
getDeclaredClasses(),
getDeclaredConstructor(Class ...),
getDeclaredConstructors(),
getDeclaredField(String),
getDeclaredFields(),
getDeclaredMethod(String, Class ...),
getDeclaredMethods(),
getEnclosingClass(),
getEnclosingConstructor(),

8 July 2010 Version 0.76
Confidentiality: Public Distribution

159

Safety Critical Specification for Java

getEnclosingMethod(),
getFields(),
getGenericInterfaces(),
getGenericSuperclass(),
getInterfaces(),
getMethod(String, Class, ...),
getMethods(),
getModifiers(),
getPackage(),
getProtectionDomain(),
getResource(String),
getResourceAsStream(String),
getSigners(),
getSimpleName(),
getTypeParameters(),
isAnnotationPresent(),
isAnonymousClass(),
isLocalClass(),
isMemberClass(),
isPrimitive(),
isSynthetic(),
newInstance().

The rationale for these various ommissions was to reduce the size and complexity of
the Class class. The expert group decided to severely restrict reflection.

Note that Class class does implement the following methods:

getEnumConstants(),
getSuperclass(),
gisAnnotation(),
gisArray(),
gisAssignableFrom(Class),
gisEnum(),
gisInstance(Object),
gisInterface(),
gnewInstance(),
gtoString().

TBD: There may be some further discussion required to determine whether all of
these methods are in the SCJ specification.

The class ClassLoader is omitted from the SCJ. The expert group decided that
dynamic class loading would not be supported by SCJ in order to reduce system size

160 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

and complexity.

The class Compiler is omitted from the SCJ safety-critical Java specification. The
expert group expects that compilation, if any, of SCJ applications would normally
be done at build time rather than at execution time. Removing this class reduces the
size and complexity of a conformant SCJ run-time environment.

The class Double: SCJ specification is same as JDK 1.6.

The class Enum: SCJ specification is same as JDK 1.6 except that SCJ specification
does not have final finalize() or valueof(Class<T> enumType, String
name) methods.

The class Float: SCJ specification is same as JDK 1.6.

The class InheritableThreadLocal is omitted to reduce the size and com-
plexity of the SCJ specification.

The class Integer: SCJ specification is same as JDK 1.6.

The class Long: SCJ specification is same as JDK 1.6.

The class Math: SCJ specification is same as JDK 1.6.

The class Number: SCJ specification is same as JDK 1.6.

The class Object: SCJ specification considers the finalize() method to be
not @SCJAllowed. This means safety-critical programmers should not override
this method.

TBD: Does the Purdue consistency checker enforce this “meaning” of not @SCJAl-
lowed?

The following methods:

notify(),
notifyAll(),
wait(),
wait(long timeout),
and wait(long timeout, int nanos)

are only @SCJAllowed at level 2. The SCJ expert group chose to limit the use of
these services in order to enable a simpler run-time environment and easier anal-
ysis of real-time schedulability in levels 0 and 1. The clone() method is not
@SCJAllowed as its default shallow-copy behavior is not compatible with typical
scoped memory usage patterns.

The class Package is omitted from the SCJ specification. Reflection has been
severely limited in the SCJ specification in order to reduce size and complexity.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

161

Safety Critical Specification for Java

The class Process is omitted from the SCJ specification. The services offered by
this class will normally not be available within safety-certifiable operating environ-
ments.

The class ProcessBuilder is omitted from the SCJ specification. The services
offered by this class will normally not be available within safety-certifiable operating
environments.

The class Runtime is omitted from the SCJ specification. The services offered by
this class will normally not be available within safety-certifiable operating environ-
ments and/or are not relevant in the absence of garbage collection and finalization.

The class RuntimePermission is omitted from the SCJ specification. This class
is not relevant because SCJ does not support on-the-fly security management. In
general, it is expected that safety-critical programs will assure security using static
rather than dynamic techniques.

The class SecurityManager is omitted from the SCJ specification. This class
is not relevant because SCJ does not support on-the-fly security management. In
general, it is expected that safety-critical programs will assure security using static
rather than dynamic techniques.

The class Short: SCJ specification is same as JDK 1.6.

The class StackTraceElement: SCJ specification is same as JDK 1.6.

The class StrictMath: SCJ specification is same as JDK 1.6.

The class String: SCJ specification omits these constructors:

String(byte[], Charset),
String(byte[], int), String(byte[], int, int, CharSet),
String(byte[], int, int, int),
String(byte[], int, int, String),
String(byte[], String), String(int[], int, int),
String(StringBuffer) constructors.

SCJ specification also omits the methods:

codePointAt(int),
codePointBefore(int),
codePointCount(int beginIndex, int endIndex),
contentEquals(StringBuffer sb), copyValueOf(char[]),
copyValueOf(char[], int, int),
format(Locale, String, Object... args),
format(String, Object... args),
getBytes(Charset),
getBytes(int, int, byte[], int),

162 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

getBytes(String),
intern(),
matches(String regex),
offsetByCodePoints(int, int),
replaceAll(String regex, String replacement),
replaceFirst(String regex, String replacement),
split(String regex), split(String regex, int limit),
toLowerCase(Locale),
toUpperCase(Locale)

The SCJ specification is also omits $CASE INSENSITIVE ORDER$ field.

The rationale for these various ommissions was to reduce the size and complexity
of the String class. In general, the SCJ expert group judged that safety-critical pro-
grams will not do extensive text processing.

The class StringBuffer is omitted from the SCJ specification. SCJ assumes
a JDK 1.6 Java compiler, which generates uses of StringBuilder instead of
StringBuffer.

The class StringBuilder: The SCJ specification omits the following methods:

append(StringBuffer),
appendCodePoint(int),
codePointAt(int),
codePointBefore(int),
codePointCount(int, int),
delete(int, int),
deleteCharAt(int),
insert(int, boolean),
insert(int, char),
insert(int, char[]),
insert(int, char[], int, int),
insert(int, CharSequence),
insert(int, CharSequence, int, int),
insert(int, double),
insert(int, float),
insert(int, int),
insert(int, long),
insert(int, obj),
offsetByCodePoints(int, int),
replace(int, int, String),
reverse(),
setCharAt(int, char),

8 July 2010 Version 0.76
Confidentiality: Public Distribution

163

Safety Critical Specification for Java

trimToSize()

The rationale for these various ommissions was to reduce the size and complexity
of the StringBuilder class and to enable safe sharing of a StringBuilder’s
backing character array with any Strings constructed from this StringBuilder.
In general, the SCJ expert group judged that safety-critical programs will not do
extensive text processing.

The class System: SCJ specification omits the following fields:

err,
in,
or out

Also, SCJ specification omits the following methods:

clearProperty(),
console(),
gc(),
getenv(),
getenv(String name),
getProperties(),
getSecurityManager(),
inheritedChannel(),
load(String),
loadLibrary(String),
mapLibraryName(String),
runFinalization(),
runFinalizersOnExit(booleean),
setErr(PrintStream),
setIn(InputStream),
setOut(PrintStream),
setProperties(Properties),
setProperty(String, String),
setSecurityManager(SecurityManager)

The rationale for these various ommissions was to reduce the size and complexity
of the System class. Note that SCJ does not support garbage collection, security
management, or file I/O.

The class Thread: SCJ specification does not implement the Thread.State
internal class. The Thread.UncaughtExceptionHandler interface is
the same as JDK 1.6. The SCJ specification does not implement the

164 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

$MAX PRIORITY$,
$MIN PRIORITY$,
or $NORM PRIORITY$ fields.

None of the constructors are @SCJAllowed. Only two constructors (Thread(),
and Thread(String)) are available as @SCJProtected. The SCJ specifica-
tion omits the following methods:

activeCount(),
checkAccess(),
countStackFrames(),
destroy(),
dumpStack(),
enumerate(Thread[]),
getAllStackTraces(),
getContextClassLoader(),
getId(),
getPriority(),
getStackTrace(),
getState(),
getThreadGroup(),
holdsLock(Object),
resume(),
setContextClassLoader(ClassLoader),
setDaemon(boolean),
setName(String),
setPriority(int),
stop(Throwable),
suspend()

The rationale for these various ommissions was to reduce the size and complexity of
the Thread class. Note that SCJ does not allow instantiation of Threads because it
only allows execution of NoHeapRealtimeThreads.

The class ThreadGroup is omitted from the SCJ specification in order to reduce
the size and complexity of the SCJ specification.

The class ThreadLocal is omitted from the SCJ specification in order to reduce
the size and complexity of the SCJ specification.

The class Throwable: The SCJ specification omits the following methods:

fillInStackTrace(), getLocalizedMessage(), initCause(Throwable),
printStackTrace(), printStackTrace(PrintStream), printStackTrace(PrintWriter),
setStackTrace(), toString()methods. Throwable inherits a simple toString()
method from Object.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

165

Safety Critical Specification for Java

The rationale for these various ommissions was to reduce the size and complexity of
the Throwable class and subclasses.

The class ArithmeticException: SCJ specification is same as JDK 1.6.

The class ArrayIndexOutOfBoundsException: SCJ specification is same
as JDK 1.6.

The class ArrayStoreException: SCJ specification is same as JDK 1.6.

The class ClassCastException: SCJ specification is same as JDK 1.6.

The class ClassNotFoundException: SCJ specification is same as JDK 1.6.

The class CloneNotSupportedException: SCJ specification is same as JDK
1.6.

The class EnumConstantNotPresentException is omitted from the SCJ
specification.

The class Exception: SCJ specification is the same as JDK 1.6.

The class IllegalAccessException is omitted from the SCJ specification.
This exception is not needed in SCJ because SCJ does not support reflection.

The class IllegalArgumentException: SCJ specification is the same as JDK
1.6.

The class IllegalMonitorStateException: SCJ specification is same as
JDK 1.6 and this is only allowed in level 2.

The class IllegalStateException: SCJ specification is same as JDK 1.6.

The class IllegalThreadStateException is omitted from the SCJ specifi-
cation because it is not needed.

The class IndexOutOfBoundsException: SCJ specification is same as JDK
1.6.

The class InstantiationException: SCJ specification is same as JDK 1.6.

The class InterruptedException: SCJ specification is same as JDK 1.6.

The class NegativeArraySizeException: SCJ specification is same as JDK
1.6.

The class NoSuchFieldException is omitted from the SCJ specification. This
exception is not relevant because SCJ does not support dynamic class loading.

The class NoSuchMethodException is omitted from the SCJ specification.
This exception is not relevant because SCJ does not support dynamic class load-
ing.

The class NullPointerException: SCJ specification is same as JDK 1.6.

The class NumberFormatException: SCJ specification is same as JDK 1.6.

166 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

The class RuntimeException: SCJ specification is same as JDK 1.6.

The class SecurityException is omitted from the SCJ specification. This ex-
ception is not relevant because SCJ does not support dynamic security management.

The class StringIndexOutOfBoundsException: SCJ specification is same
as JDK 1.6.

The class TypeNotPresentException is omitted from the SCJ specification.
This exception is not relevant because SCJ does not support reflection.

The class UnsupportedOperationException: SCJ specification is same as
JDK 1.6.

The class AbstractMethodError is omitted from the SCJ specification. This
exception is not relevant because it can only arise during dynamic class loading.

The class AssertionError: SCJ specification is same as JDK 1.6.

The class ClassCircularityError is omitted from the SCJ specification.
This exception is not relevant because it can only arise during dynamic class loading.

The class ClassFormatError is omitted from the SCJ specification. This ex-
ception is not relevant because it can only arise during dynamic class loading.

The class Error: SCJ specification is same as JDK 1.6.

The class ExceptionInInitializerError is omitted from the SCJ specifi-
cation.

The class IllegalAccessError is omitted from the SCJ specification. This
exception is not relevant because it can only arise as a result of dynamic class loading.

The class IncompatibleClassChangeError: SCJ specification is same as
JDK 1.6. This may be thrown by an invoke interface operation because the Java
byte-code verifier does not enforce that interface variables actually hold instance of
the interface type.

This exception is not relevant because it can only arise as a result of dynamic class
loading.

The class InstantiationError is omitted from the SCJ specification. This
exception is not relevant because it can only arise as a result of dynamic class loading.

The class InternalError: SCJ specification is same as JDK 1.6.

The class LinkageError is omitted from the SCJ specification. This exception is
not relevant because it can only arise as a result of dynamic class loading.

The class NoClassDefFoundError is omitted from the SCJ specification. This
exception is not relevant because it can only arise as a result of dynamic class loading.

The class NoSuchFieldError is omitted from the SCJ specification. This ex-
ception is not relevant because it can only arise as a result of dynamic class loading.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

167

Safety Critical Specification for Java

The class NoSuchMethodError is omitted from the SCJ specification. This ex-
ception is not relevant because it can only arise as a result of dynamic class loading.

The class OutOfMemoryError: SCJ specification is same as JDK 1.6.

The class StackOverflowError: SCJ specification is same as JDK 1.6.

The class ThreadDeath is omitted from the SCJ specification. This exception is
not relevant because SCJ does not support the Thread.stop() method.

The class UnknownError is omitted from the SCJ safety-critical Java specifica-
tion.

The class UnsatisfiedLinkError: SCJ is same as JDK 1.6. This may be
thrown upon invocation of a native method for which there is no known implemen-
tation.

The class UnsupportedClassVersionError is omitted from the SCJ specifi-
cation. This exception is not relevant because it can only arise as a result of dynamic
class loading.

The class VerifyError is omitted from the SCJ specification. This exception is
not relevant because it can only arise as a result of dynamic class loading.

The class VirtualMachineError: SCJ specification is same as JDK 1.6.

The class Deprecated: SCJ specification is the same as JDK 1.6.

The class Override: SCJ specification is the same as JDK 1.6.

The class SuppressWarnings: SCJ specification is the same as JDK 1.6.

10.3 Comparison of SCJ API with JDK 1.6 java.lang.annotation

The interface Annotation: SCJ specification is same as JDK 1.6.

The enum ElementType: SCJ defines the same constants as JDK 1.6. (Ordi-
nal values associated with enumerated constants may not be the same, unless we
make an effort to assure they are identical.) SCJ does not define the values() or
valueOf() methods, as their main use deals with dynamic processing of annota-
tions, whereas the use of annotations within SCJ is intended to be static.

The enum RetentionPolicy: SCJ defines the same constants as JDK 1.6. (Or-
dinal values associated with enumerated constants may not be the same, unless we
make an effort to assure they are identical.) SCJ does not define the values() or
valueOf() methods, as their main use deals with dynamic processing of annota-
tions, whereas the use of annotations within SCJ is intended to be static.

168 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

The class AnnotationTypeMismatchException: is omitted from SCJ spec-
ification because this exception is only thrown during dynamic processing of anno-
tations, whereas the use of annotations within SCJ is intended to be static.

The class IncompleteAnnotationException: is omitted from SCJ specifi-
cation because this exception is only thrown during dynamic processing of annota-
tions, whereas the use of annotations within SCJ is intended to be static.

The class AnnotationFormatError: is omitted from SCJ specification be-
cause this exception is only thrown during dynamic class loading, whereas SCJ does
not support dynamic class loading.

The class Documented: SCJ specification is same as JDK 1.6.

The class Inherited: SCJ specification is same as JDK 1.6.

The class Retention: SCJ specification is same as JDK 1.6.

The class Target: SCJ specification is same as JDK 1.6.

10.4 Comparison of SCJ Safety Critical Java API with
JDK 1.6 java.util

Within the java.util package, the only definition provided by the SCJ speci-
fication is the Iterator interface. This interface is the same as JDK 1.6.

TBD: as a group, we don’t yet have consensus on whether or not to include Iterator
support.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

169

Safety Critical Specification for Java

170 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Chapter 11

JNI

11.1 Semantics and Requirements

The RTSJ provides only minimal restrictions on calls to native interfaces. This
chapter defines the additional restrictions that are required for SCJ. If the underly-
ing system supports native code execution, then all JNI supported services shall be
implemented; otherwise, JNI is not available to the application.

11.2 Level Considerations

Due to SCJ limitations concerning reflection and object allocation the JNI support
is constricted to a basic fuctionality. The remaining services can be used equally for
native methods on Level 0, 1 and 2.

11.3 API

11.3.1 Supported Services

These JNI services in this section are supported by each SCJ implementation.

General service to get JNI version information:

• GetVersion

General object analysis: The following methods provide basic operation on objects
and require no reflection, no object allocation, or other hard-to-analyze code.

171

Safety Critical Specification for Java

• GetObjectClass
• IsInstanceOf
• IsSameObject
• GetSuperclass
• IsAssignableFrom

String Functions: The following methods provide basic operation on strings and re-
quire no reflection or other hard-to-analyze code.

• GetStringLength
• GetStringUTFLength
• GetStringRegion
• GetStringUTFRegion

Array Operations The following methods provide basic operation on arrays and re-
quire no reflection or other hard-to-analyze code.

• GetArrayLength
• GetObjectArrayElement
• SetObjectArrayElement
• Get < PrimitiveType > ArrayRegion routines
• Set < PrimitiveType > ArrayRegion routines

Native Function Registering: The following function is required to be supported,
though it may only be called during initialization. This function is needed to disam-
biguate between the two possible naming conventions for JNI functions, in systems
where the Java implementation does not control linking.

• RegisterNatives

The following functions are required to be supported because they are easy to imple-
ment, and provide better compatibility with existing JNI code:

• DeleteLocalRef
• EnsureLocalCapacity
• PushLocalFrame
• PopLocalFrame
• NewLocalRef

11.3.2 Annotations

There is no SCJ support to verify the annotations of native methods. On the other
hand it is important to provide this information to the tools validating SCJ programs

172 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

for correctness and further purposes. To ensure, that the programmer considers hers
or his implementation carefully, there are no default annotations for native methods
concerning allocation and blocking. Therefore it is always required to decorate na-
tive methods with either @MAY BLOCK or @BLOCK FREE. The same applies to
@MAY ALLOCATE and @ALLOCATE FREE. @MAY ALLOCATE indicates that the
native method allocates native memory dynamically. SCJ compliant implementa-
tions of native methods cannot allocate objects in SCJ memory.

As usual, an annotation with @SCJAllowed() is also required for each native method.

11.4 Rationale

Due to the complexity of static analysis of code that contains reflection, the SCJ
restricts all uses of reflection and object allocation at all levels. As such, many of the
services that would normally be available in JNI are not supported. In addition, no
services that require allocation will be required for SCJ conformance.

Call-back services from C to create, attach or unload the JVM are not required since
the corresponding operations are not supported.

11.4.1 Unsupported Services

The VM related invocation api functions are not required to be supported:

• JNI GetDefaultJavaVMInitArgs
• JNI GetCreatedJavaVMs
• JNI CreateJavaVM
• JNI DestroyJavaVM
• JNI AttachCurrentThread
• JNI AttachCurrentThreadAsDaemon
• JNI DetachCurrentThread
• JNI GetEnv

There is no support for the native interface definitions to be re-defined with the JNI
OnLoad and JNI OnUnload services.

Primitive types, objects and arrays can all be passed into the underlying C function
from Java using JNI.

The following methods are NOT required to be supported because they require re-
flection:

• NewObject
• NewObjectA

8 July 2010 Version 0.76
Confidentiality: Public Distribution

173

Safety Critical Specification for Java

• NewObjectV
• GetFieldID
• Get < type > Field
• Set < type > Field
• GetStaticFieldID
• GetStatic < type > Field
• SetStatic < type > Field
• GetMethodID
• Call < type > Method
• Call < type > MethodA
• Call < type > MethodV
• GetStaticMethodID
• CallStatic < type > Method
• CallStatic < type > MethodA
• CallStatic < type > MethodV
• CallNonvirtual < type > Method
• CallNonvirtual < type > MethodA
• CallNonvirtual < type > MethodV
• FromReflectedMethod
• FromReflectedField
• ToReflectedMethod
• ToReflectedField

The following methods are not supported since they require allocation:

• NewString
• NewStringUTF
• NewObjectArray
• NewDirectByteBuffer
• GetStringChars
• GetStringUTFChars
• ReleaseStringChars
• ReleaseStringUTFChars
• New < type > Array
• Get < type > ArrayElements
• Release < type > ArrayElements
• GetStringCritical
• Release StringCritical
• GetPrimitiveArrayCritical
• ReleasePrimitiveArrayCritical

The following function is NOT required to be supported since it is only useful for
systems with dynamic loading:

• UnregisterNatives

174 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

The following memory management services are NOT required to be supported since
their semantics conflict with scoped memory, and require features (like weak refer-
ences) not found in an SCJ implementation:

• NewGlobalRef
• DeleteGlobalRef
• NewWeakGlobalRef
• DeleteWeakGlobalRef
• NewGlobalRef
• DeleteGlobalRef
• DeleteLocalRef

The following methods are NOT required to be supported since they map to ’syn-
chronized’ which is restricted:

• MonitorEnter
• MonitorExit

The following methods are NOT required to be supported because they require re-
flection and/or dynamic class loading to operate:

• DefineClass
• FindClass

11.5 Example

@SCJAllowed
@ALLOCATE FREE
@MAY BLOCK
static native int getProcessorId(String theProcessorInformationString);

The native method is called with a previously allocated string as parameter. Beside
the integer return value, in this example, the parameter of type string can be used to
return information to the Java context. Because it is marked @ALLOCATE FREE, the
implementation of getProcessorId must not allocate memory dynamically. Since the
desired information might be obtained by a call to the operation system @MAY BLOCK
is used.

Header files of the native implementation can be generated by javah as usual. The
native implementation follows the common JNI rules Please insert reference to:

8 July 2010 Version 0.76
Confidentiality: Public Distribution

175

Safety Critical Specification for Java

http://java.sun.com/javase/6/docs/technotes/guides/jni/ obeying the restrictions of
the previous section.

11.6 Compatibility

11.6.1 RTSJ Compatibility Issues

The restrictions in Level 0 are upwardly compatible with a conformant RTSJ solu-
tion in that, applications that will run under this restricted environment will also work
fine under a less restricted environment like CLDC or JSE.

This will not affect standard RTSJ applications, unless they are using JNI services
that are not supported.

For consistency with standard RTSJ applications, if an SCJ implementation sup-
ports facultativly allocation of Java objects from native code, such allocations should
allocate objects using the current allocation context at the point of the call.

11.6.2 General Java Compatibility Issues

Existing JNI code may need to be modified, due to the reduced set of JNI services
that are supported for SCJ. In particular, to modify fields of an object, the field will
need to be passed in as an argument to the underlying JNI function because there is
no way to access a field directly.

176 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Chapter 12

Exceptions

Exceptions are normally considered a good mechanism to separate logic from error
handling. Safety critical applications in languages such as Ada and C++, however,
usually avoid their use. One reason is that the possibility of exception propagation
introduces run-time paths which are complicated to analyse.

In Java, it is typically impossible to avoid exception handlers altogether due to checked
exceptions which can be thrown by many standard methods. Compiler analysis such
as data flow analysis can go a long way to determine that certain exceptions will
never be thrown by a given method invocation but in general it is not possible to
eliminate all throw statements and catch clauses.

This chapter describes how exceptions can be thrown and caught within SCJ pro-
grams without any risk of memory leaks, out-of-memory exceptions, or scope related
exceptions. Observing these rules permits safe exception handling which may also
be employed within application classes.

In this chapter the term exception may refer to any Throwable.

12.1 Semantics and Requirements

There are no special requirements on the allocation of exception objects. Exception
object allocation through the keyword new uses the current allocation context; ex-
ceptions can be allocated in other allocation contexts by using that memory area’s
newInstance methods.

Throw statements and catch clauses work the same in SCJ as in RTSJ. There are no
special requirements on checked or unchecked exceptions.

An attempt to propagate an exception out of its scope (i.e. out of the ScopedMemory
in which it is allocated) is called a boundary error. The exception which causes a

177

Safety Critical Specification for Java

boundary error is called the original exception. A boundary error stops the propaga-
tion of the original exception and throws a ThrowBoundaryError exception in its place
(as in RTSJ). SCJ defines its own ThrowBoundaryError class in javax.safetycritical
which extends that of RTSJ.

In SCJ, every Schedulable is configured at construction time to set aside a thread-
local buffer to represent stack back trace information associated with the exception
most recently thrown by this Schedulable. See StorageParameters in Chapter 4.

It is implementation defined how a particular implementation of SCJ captures and
represents thread backtraces for thrown exceptions. See the Rationale section for a
description of one possible approach.

12.1.1 New Functionality

A ThrowBoundaryError exception which is thrown due to a boundary error shall con-
tain information about the original exception. This information can be extracted from
the most recent boundary error in the current schedulable object using the methods
in javax.safetycritical.ThrowBoundaryError.

When SCJ replaces a thrown exception with a ThrowBoundaryError exception, it
preserves a reference to the class of the originally thrown exception within the thread-
local ThrowBoundaryError object. Whether stack back-trace information is copied at
this same time is implementation dependent.

The method getPropagatedExceptionClass() returns a reference to the Class of the
original exception. The method getPropagatedMessage returns the message associ-
ated with the original exception. The message is truncated by discarding the highest
indices if it exceeds the maximum allowed length for this Schedulable object. The
method getPropagatedStackTraceDepth returns the number of valid elements in the
StackTraceElement array returned by getPropagatedStackTrace(). The method get-
PropagatedStackTrace returns the stack trace copied from the original exception.
The stack trace is truncated by discarding the oldest stack trace elements if it exceeds
the maximum allowed length for this schedulable object.

The RTSJ adds a number of new exceptions, thrown at runtime, when assignment
rules between memory areas are violated. To avoid those exceptions, Chapter 9 in-
troduces annotations for scope safe SCJ programs. Correctly annotated programs
are guaranteed to never throw any of the scope related exceptions (IllegalAccess-
Exception, ScopedCycleException, InaccessibleAreaException).

178 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

12.2 Level Considerations

The support for exceptions is the same for all levels. A method annotated with a
particular compliance level shall neither declare nor throw exceptions which have a
higher compliance level.

12.3 API

The classes Error and Exception in java.lang provide the same constructors and meth-
ods in SCJ and in standard Java. The class Throwable in java.lang provides the same
constructors in SCJ and in standard Java; the available methods are restricted in SCJ
as described below.

12.3.1 Class java.lang.Error

Declaration

@SCJAllowed
public class Error extends Throwable implements Serializable

Constructors

@Allocate({CURRENT})
@BlockFree
@SCJAllowed
public Error()

Invokes System.captureStackBacktrace(this) to save the back trace associated with
the current thread.

@Allocate({CURRENT})
@BlockFree
@MemoryAreaEncloses(inner = {”this”}, outer = {”message”})
@SCJAllowed
public Error(String message)

Invokes System.captureStackBacktrace(this) to save the back trace associated with
the current thread.

@Allocate({CURRENT})
@BlockFree
@MemoryAreaEncloses(inner = {”this”, ”this”}, outer = {”message”, ”cause”})
@SCJAllowed
public Error(String message, Throwable cause)

Does not invoke System.captureStackBacktrace(this) so as to not overwrite the back-
trace associated with cause.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

179

Safety Critical Specification for Java

@Allocate({CURRENT})
@BlockFree
@MemoryAreaEncloses(inner = {”this”}, outer = {”cause”})
@SCJAllowed
public Error(Throwable cause)

Does not invoke System.captureStackBacktrace(this) so as to not overwrite the back-
trace associated with cause.

12.3.2 Class java.lang.Exception

Declaration

@SCJAllowed
public class Exception extends Throwable implements Serializable

Constructors

@Allocate({CURRENT})
@BlockFree
@SCJAllowed
public Exception()

Invokes System.captureStackBacktrace(this) to save the back trace associated with
the current thread.

@Allocate({CURRENT})
@BlockFree
@MemoryAreaEncloses(inner = {”this”}, outer = {”message”})
@SCJAllowed
public Exception(String message)

Invokes System.captureStackBacktrace(this) to save the back trace associated with
the current thread.

@Allocate({CURRENT})
@BlockFree
@MemoryAreaEncloses(inner = {”this”, ”this”}, outer = {”message”, ”cause”})
@SCJAllowed
public Exception(String message, Throwable cause)

Does not invoke System.captureStackBacktrace(this) so as to not overwrite the back-
trace associated with cause.

@Allocate({CURRENT})
@BlockFree
@MemoryAreaEncloses(inner = {”this”}, outer = {”cause”})
@SCJAllowed
public Exception(Throwable cause)

Does not invoke System.captureStackBacktrace(this) so as to not overwrite the back-
trace associated with cause.

180 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

12.3.3 Class java.lang.Throwable

Declaration

@SCJAllowed
public class Throwable implements Serializable

Constructors

@Allocate({CURRENT})
@BlockFree
@SCJAllowed
public Throwable()

Invokes System.captureStackBacktrace(this) to save the back trace associated with
the current thread.

@Allocate({CURRENT})
@BlockFree
@MemoryAreaEncloses(inner = {”this”}, outer = {”message”})
@SCJAllowed
public Throwable(String message)

Invokes System.captureStackBacktrace(this) to save the back trace associated with
the current thread.

@Allocate({CURRENT})
@BlockFree
@MemoryAreaEncloses(inner = {”this”, ”this”}, outer = {”message”, ”cause”})
@SCJAllowed
public Throwable(String message, Throwable cause)

Does not invoke System.captureStackBacktrace(this) so as to not overwrite the back-
trace associated with cause.

@Allocate({CURRENT})
@BlockFree
@MemoryAreaEncloses(inner = {”this”}, outer = {”cause”})
@SCJAllowed
public Throwable(Throwable cause)

Does not invoke System.captureStackBacktrace(this) so as to not overwrite the back-
trace associated with cause.

Methods

@BlockFree
@SCJAllowed
public String getMessage()

Performs no memory allocation. Returns a reference to the same String message that
was supplied as an argument to the constructor, or null if no message was specified
at construction time.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

181

Safety Critical Specification for Java

@BlockFree
@SCJAllowed
public Throwable getCause()

Performs no memory allocation. Returns a reference to the same Throwable that
was supplied as an argument to the constructor, or null if no cause was specified at
construction time.

@Allocate({CURRENT})
@BlockFree
@SCJAllowed
public StackTraceElement[] getStackTrace() throws IllegalStateException

Allocates a StackTraceElement array, StackTraceElement objects, and all internal
structure, including String objects referenced from each StackTraceElement to rep-
resent the stack backtrace information available for the exception that was most re-
cently associated with this Throwable object.

12.3.4 Class jaxax.safetycritical.ThrowBoundaryError

Declaration

@SCJAllowed
public class ThrowBoundaryError extends javax.realtime.ThrowBoundaryError

Constructors

@SCJAllowed
public ThrowBoundaryError()

Allocates an application- and implementation-defined amount of memory in the cur-
rent scope (to represent stack backtrace).

Methods

@SCJAllowed
public String getPropagatedMessage()

Returns Allocates and returns a String object and its backing store to represent the
message associated with the thrown exception that most recently crossed a scope
boundary within this thread.

@SCJAllowed
public StackTraceElement[] getPropagatedStackTrace()

Returns Allocates and returns a StackTraceElement array, StackTraceElement ob-
jects, and all internal structure, including String objects referenced from each Stack-
TraceElement to represent the stack backtrace information available for the exception
that was most recently associated with this ThrowBoundaryError object.

@SCJAllowed

182 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

public int getPropagatedStackTraceDepth()

Returns the number of valid elements stored within the StackTraceElement array to
be returned by getPropagatedStackTrace().

@SCJAllowed
public Class getPropagatedExceptionClass()

Returns a reference to the Class of the exception most recently thrown across a scope
boundary by the current thread.

12.4 Rationale

SCJ allows individual threads to set aside different buffer sizes for back trace infor-
mation. During debugging, we expect that developers may want to set aside large
buffers in order to maximize access to debugging information. However, during final
deployment, many systems would run with minimal buffer sizes in order to reduce
memory requirements and simplify the run-time behavior. Establishing the size of
the stack back trace buffer at Schedulable construction time relieves the SCJ im-
plementation from having to dynamically allocate memory when dealing with throw
boundary errors.

The required support for stack traces is intended to enable the implementation to use
a per-schedulable object reserved memory area of a predetermined size to hold the
stack trace of the most recently caught exception.

One acceptable approach for compliant SCJ implementations is the following.

• The constructor for java.lang.Throwable invokes Services.captureBackTrace()
to save the current thread’s stack back trace into the thread-local buffer config-
ured by this thread’s StorageParameters.

• Services.captureBackTrace() takes a single Throwable argument which is the
object with which to associate the back trace. captureBackTrace() saves into a
thread-local variable a reference to its Throwable, using some virtual machine
mechanism if necessary, to avoid throwing an IllegalAssignmentError. At a
subsequent invocation of Throwable.getStackTrace(), the infrastructure code
checks to make sure that the most recently captured stack back trace informa-
tion is associated with the Throwable being queried. If not, getStackTrace()
returns a reference to a zero-length array which has been preallocated within
immortal memory.

• Assuming that the current contents of the captured stack back trace information
is associated with the queried Throwable object, Throwable.getStackTrace()
allocates and initializes an array of StackTraceElement, along with the Stack-
TraceElement objects and the String objects referenced from the StackTrace-

8 July 2010 Version 0.76
Confidentiality: Public Distribution

183

Safety Critical Specification for Java

Element objects, based on the current contents of the thread-local stack back
trace buffer.

• In case application programs desire to throw preallocated exceptions, the appli-
cation program has the option to invoke Services.captureBackTrace() to over-
write the stack back trace information associated with the previously allocated
exception.

• The ThrowBoundaryError object that represents a thrown exception that crossed
its scope boundary need not copy any information from the thread-local stack
back trace buffer at the time it replaces the thrown exception. When a thrown
exception crosses its scope boundary, the thread-local ThrowBoundaryError
object that is thrown in its place captures the class of the originally thrown
exception and saves this as part of the ThrowBoundaryError object in support
of the ThrowBoundaryError.getPropagatedExceptionClass() method. Further-
more, the association for the thread-local stack back trace buffer is changed
from the Throwable that crossed its scope boundary to the ThrowBoundary-
Error.
If the current contents of the captured stack back trace information is asso-
ciated with the Class returned from this ThrowBoundaryError object’s get-
PropagatedExceptionClass() method, then the implementation of the Throw-
BoundaryError.getPropagatedExceptionClass() method copies the contents of
the stack back trace buffer at the time of its invocation. Otherwise, Throw-
BoundaryError.getPropagatedExceptionClass() returns a zero-element array.

• All of the exceptions thrown directly by the virtual machine (such as Arith-
meticException, OutOfMemoryError, StackOverflowError) are preallocated in
immortal memory. Immediately before throwing a preallocated exception, the
virtual machine infrastructure invokes Services.captureBackTrace() to over-
write the stack back trace associated within the current thread with the preal-
located exception.

SCJ requires exceptions to be immutable to ensure that repeated throwing of one
exception object does not cause a memory leak.

SCJ defines its own ThrowBoundaryError class to stress that it works differently
than the one in RTSJ and to provide some additional methods. The ThrowBoundary-
Error exception behaves as if it is pre-allocated on a per-schedulable object basis; this
ensures that its allocation upon detection of the boundary error cannot cause OutOf-
MemoryError to be thrown, that the exception is preserved even if scheduling occurs
while it is being propagated and that the exception cannot propagate out of its scope
and thus cause a new ThrowBoundaryError exception to be thrown.

184 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

12.5 Compatibility

12.5.1 RTSJ Compatibility Issues

The precise semantic of ThrowBoundaryError differs from RTSJ to SCJ. In RTSJ, a
new ThrowBoundaryError object is allocated in the enclosing memory area whenever
the currently thrown exception crosses its scope boundary. In SCJ, the ThrowBound-
aryError exception behaves as if it is pre-allocated on a per-schedulable object basis.

The SCJ allocation of ThrowBoundaryError in connection with a boundary error
prevents secondary boundary errors even if the exception is propagated through more
scopes. Existing RTSJ code which is sensitive to the origin of ThrowBoundaryError
will require changes.

The SCJ limitation on the message length and stack trace size will require existing
RTSJ code which algorithmically relies on the complete information to be changed.

12.5.2 General Java Compatibility Issues

The SCJ restriction that the stack trace is only available for the most recently caught
exception requires existing Java code which refers to older stack trace information to
be changed.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

185

Safety Critical Specification for Java

186 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Appendix A

Javadoc Description of Package
java.io
Package Contents Page

Interfaces
Closeable .189

Unless specified to the contrary, see JDK 1.

Flushable . 189

Unless specified to the contrary, see JDK 1.

Serializable .189

This interface is provided for compatibility with standard edition Java.

Classes
FilterOutputStream . 190

Unless specified to the contrary, see JDK 1.

IOException .191

...no description...

InputStream . 192

187

Safety Critical Specification for Java

Unless specified to the contrary, see JDK 1.

OutputStream . 193

Unless specified to the contrary, see JDK 1.

188 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

A.1 Interfaces

A.1.1 INTERFACE Closeable

Unless specified to the contrary, see JDK 1.6 documentation.

DECLARATION

@SCJAllowed
public interface Closeable

METHODS

@SCJAllowed
public void close()

A.1.2 INTERFACE Flushable

Unless specified to the contrary, see JDK 1.6 documentation.

DECLARATION

@SCJAllowed
public interface Flushable

METHODS

@SCJAllowed
public void flush()

A.1.3 INTERFACE Serializable

This interface is provided for compatibility with standard edition Java. How-
ever, JSR302 does not support serialization, so the presence or absence of this
interface has no visible effect within a JSR302 application.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

189

Safety Critical Specification for Java

DECLARATION

@SCJAllowed
public interface Serializable

A.2 Classes

A.2.1 CLASS FilterOutputStream

Unless specified to the contrary, see JDK 1.6 documentation.

DECLARATION

@SCJAllowed
public class FilterOutputStream

extends java.io.OutputStream

CONSTRUCTORS

@SCJAllowed
@BlockFree
@MemoryAreaEncloses(inner = {”this”}, outer = {”out”})
public FilterOutputStream(OutputStream out)

METHODS

@SCJAllowed
public void close()

@SCJAllowed
public void flush()

@SCJAllowed
public void write(byte []b)

190 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

@SCJAllowed
public void write(byte []b , int off , int len)

@SCJAllowed
public void write(int b)

A.2.2 CLASS IOException

DECLARATION

@SCJAllowed
public class IOException

implements java.io.Serializable
extends java.lang.Exception

CONSTRUCTORS

@BlockFree
@SCJAllowed
public IOException()

Shall not copy ”this” to any instance or static field.

Invokes System.captureStackBacktrace(this) to save the back trace associated
with the current thread.

@BlockFree
@MemoryAreaEncloses(inner = {”this”}, outer = {”msg”})
@SCJAllowed
public IOException(String msg)

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Ille-
galAssignmentError will be thrown.

Invokes System.captureStackBacktrace(this) to save the back trace associated
with the current thread.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

191

Safety Critical Specification for Java

A.2.3 CLASS InputStream

Unless specified to the contrary, see JDK 1.6 documentation.

DECLARATION

@SCJAllowed
public abstract class InputStream

implements java.io.Closeable
extends java.lang.Object

CONSTRUCTORS

@BlockFree
@SCJAllowed
public InputStream()

METHODS

@SCJAllowed
public int available()

@SCJAllowed
public void close()

@SCJAllowed
public void mark(int readlimit)

@SCJAllowed
public boolean markSupported()

@SCJAllowed
public int read(byte []b)

192 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

@SCJAllowed
public int read(byte []b , int off , int len)

@SCJAllowed
public abstract int read()

@SCJAllowed
public void reset()

@SCJAllowed
public long skip(long n)

A.2.4 CLASS OutputStream

Unless specified to the contrary, see JDK 1.6 documentation.

DECLARATION

@SCJAllowed
public abstract class OutputStream

implements java.io.Closeable, java.io.Flushable
extends java.lang.Object

CONSTRUCTORS

@BlockFree
@SCJAllowed
public OutputStream()

METHODS

@SCJAllowed
public void close()

8 July 2010 Version 0.76
Confidentiality: Public Distribution

193

Safety Critical Specification for Java

@SCJAllowed
public void flush()

@SCJAllowed
public void write(byte []b)

@SCJAllowed
public void write(byte []b , int off , int len)

@SCJAllowed
public abstract void write(int b)

194 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Appendix B

Javadoc Description of Package
java.lang
Package Contents Page

Interfaces
Appendable . 202

...no description...

CharSequence . 202

...no description...

Cloneable . 203

...no description...

Comparable . 204

...no description...

Deprecated . 204

...no description...

Override . 204

...no description...

Runnable . 205

195

Safety Critical Specification for Java

...no description...

SuppressWarnings . 205

...no description...

Thread.UncaughtExceptionHandler . 205

...no description...

Classes
ArithmeticException . 206

...no description...

ArrayIndexOutOfBoundsException . 207

...no description...

ArrayStoreException . 208

...no description...

AssertionError . 209

...no description...

BigDecimal . 211

...no description...

BigInteger .223

...no description...

Boolean . 232

...no description...

Byte . 235

196 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

...no description...

Character . 240

...no description...

Class . 247

...no description...

ClassCastException . 250

...no description...

ClassNotFoundException . 251

...no description...

CloneNotSupportedException . 252

...no description...

Double . 253

...no description...

Enum . 259

...no description...

Error . 261

...no description...

Exception . 263

...no description...

ExceptionInInitializerError . 264

...no description...

Float . 265

8 July 2010 Version 0.76
Confidentiality: Public Distribution

197

Safety Critical Specification for Java

...no description...

IllegalArgumentException . 271

...no description...

IllegalMonitorStateException . 273

...no description...

IllegalStateException . 274

...no description...

IllegalThreadStateException . 275

...no description...

IncompatibleClassChangeError . 276

...no description...

IndexOutOfBoundsException . 277

...no description...

InstantiationException . 278

...no description...

Integer . 279

...no description...

InternalError . 286

...no description...

InterruptedException . 287

...no description...

InvocationTargetException . 288

198 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

...no description...

Long . 289

...no description...

Math . 297

...no description...

NegativeArraySizeException . 307

...no description...

NullPointerException . 308

...no description...

Number . 309

...no description...

NumberFormatException . 311

...no description...

Object . 311

...no description...

OutOfMemoryError . 314

...no description...

RuntimeException . 315

...no description...

Short . 316

...no description...

StackOverflowError . 321

8 July 2010 Version 0.76
Confidentiality: Public Distribution

199

Safety Critical Specification for Java

...no description...

StackTraceElement . 322

...no description...

StrictMath . 324

...no description...

String . 334

...no description...

StringBuilder .346

...no description...

StringIndexOutOfBoundsException . 353

...no description...

System . 354

...no description...

Thread . 356

...no description...

Throwable . 359

...no description...

UnsatisfiedLinkError . 362

...no description...

UnsupportedOperationException . 363

...no description...

VirtualMachineError . 364

200 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

...no description...

Void . 365

...no description...

8 July 2010 Version 0.76
Confidentiality: Public Distribution

201

Safety Critical Specification for Java

B.1 Interfaces

B.1.1 INTERFACE Appendable

DECLARATION

@SCJAllowed
public interface Appendable

METHODS

@Allocate({javax.safetycritical.annotate.Allocate.Area.THIS})
@SCJAllowed
public Appendable append(CharSequence csq)

@Allocate({javax.safetycritical.annotate.Allocate.Area.THIS})
@SCJAllowed
public Appendable append(CharSequence csq , int start , int end)

@Allocate({javax.safetycritical.annotate.Allocate.Area.THIS})
@SCJAllowed
public Appendable append(char c)

B.1.2 INTERFACE CharSequence

DECLARATION

@SCJAllowed
public interface CharSequence

METHODS

@BlockFree
@SCJAllowed
public char charAt(int index)

202 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

Implementations of this method must not allocate memory and must not allow
”this” to escape the local variables.

@BlockFree
@SCJAllowed
public int length()

Implementations of this method must not allocate memory and must not allow
”this” to escape the local variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public CharSequence subSequence(int start , int end)

Implementations of this method may allocate a CharSequence object in the
scope of the caller to hold the result of this method.

This method shall not allow ”this” to escape the local variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public String toString()

Implementations of this method may allocate a String object in the scope of the
caller to hold the result of this method.

This method shall not allow ”this” to escape the local variables.

B.1.3 INTERFACE Cloneable

DECLARATION

@SCJAllowed
public interface Cloneable

Author
jjh

8 July 2010 Version 0.76
Confidentiality: Public Distribution

203

Safety Critical Specification for Java

B.1.4 INTERFACE Comparable

DECLARATION

@SCJAllowed
public interface Comparable

METHODS

@BlockFree
@SCJAllowed
public int compareTo(Object o)

The implementation of this method shall not allocate memory and shall not
allow ”this” or ”o” argument to escape local variables.

B.1.5 INTERFACE Deprecated

DECLARATION

@SCJAllowed
@Documented
@Retention(java.lang.annotation.RetentionPolicy.RUNTIME)
public interface Deprecated

implements java.lang.annotation.Annotation

B.1.6 INTERFACE Override

DECLARATION

@Documented
@Retention(java.lang.annotation.RetentionPolicy.SOURCE)
@SCJAllowed
@Target({java.lang.annotation.ElementType.METHOD})
public interface Override

implements java.lang.annotation.Annotation

204 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

B.1.7 INTERFACE Runnable

DECLARATION

@SCJAllowed
public interface Runnable

METHODS

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT, javax.safetycritical.annotate.Allocate.Area.IMMORTAL,
javax.safetycritical.annotate.Allocate.Area.MISSION, javax.safetycritical.annotate.Allocate.Area.THIS,
javax.safetycritical.annotate.Allocate.Area.SCOPED})
@SCJAllowed
public void run()

The implementation of this method may, in general, perform allocations in
immortal memory.

B.1.8 INTERFACE SuppressWarnings

DECLARATION

@Retention(java.lang.annotation.RetentionPolicy.SOURCE)
@SCJAllowed
@Target({java.lang.annotation.ElementType.TYPE,
java.lang.annotation.ElementType.FIELD,
java.lang.annotation.ElementType.METHOD,
java.lang.annotation.ElementType.PARAMETER,
java.lang.annotation.ElementType.CONSTRUCTOR,
java.lang.annotation.ElementType.LOCAL VARIABLE})
public interface SuppressWarnings

implements java.lang.annotation.Annotation

B.1.9 INTERFACE Thread.UncaughtExceptionHandler

DECLARATION

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
public static interface Thread.UncaughtExceptionHandler

8 July 2010 Version 0.76
Confidentiality: Public Distribution

205

Safety Critical Specification for Java

METHODS

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
public void uncaughtException(Thread t , Throwable e)

@memory
Allocates no memory. Does not allow implicit argument this, or explit arguments t
and e to escape local variables.

B.2 Classes

B.2.1 CLASS ArithmeticException

DECLARATION

@SCJAllowed
public class ArithmeticException

implements java.io.Serializable
extends java.lang.RuntimeException

CONSTRUCTORS

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public ArithmeticException()

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@MemoryAreaEncloses(inner = {”this”}, outer = {”msg”})
@SCJAllowed
public ArithmeticException(String msg)

206 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Ille-
galAssignmentError will be thrown.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

B.2.2 CLASS ArrayIndexOutOfBoundsException

DECLARATION

@SCJAllowed
public class ArrayIndexOutOfBoundsException

implements java.io.Serializable
extends java.lang.IndexOutOfBoundsException

CONSTRUCTORS

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public ArrayIndexOutOfBoundsException()

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public ArrayIndexOutOfBoundsException(int index)

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

8 July 2010 Version 0.76
Confidentiality: Public Distribution

207

Safety Critical Specification for Java

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@MemoryAreaEncloses(inner = {”this”}, outer = {”msg”})
@SCJAllowed
public ArrayIndexOutOfBoundsException(String msg)

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Ille-
galAssignmentError will be thrown.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

B.2.3 CLASS ArrayStoreException

DECLARATION

@SCJAllowed
public class ArrayStoreException

implements java.io.Serializable
extends java.lang.RuntimeException

CONSTRUCTORS

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public ArrayStoreException()

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@MemoryAreaEncloses(inner = {”this”}, outer = {”msg”})
@SCJAllowed
public ArrayStoreException(String msg)

208 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Ille-
galAssignmentError will be thrown.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

B.2.4 CLASS AssertionError

DECLARATION

@SCJAllowed
public class AssertionError

implements java.io.Serializable
extends java.lang.Error

CONSTRUCTORS

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public AssertionError()

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public AssertionError(boolean b)

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

8 July 2010 Version 0.76
Confidentiality: Public Distribution

209

Safety Critical Specification for Java

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public AssertionError(char c)

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public AssertionError(double d)

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public AssertionError(float f)

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public AssertionError(int i)

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

210 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public AssertionError(long l)

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@MemoryAreaEncloses(inner = {”this”}, outer = {”o”})
@SCJAllowed
public AssertionError(Object o)

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

B.2.5 CLASS BigDecimal

DECLARATION

@SCJAllowed
public class BigDecimal

implements java.lang.Comparable
extends java.lang.Number

FIELDS

@SCJAllowed
public static final BigDecimal ONE

@SCJAllowed
public static final int ROUND CELING

8 July 2010 Version 0.76
Confidentiality: Public Distribution

211

Safety Critical Specification for Java

@SCJAllowed
public static final int ROUND DOWN

@SCJAllowed
public static final int ROUND FLOOR

@SCJAllowed
public static final int ROUND HALF DOWN

@SCJAllowed
public static final int ROUND HALF EVEN

@SCJAllowed
public static final int ROUND HALF UP

@SCJAllowed
public static final int ROUND UNNECESSARY

@SCJAllowed
public static final int ROUND UP

@SCJAllowed
public static final BigDecimal TEN

@SCJAllowed
public static final BigDecimal ZERO

CONSTRUCTORS

@Allocate({javax.safetycritical.annotate.Allocate.Area.THIS})
@BlockFree

212 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

@SCJAllowed
public BigDecimal(BigInteger val)

Does not allow ”this” or ”val” to escape local variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.THIS})
@BlockFree
@SCJAllowed
public BigDecimal(BigInteger val , int scale)

Does not allow ”this” or ”val” to escape local variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.THIS})
@BlockFree
@SCJAllowed
public BigDecimal(char []in)

Does not allow ”this” or ”in” to escape local variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.THIS})
@BlockFree
@SCJAllowed
public BigDecimal(char []in , int offset , int len)

Does not allow ”this” or ”in” to escape local variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.THIS})
@BlockFree
@SCJAllowed
public BigDecimal(double val)

Does not allow ”this” to escape local variables.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

213

Safety Critical Specification for Java

@Allocate({javax.safetycritical.annotate.Allocate.Area.THIS})
@BlockFree
@SCJAllowed
public BigDecimal(int val)

Does not allow ”this” to escape local variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.THIS})
@BlockFree
@SCJAllowed
public BigDecimal(long val)

Does not allow ”this” to escape local variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.THIS})
@BlockFree
@SCJAllowed
public BigDecimal(String val)

Does not allow ”this” or ”val” to escape local variables.

METHODS

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public BigDecimal abs()

Does not allow ”this” to escape local variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public BigDecimal add(BigDecimal val)

214 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public byte byteValueExact()

Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public int compareTo(BigDecimal val)

Does not allow ”this” or ”val” to escape local variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public BigDecimal divide(BigDecimal val)

Does not allow ”this” to escape local variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public BigDecimal [] divideAndRemainder(BigDecimal val)

Does not allow ”this” to escape local variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public BigDecimal [] divideToIntegralValue(BigDecimal val)

8 July 2010 Version 0.76
Confidentiality: Public Distribution

215

Safety Critical Specification for Java

Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public double doubleValue(BigDecimal val)

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public boolean equals(Object x)

Does not allow ”this” or ”x” to escape local variables.

@BlockFree
@SCJAllowed
public float floatValue(BigDecimal val)

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public int hashCode()

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public int intValue()

Allocates no memory. Does not allow ”this” to escape local variables.

216 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

@BlockFree
@SCJAllowed
public int intValueExact()

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public long longValue()

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public int longValueExact()

Allocates no memory. Does not allow ”this” to escape local variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public BigDecimal max(BigDecimal val)

Does not allow ”this” or ”max” to escape local variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public BigDecimal min(BigDecimal val)

Does not allow ”this” or ”val” to escape local variables.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

217

Safety Critical Specification for Java

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public BigDecimal movePointLeft(int n)

Does not allow ”this” to escape local variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public BigDecimal movePointRight(int n)

Does not allow ”this” to escape local variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public BigDecimal multiply(BigDecimal val)

Does not allow ”this” or ”val” to escape local variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public BigDecimal negate()

Does not allow ”this” to escape local variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public BigDecimal plus()

Does not allow ”this” to escape local variables.

218 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public BigDecimal pow(int exponent)

Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public int precision()

Allocates no memory. Does not allow ”this” to escape local variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public BigDecimal remainder(BigDecimal val)

Does not allow ”this” or ”val” to escape local variables.

@BlockFree
@SCJAllowed
public int scale()

Allocates no memory. Does not allow ”this” to escape local variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public BigDecimal scaleByPowerOfTen(int n)

Does not allow ”this” to escape local variables.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

219

Safety Critical Specification for Java

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public BigDecimal setScale(int newScale , int roundingMode)

Does not allow ”this” to escape local variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public BigDecimal setScale(int newScale)

Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public short shortValueExact()

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public int signum()

Allocates no memory. Does not allow ”this” to escape local variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public BigDecimal stripTrailingZeros()

Does not allow ”this” to escape local variables.

220 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public BigDecimal subtract(BigDecimal val)

Does not allow ”this” or ”val” to escape local variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public BigInteger toBigInteger()

Does not allow ”this” or ”val” to escape local variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public String toEngineeringString()

Does not allow ”this” or ”val” to escape local variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public String toPlainString()

Does not allow ”this” or ”val” to escape local variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public String toString()

Does not allow ”this” to escape local variables.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

221

Safety Critical Specification for Java

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public BigDecimal ulp()

Does not allow ”this” to escape local variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public BigInteger unscaledValue()

Does not allow ”this” to escape local variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public static BigDecimal valueOf(long unscaledVal , int scale)

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public static BigDecimal valueOf(long val)

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public static BigDecimal valueOf(double val)

222 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

B.2.6 CLASS BigInteger

DECLARATION

@SCJAllowed
public class BigInteger

implements java.lang.Comparable
extends java.lang.Number

FIELDS

@SCJAllowed
public static final BigInteger ONE

@SCJAllowed
public static final BigInteger TEN

@SCJAllowed
public static final BigInteger ZERO

CONSTRUCTORS

@Allocate({javax.safetycritical.annotate.Allocate.Area.THIS})
@BlockFree
@SCJAllowed
public BigInteger(byte []val)

Does not allow ”this” to escape local variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.THIS})
@BlockFree
@SCJAllowed
public BigInteger(int signum , byte []magnitude)

Does not allow ”this” to escape local variables.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

223

Safety Critical Specification for Java

@Allocate({javax.safetycritical.annotate.Allocate.Area.THIS})
@BlockFree
@SCJAllowed
public BigInteger(String val)

Does not allow ”this” to escape local variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.THIS})
@BlockFree
@SCJAllowed
public BigInteger(String val , int radix)

Does not allow ”this” to escape local variables.

METHODS

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public BigInteger abs()

Does not allow ”this” to escape local variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public BigInteger add(BigInteger val)

Does not allow ”this” to escape local variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public BigInteger andNot(BigInteger val)

224 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public int bitCount()

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public int bitLength()

Allocates no memory. Does not allow ”this” to escape local variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public BigInteger clearBit(int n)

Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public int compareTo(BigInteger val)

Does not allow ”this” to escape local variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public BigInteger divide(BigInteger val)

Does not allow ”this” to escape local variables.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

225

Safety Critical Specification for Java

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public BigInteger [] divideAndRemainder(BigInteger val)

Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public double doubleValue(BigInteger val)

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public boolean equals(Object x)

Does not allow ”this” or ”x” to escape local variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public BigInteger flipBit(int n)

Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public float floatValue(BigInteger val)

Allocates no memory. Does not allow ”this” to escape local variables.

226 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public BigInteger gcd(BigInteger val)

Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public int getLowestSetBit()

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public int hashCode()

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public int intValue()

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public boolean isProbablePrime(int certainty)

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public long longValue()

8 July 2010 Version 0.76
Confidentiality: Public Distribution

227

Safety Critical Specification for Java

Allocates no memory. Does not allow ”this” to escape local variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public BigInteger max(BigInteger val)

Does not allow ”this” or ”max” to escape local variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public BigInteger min(BigInteger val)

Does not allow ”this” or ”val” to escape local variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public BigInteger mod(BigInteger val)

Does not allow ”this” or ”val” to escape local variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public BigInteger modInverse(BigInteger val)

Does not allow ”this” or ”val” to escape local variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public BigInteger modPow(BigInteger exponent , BigInteger m)

228 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

Does not allow ”this”, ”exponent”, or ”m” to escape local variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public BigInteger multiply(BigInteger val)

Does not allow ”this” or val to escape local variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public BigInteger negate()

Does not allow ”this” to escape local variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public BigInteger nextProbablePrime()

Does not allow ”this” to escape local variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public BigInteger not()

Does not allow ”this” to escape local variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public BigInteger or(BigInteger val)

8 July 2010 Version 0.76
Confidentiality: Public Distribution

229

Safety Critical Specification for Java

Does not allow ”this” or ”val” to escape local variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public BigInteger pow(int exponent)

Does not allow ”this” to escape local variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public BigInteger remainder(BigInteger val)

Does not allow ”this” or ”val” to escape local variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public BigInteger setBit(int n)

Does not allow ”this” to escape local variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public BigInteger shiftLeft(int n)

Does not allow ”this” to escape local variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public BigInteger shiftRight(int n)

230 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public int signum()

Allocates no memory. Does not allow ”this” to escape local variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public BigInteger subtract(BigInteger val)

Does not allow ”this” or ”val” to escape local variables.

@BlockFree
@SCJAllowed
public boolean testBit(int n)

Allocates no memory. Does not allow ”this” to escape local variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public BigInteger toByteArray()

Does not allow ”this” to escape local variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public String toString(int radix)

8 July 2010 Version 0.76
Confidentiality: Public Distribution

231

Safety Critical Specification for Java

Does not allow ”this” to escape local variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public String toString()

Does not allow ”this” to escape local variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public static BigInteger valueOf(long val)

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public BigInteger xor(BigInteger val)

Does not allow ”this” or ”val” to escape local variables.

B.2.7 CLASS Boolean

DECLARATION

@SCJAllowed
public class Boolean

implements java.lang.Comparable, java.io.Serializable
extends java.lang.Object

FIELDS

@SCJAllowed
public static final Boolean FALSE

232 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

@SCJAllowed
public static final Boolean TRUE

@SCJAllowed
public static final Class TYPE

CONSTRUCTORS

@BlockFree
@SCJAllowed
public Boolean(boolean v)

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public Boolean(String str)

Allocates no memory. Does not allow ”this” or ”str” argument to escape local
variables.

METHODS

@BlockFree
@SCJAllowed
public boolean booleanValue()

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public int compareTo(Boolean b)

8 July 2010 Version 0.76
Confidentiality: Public Distribution

233

Safety Critical Specification for Java

Allocates no memory. Does not allow ”this” or argument ”b” to escape local
variables.

@BlockFree
@Override
@SCJAllowed
public boolean equals(Object obj)

Allocates no memory. Does not allow ”this” or argument ”obj” to escape local
variables.

@BlockFree
@SCJAllowed
public static boolean getBoolean(String str)

Allocates no memory. Does not allow argument ”str” to escape local variables.

@BlockFree
@Override
@SCJAllowed
public int hashCode()

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public static boolean parseBoolean(String str)

Allocates no memory. Does not allow argument ”str” to escape local variables.

@BlockFree
@SCJAllowed
public static String toString(boolean value)

234 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

Allocates no memory. Returns a String literal which resides at the scope of the
Classloader that is responsible for loading the Boolean class.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@Override
@SCJAllowed
public String toString()

Does not allow ”this” to escape local variables. Allocates a String and associ-
ated internal ”structure” (e.g. char[]) in caller’s scope. (Note: this semantics is
desired for consistency with overridden implementation of Object.toString()).

@BlockFree
@SCJAllowed
public static Boolean valueOf(boolean b)

Allocates no memory. Returns a Boolean literal which resides at the scope of
the Classloader that is responsible for loading the Boolean class.

@BlockFree
@SCJAllowed
public static Boolean valueOf(String str)

Allocates no memory. Does not allow argument ”str” to escale local variables.
Returns a Boolean literal which resides at the scope of the Classloader that is
responsible for loading the Boolean class.

B.2.8 CLASS Byte

DECLARATION

@SCJAllowed
public class Byte

implements java.lang.Comparable, java.io.Serializable
extends java.lang.Number

8 July 2010 Version 0.76
Confidentiality: Public Distribution

235

Safety Critical Specification for Java

FIELDS

@SCJAllowed
public static final byte MAX VALUE

@SCJAllowed
public static final byte MIN VALUE

@SCJAllowed
public static final int SIZE

@SCJAllowed
public static final Class TYPE

CONSTRUCTORS

@BlockFree
@SCJAllowed
public Byte(byte val)

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public Byte(String str)

Allocates no memory. Does not allow ”this” or ”str” argument to escape local
variables.

METHODS

@BlockFree
@SCJAllowed
public byte byteValue()

236 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public int compareTo(Byte other)

Allocates no memory. Does not allow ”this” or ”other” argument to escape
local variables.

@BlockFree
@SCJAllowed
public static Byte decode(String str)

Does not allow ”str” argument to escape local variables. Allocates a Byte result
object in the caller’s scope.

@BlockFree
@SCJAllowed
public double doubleValue()

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public boolean equals(Object obj)

Allocates no memory. Does not allow ”this” or ”obj” argument to escape local
variables.

@BlockFree
@SCJAllowed
public float floatValue()

8 July 2010 Version 0.76
Confidentiality: Public Distribution

237

Safety Critical Specification for Java

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public int hashCode()

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public int intValue()

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public long longValue()

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public static byte parseByte(String str , int base)

Allocates no memory. Does not allow ”str” argument to escape local variables.

@BlockFree
@SCJAllowed
public static byte parseByte(String str)

Allocates no memory. Does not allow ”str” argument to escape local variables.

238 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

@BlockFree
@SCJAllowed
public short shortValue()

Allocates no memory. Does not allow ”this” to escape local variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public static String toString(byte v)

Allocates a String and associated internal ”structure” (e.g. char[]) in caller’s
scope.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public String toString()

Does not allow ”this” to escape local variables. Allocates a String and associ-
ated internal ”structure” (e.g. char[]) in caller’s scope. (Note: this semantics is
desired for consistency with overridden implementation of Object.toString()).

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public static Byte valueOf(String str , int base)

Does not allow ”str” argument to escape local variables. Allocates one Byte
object in the caller’s scope.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public static Byte valueOf(byte val)

8 July 2010 Version 0.76
Confidentiality: Public Distribution

239

Safety Critical Specification for Java

Allocates one Byte object in the caller’s scope.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public static Byte valueOf(String str)

Does not allow ”str” argument to escape local variables. Allocates one Byte
object in the caller’s scope.

B.2.9 CLASS Character

DECLARATION

@SCJAllowed
public final class Character

implements java.lang.Comparable, java.io.Serializable
extends java.lang.Object

FIELDS

@SCJAllowed
public static final byte COMBINING SPACING MARK

@SCJAllowed
public static final byte CONNECTOR PUNCTUATION

@SCJAllowed
public static final byte CONTROL

@SCJAllowed
public static final byte CURRENCY SYMBOL

240 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

@SCJAllowed
public static final byte DASH PUNCTUATION

@SCJAllowed
public static final byte DECIMAL DIGIT NUMBER

@SCJAllowed
public static final byte ENCLOSING MARK

@SCJAllowed
public static final byte END PUNCTUATION

@SCJAllowed
public static final byte FINAL QUOTE PUNCTUATION

@SCJAllowed
public static final byte FORMAT

@SCJAllowed
public static final byte INITIAL QUOTE PUNCTUATION

@SCJAllowed
public static final byte LETTER NUMBER

@SCJAllowed
public static final byte LINE SEPARATOR

@SCJAllowed
public static final byte LOWERCASE LETTER

8 July 2010 Version 0.76
Confidentiality: Public Distribution

241

Safety Critical Specification for Java

@SCJAllowed
public static final byte MATH SYMBOL

@SCJAllowed
public static final int MAX RADIX

@SCJAllowed
public static final char MAX VALUE

@SCJAllowed
public static final int MIN RADIX

@SCJAllowed
public static final char MIN VALUE

@SCJAllowed
public static final byte MODIFIER LETTER

@SCJAllowed
public static final byte MODIFIER SYMBOL

@SCJAllowed
public static final byte NON SPACING MARK

@SCJAllowed
public static final byte OTHER LETTER

@SCJAllowed
public static final byte OTHER NUMBER

242 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

@SCJAllowed
public static final byte OTHER PUNCTUATION

@SCJAllowed
public static final byte OTHER SYMBOL

@SCJAllowed
public static final byte PARAGRAPH SEPARATOR

@SCJAllowed
public static final byte PRIVATE USE

@SCJAllowed
public static final int SIZE

@SCJAllowed
public static final byte SPACE SEPARATOR

@SCJAllowed
public static final byte START PUNCTUATION

@SCJAllowed
public static final byte SURROGATE

@SCJAllowed
public static final byte TITLECASE LETTER

@SCJAllowed
public static final Class TYPE

8 July 2010 Version 0.76
Confidentiality: Public Distribution

243

Safety Critical Specification for Java

@SCJAllowed
public static final byte UNASSIGNED

@SCJAllowed
public static final byte UPPERCASE LETTER

CONSTRUCTORS

@BlockFree
@SCJAllowed
public Character(char v)

Allocates no memory. Does not allow ”this” to escape local variables.

METHODS

@BlockFree
@SCJAllowed
public char charValue()

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public int compareTo(Character another character)

Allocates no memory. Does not allow ”this” or ”another character” argument
to escape local variables.

@BlockFree
@SCJAllowed
public static int digit(char ch , int radix)

Allocates no memory.

244 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

@BlockFree
@SCJAllowed
public boolean equals(Object obj)

Allocates no memory. Does not allow ”this” or ”obj” argument to escape local
variables.

@BlockFree
@SCJAllowed
public static int getType(char ch)

Allocates no memory.

@BlockFree
@SCJAllowed
public int hashCode()

@BlockFree
@SCJAllowed
public static boolean isLetter(char ch)

Allocates no memory.

@BlockFree
@SCJAllowed
public static boolean isLetterOrDigit(char ch)

Allocates no memory.

@BlockFree
@SCJAllowed
public static boolean isLowerCase(char ch)

8 July 2010 Version 0.76
Confidentiality: Public Distribution

245

Safety Critical Specification for Java

Allocates no memory.

@BlockFree
@SCJAllowed
public static boolean isSpaceChar(char ch)

Allocates no memory.

@BlockFree
@SCJAllowed
public static boolean isUpperCase(char ch)

Allocates no memory.

@BlockFree
@SCJAllowed
public static boolean isWhitespace(char ch)

Allocates no memory.

@BlockFree
@SCJAllowed
public static char toLowerCase(char ch)

Allocates no memory.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public static String toString(char c)

Allocates a String and associated internal ”structure” (e.g. char[]) in caller’s
scope.

246 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public String toString()

Does not allow ”this” to escape local variables. Allocates a String and associ-
ated internal ”structure” (e.g. char[]) in caller’s scope. (Note: this semantics is
desired for consistency with overridden implementation of Object.toString()).

@BlockFree
@SCJAllowed
public static char toUpperCase(char ch)

Allocates no memory.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public static Character valueOf(char c)

Allocates a Character object in caller’s scope.

B.2.10 CLASS Class

DECLARATION

@SCJAllowed
public final class Class

implements java.io.Serializable
extends java.lang.Object

METHODS

@BlockFree
@SCJAllowed
public boolean desiredAssertionStatus()

8 July 2010 Version 0.76
Confidentiality: Public Distribution

247

Safety Critical Specification for Java

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public Class getComponentType()

Allocates no memory. Does not allow ”this” to escape local variables.

Returns a reference to a previously allocated Class object, which resides in the
scope of its ClassLoader.

@BlockFree
@SCJAllowed
public Class getDeclaringClass()

Allocates no memory. Returns a reference to a previously existing Class, which
resides in the scope of its ClassLoader.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@MemoryAreaEncloses(inner = {”@result”}, outer = {”this.getClass().getClassLoader()”})
@SCJAllowed
public Object [] getEnumConstants()

Does not alow ”this” to escape local variables.

Allocates an array of T in the caller’s scope. The allocated array holds ref-
erences to previously allocated T objects. Thus, the existing T objects must
reside in a scope that encloses the caller’s scope. Note that the existing T ob-
jects reside in the scope of the corresponding ClassLoader.

@BlockFree
@SCJAllowed
public String getName()

248 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

Allocates no memory. Does not allow ”this” to escape local variables.

Returns a reference to a previously allocated String object, which resides in the
scope of this Class’s ClassLoader or in some enclosing scope.

@BlockFree
@SCJAllowed
public Class getSuperclass()

Allocates no memory. Does not allow ”this” to escape local variables.

Returns a reference to a previously allocated Class object, which resides in the
scope of its ClassLoader.

@BlockFree
@SCJAllowed
public boolean isAnnotation()

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public boolean isArray()

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public boolean isAssignableFrom(Class c)

Allocates no memory. Does not allow ”this” or argument ”c” to escape local
variables.

@BlockFree
@SCJAllowed
public boolean isEnum()

8 July 2010 Version 0.76
Confidentiality: Public Distribution

249

Safety Critical Specification for Java

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public boolean isInstance(Object o)

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public boolean isInterface()

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public boolean isPrimitive()

Allocates no memory. Does not allow ”this” to escape local variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public String toString()

Does not allow ”this” to escape local variables. Allocates a String and associ-
ated internal ”structure” (e.g. char[]) in caller’s scope. (Note: this semantics is
desired for consistency with overridden implementation of Object.toString()).

B.2.11 CLASS ClassCastException

DECLARATION

@SCJAllowed
public class ClassCastException

implements java.io.Serializable
extends java.lang.RuntimeException

250 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

CONSTRUCTORS

@SCJAllowed
public ClassCastException()

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@MemoryAreaEncloses(inner = {”this”}, outer = {”msg”})
@SCJAllowed
public ClassCastException(String msg)

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Ille-
galAssignmentError will be thrown.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

B.2.12 CLASS ClassNotFoundException

DECLARATION

@SCJAllowed
public class ClassNotFoundException

implements java.io.Serializable
extends java.lang.Exception

CONSTRUCTORS

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public ClassNotFoundException()

8 July 2010 Version 0.76
Confidentiality: Public Distribution

251

Safety Critical Specification for Java

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@MemoryAreaEncloses(inner = {”this”}, outer = {”msg”})
@SCJAllowed
public ClassNotFoundException(String msg)

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Ille-
galAssignmentError will be thrown.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

B.2.13 CLASS CloneNotSupportedException

DECLARATION

@SCJAllowed
public class CloneNotSupportedException

implements java.io.Serializable
extends java.lang.Exception

CONSTRUCTORS

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public CloneNotSupportedException()

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

252 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@MemoryAreaEncloses(inner = {”this”}, outer = {”msg”})
@SCJAllowed
public CloneNotSupportedException(String msg)

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Ille-
galAssignmentError will be thrown.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

B.2.14 CLASS Double

DECLARATION

@SCJAllowed
public class Double

implements java.lang.Comparable, java.io.Serializable
extends java.lang.Number

FIELDS

@SCJAllowed
public static final double MAX EXPONENT

@SCJAllowed
public static final double MAX VALUE

@SCJAllowed
public static final double MIN EXPONENT

@SCJAllowed
public static final double MIN NORMAL

8 July 2010 Version 0.76
Confidentiality: Public Distribution

253

Safety Critical Specification for Java

@SCJAllowed
public static final double MIN VALUE

@SCJAllowed
public static final double NEGATIVE INFINITY

@SCJAllowed
public static final double NaN

@SCJAllowed
public static final double POSITIVE INFINITY

@SCJAllowed
public static final int SIZE

@SCJAllowed
public static final Class TYPE

CONSTRUCTORS

@BlockFree
@SCJAllowed
public Double(double val)

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public Double(String str)

Allocates no memory. Does not allow ”this” or ”str” argument to escape local
variables.

254 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

METHODS

@BlockFree
@SCJAllowed
public byte byteValue()

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public static int compare(double value1 , double value2)

Allocates no memory.

@BlockFree
@SCJAllowed
public int compareTo(Double other)

Allocates no memory. Does not allow ”this” or ”other” argument to escape
local variables.

@BlockFree
@SCJAllowed
public static long doubleToLongBits(double v)

Allocates no memory.

@BlockFree
@SCJAllowed
public static native long doubleToRawLongBits(double val)

Allocates no memory.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

255

Safety Critical Specification for Java

@BlockFree
@SCJAllowed
public double doubleValue()

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public boolean equals(Object obj)

Allocates no memory. Does not allow ”this” or ”obj” argument to escape local
variables.

@BlockFree
@SCJAllowed
public float floatValue()

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public int hashCode()

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public int intValue()

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public static boolean isInfinite(double v)

256 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

Allocates no memory.

@BlockFree
@SCJAllowed
public boolean isInfinite()

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public static boolean isNaN(double v)

Allocates no memory.

@BlockFree
@SCJAllowed
public boolean isNaN()

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public static double longBitsToDouble(long v)

Allocates no memory.

@BlockFree
@SCJAllowed
public long longValue()

Allocates no memory. Does not allow ”this” to escape local variables.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

257

Safety Critical Specification for Java

@BlockFree
@SCJAllowed
public static double parseDouble(String s)

Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public short shortValue()

Allocates no memory. Does not allow ”this” to escape local variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public static String toString(double v)

Allocates a String and associated internal ”structure” (e.g. char[]) in caller’s
scope.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public String toString()

Does not allow ”this” to escape local variables. Allocates a String and associ-
ated internal ”structure” (e.g. char[]) in caller’s scope. (Note: this semantics is
desired for consistency with overridden implementation of Object.toString()).

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public static Double valueOf(String str)

258 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

Does not allow ”this” to escape local variables. Allocates a Double in caller’s
scope.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public static Double valueOf(double val)

Allocates a Double in caller’s scope.

B.2.15 CLASS Enum

DECLARATION

@SCJAllowed
public abstract class Enum

implements java.lang.Comparable, java.io.Serializable
extends java.lang.Object

CONSTRUCTORS

@BlockFree
@MemoryAreaEncloses(inner = {”this”}, outer = {”name”})
@SCJAllowed
protected Enum(String name , int ordinal)

Allocates no memory. Does not allow ”this” to escape local variables. Requires
that ”name” argument reside in a scope that enclosees the scope of ”this”.

METHODS

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
protected final Object clone()

8 July 2010 Version 0.76
Confidentiality: Public Distribution

259

Safety Critical Specification for Java

Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public final int compareTo(Enum o)

Allocates no memory. Does not allow ”this” or ”o” argument to escape local
variables.

@BlockFree
@SCJAllowed
public final boolean equals(Object o)

Allocates no memory. Does not allow ”this” or ”o” argument to escape local
variables.

@BlockFree
@SCJAllowed
public final Class getDeclaringClass()

Allocates no memory. Returns a reference to a previously allocated Class,
which resides in its ClassLoader scope.

@BlockFree
@SCJAllowed
public final int hashCode()

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public final String name()

260 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

Allocates no memory. Returns a reference to this enumeration constant’s pre-
viously allocated String name. The String resides in the corresponding Class-
Loader scope.

@BlockFree
@SCJAllowed
public final int ordinal()

Allocates no memory. Does not allow ”this” to escape local variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public String toString()

Does not allow ”this” to escape local variables. Allocates a String and associ-
ated internal ”structure” (e.g. char[]) in caller’s scope. (Note: this semantics is
desired for consistency with overridden implementation of Object.toString()).

B.2.16 CLASS Error

DECLARATION

@SCJAllowed
public class Error

implements java.io.Serializable
extends java.lang.Throwable

CONSTRUCTORS

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public Error()

8 July 2010 Version 0.76
Confidentiality: Public Distribution

261

Safety Critical Specification for Java

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@MemoryAreaEncloses(inner = {”this”}, outer = {”msg”})
@SCJAllowed
public Error(String msg)

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Ille-
galAssignmentError will be thrown.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@MemoryAreaEncloses(inner = {”this”, ”this”}, outer = {”msg”, ”t”})
@SCJAllowed
public Error(String msg , Throwable t)

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Ille-
galAssignmentError will be thrown.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@MemoryAreaEncloses(inner = {”this”}, outer = {”t”})
@SCJAllowed
public Error(Throwable t)

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Ille-
galAssignmentError will be thrown.

262 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

B.2.17 CLASS Exception

DECLARATION

@SCJAllowed
public class Exception

implements java.io.Serializable
extends java.lang.Throwable

CONSTRUCTORS

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public Exception()

Shall not copy ”this” to any instance or static field.

Invokes System.captureStackBacktrace(this) to save the back trace associated
with the current thread.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@MemoryAreaEncloses(inner = {”this”}, outer = {”msg”})
@SCJAllowed
public Exception(String msg)

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Ille-
galAssignmentError will be thrown.

Invokes System.captureStackBacktrace(this) to save the back trace associated
with the current thread.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

263

Safety Critical Specification for Java

@BlockFree
@MemoryAreaEncloses(inner = {”this”}, outer = {”cause”})
@SCJAllowed
public Exception(Throwable cause)

Shall not copy ”this” to any instance or static field.

Does not invoke System.captureStackBacktrace(this) so as to not overwrite the
backtrace associated with cause.

@BlockFree
@MemoryAreaEncloses(inner = {”this”, ”this”}, outer = {”cause”, ”msg”})
@SCJAllowed
public Exception(String msg , Throwable cause)

Shall not copy ”this” to any instance or static field.

Does not invoke System.captureStackBacktrace(this) so as to not overwrite the
backtrace associated with cause.

B.2.18 CLASS ExceptionInInitializerError

DECLARATION

@SCJAllowed
public class ExceptionInInitializerError

extends java.lang.Exception

CONSTRUCTORS

@SCJAllowed
public ExceptionInInitializerError()

@SCJAllowed
public ExceptionInInitializerError(String msg)

264 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

@SCJAllowed
public ExceptionInInitializerError(Throwable cause)

@SCJAllowed
public ExceptionInInitializerError(String msg , Throwable cause)

B.2.19 CLASS Float

DECLARATION

@SCJAllowed
public class Float

implements java.lang.Comparable, java.io.Serializable
extends java.lang.Number

FIELDS

@SCJAllowed
public static final float MAX EXPONENT

@SCJAllowed
public static final float MAX VALUE

@SCJAllowed
public static final float MIN EXPONENT

@SCJAllowed
public static final float MIN NORMAL

@SCJAllowed
public static final float MIN VALUE

8 July 2010 Version 0.76
Confidentiality: Public Distribution

265

Safety Critical Specification for Java

@SCJAllowed
public static final float NEGATIVE INFINITY

@SCJAllowed
public static final float NaN

@SCJAllowed
public static final float POSITIVE INFINITY

@SCJAllowed
public static final int SIZE

@SCJAllowed
public static final Class TYPE

CONSTRUCTORS

@BlockFree
@SCJAllowed
public Float(float val)

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public Float(double val)

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public Float(String str)

266 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

Allocates no memory. Does not allow ”this” or ”str” argument to escape local
variables.

METHODS

@BlockFree
@SCJAllowed
public byte byteValue()

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public static int compare(float value1 , float value2)

Allocates no memory.

@BlockFree
@SCJAllowed
public int compareTo(Float other)

Allocates no memory. Does not allow ”this” or ”other” argument to escape
local variables.

@BlockFree
@SCJAllowed
public double doubleValue()

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public boolean equals(Object obj)

8 July 2010 Version 0.76
Confidentiality: Public Distribution

267

Safety Critical Specification for Java

Allocates no memory. Does not allow ”this” or ”obj” argument to escape local
variables.

@BlockFree
@SCJAllowed
public static int floatToIntBits(float v)

Allocates no memory.

@BlockFree
@SCJAllowed
public static int floatToRawIntBits(float v)

Allocates no memory.

@BlockFree
@SCJAllowed
public float floatValue()

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public int hashCode()

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public static float intBitsToFloat(int v)

Allocates no memory.

268 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

@BlockFree
@SCJAllowed
public int intValue()

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public static boolean isInfinite(float v)

Allocates no memory.

@BlockFree
@SCJAllowed
public boolean isInfinite()

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public static boolean isNaN(float v)

Allocates no memory.

@BlockFree
@SCJAllowed
public boolean isNaN()

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public long longValue()

8 July 2010 Version 0.76
Confidentiality: Public Distribution

269

Safety Critical Specification for Java

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public static float parseFloat(String s)

Allocates no memory. Does not allow ”s” argument to escape local variables.

@BlockFree
@SCJAllowed
public short shortValue()

Allocates no memory. Does not allow ”this” to escape local variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public static String toHexString(float v)

Allocates a String and associated internal ”structure” (e.g. char[]) in caller’s
scope.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public static String toString(float v)

Allocates a String and associated internal ”structure” (e.g. char[]) in caller’s
scope.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public String toString()

270 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

Does not allow ”this” to escape local variables. Allocates a String and associ-
ated internal ”structure” (e.g. char[]) in caller’s scope. (Note: this semantics is
desired for consistency with overridden implementation of Object.toString()).

@BlockFree
@SCJAllowed
public static Float valueOf(String str)

Does not allow ”this” to escape local variables. Allocates a Float in caller’s
scope.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public static Float valueOf(float val)

Allocates a Float in caller’s scope.

B.2.20 CLASS IllegalArgumentException

DECLARATION

@SCJAllowed
public class IllegalArgumentException

implements java.io.Serializable
extends java.lang.RuntimeException

CONSTRUCTORS

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public IllegalArgumentException()

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

8 July 2010 Version 0.76
Confidentiality: Public Distribution

271

Safety Critical Specification for Java

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@MemoryAreaEncloses(inner = {”this”}, outer = {”msg”})
@SCJAllowed
public IllegalArgumentException(String msg)

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Ille-
galAssignmentError will be thrown.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@MemoryAreaEncloses(inner = {”this”, ”this”}, outer = {”msg”, ”t”})
@SCJAllowed
public IllegalArgumentException(String msg , Throwable t)

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Ille-
galAssignmentError will be thrown.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@MemoryAreaEncloses(inner = {”this”}, outer = {”t”})
@SCJAllowed
public IllegalArgumentException(Throwable t)

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Ille-
galAssignmentError will be thrown.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

272 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

B.2.21 CLASS IllegalMonitorStateException

DECLARATION

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
public class IllegalMonitorStateException

implements java.io.Serializable
extends java.lang.RuntimeException

CONSTRUCTORS

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public IllegalMonitorStateException()

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@MemoryAreaEncloses(inner = {”this”}, outer = {”msg”})
@SCJAllowed
public IllegalMonitorStateException(String msg)

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Ille-
galAssignmentError will be thrown.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@MemoryAreaEncloses(inner = {”this”, ”this”}, outer = {”msg”, ”t”})
@SCJAllowed
public IllegalMonitorStateException(String msg , Throwable t)

8 July 2010 Version 0.76
Confidentiality: Public Distribution

273

Safety Critical Specification for Java

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Ille-
galAssignmentError will be thrown.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@MemoryAreaEncloses(inner = {”this”}, outer = {”t”})
@SCJAllowed
public IllegalMonitorStateException(Throwable t)

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Ille-
galAssignmentError will be thrown.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

B.2.22 CLASS IllegalStateException

DECLARATION

@SCJAllowed
public class IllegalStateException

implements java.io.Serializable
extends java.lang.RuntimeException

CONSTRUCTORS

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public IllegalStateException()

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

274 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@MemoryAreaEncloses(inner = {”this”}, outer = {”msg”})
@SCJAllowed
public IllegalStateException(String msg)

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Ille-
galAssignmentError will be thrown.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

B.2.23 CLASS IllegalThreadStateException

DECLARATION

@SCJAllowed
public class IllegalThreadStateException

implements java.io.Serializable
extends java.lang.RuntimeException

CONSTRUCTORS

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public IllegalThreadStateException()

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@MemoryAreaEncloses(inner = {”this”}, outer = {”msg”})
@SCJAllowed
public IllegalThreadStateException(String description)

8 July 2010 Version 0.76
Confidentiality: Public Distribution

275

Safety Critical Specification for Java

B.2.24 CLASS IncompatibleClassChangeError

DECLARATION

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
public class IncompatibleClassChangeError

implements java.io.Serializable
extends java.lang.RuntimeException

CONSTRUCTORS

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public IncompatibleClassChangeError()

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@MemoryAreaEncloses(inner = {”this”}, outer = {”msg”})
@SCJAllowed
public IncompatibleClassChangeError(String msg)

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Ille-
galAssignmentError will be thrown.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

276 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

B.2.25 CLASS IndexOutOfBoundsException

DECLARATION

@SCJAllowed
public class IndexOutOfBoundsException

implements java.io.Serializable
extends java.lang.RuntimeException

CONSTRUCTORS

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public IndexOutOfBoundsException()

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@MemoryAreaEncloses(inner = {”this”}, outer = {”msg”})
@SCJAllowed
public IndexOutOfBoundsException(String msg)

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Ille-
galAssignmentError will be thrown.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

8 July 2010 Version 0.76
Confidentiality: Public Distribution

277

Safety Critical Specification for Java

B.2.26 CLASS InstantiationException

DECLARATION

@SCJAllowed
public class InstantiationException

implements java.io.Serializable
extends java.lang.Exception

CONSTRUCTORS

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public InstantiationException()

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@MemoryAreaEncloses(inner = {”this”}, outer = {”msg”})
@SCJAllowed
public InstantiationException(String msg)

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Ille-
galAssignmentError will be thrown.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

278 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

B.2.27 CLASS Integer

DECLARATION

@SCJAllowed
public class Integer

implements java.lang.Comparable, java.io.Serializable
extends java.lang.Number

FIELDS

@SCJAllowed
public static final int MAX VALUE

@SCJAllowed
public static final int MIN VALUE

@SCJAllowed
public static final int SIZE

@SCJAllowed
public static final Class TYPE

CONSTRUCTORS

@BlockFree
@SCJAllowed
public Integer(int val)

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public Integer(String str)

8 July 2010 Version 0.76
Confidentiality: Public Distribution

279

Safety Critical Specification for Java

Allocates no memory. Does not allow ”this” or ”str” argument to escape local
variables.

METHODS

@BlockFree
@SCJAllowed
public static int bitCount(int i)

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public byte byteValue()

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public int compareTo(Integer other)

Allocates no memory. Does not allow ”this” or ”other” argument to escape
local variables.

@BlockFree
@SCJAllowed
public static Integer decode(String str)

Does not allow ”str” argument to escape local variables. Allocates an Integer
in caller’s scope.

@BlockFree
@SCJAllowed
public double doubleValue()

280 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

Allocates no memory.

@BlockFree
@SCJAllowed
public boolean equals(Object obj)

Allocates no memory. Does not allow ”this” or ”obj” argument to escape local
variables.

@BlockFree
@SCJAllowed
public float floatValue()

Allocates no memory. Does not allow ”this” to escape local variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public static Integer getInteger(String str , Integer v)

Does not allow ”str” or ”v” arguments to escape local variables. Allocates
Integer in caller’s scope.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public static Integer getInteger(String str , int v)

Does not allow ”str” argument to escape local variables. Allocates Integer in
caller’s scope.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public static Integer getInteger(String str)

8 July 2010 Version 0.76
Confidentiality: Public Distribution

281

Safety Critical Specification for Java

Does not allow ”str” argument to escape local variables. Allocates Integer in
caller’s scope.

@BlockFree
@SCJAllowed
public int hashCode()

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public static int highestOneBit(int i)

Allocates no memory.

@BlockFree
@SCJAllowed
public int intValue()

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public long longValue()

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public static int lowestOneBit(int i)

Allocates no memory.

282 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

@BlockFree
@SCJAllowed
public static int numberOfLeadingZeros(int i)

Allocates no memory.

@BlockFree
@SCJAllowed
public static int parseInt(String str , int radix)

Allocates no memory. Does not allow ”str” argument to escape local variables.

@BlockFree
@SCJAllowed
public static int parseInt(String str)

Allocates no memory. Does not allow ”str” argument to escape local variables.

@BlockFree
@SCJAllowed
public static int reverse(int i)

Allocates no memory.

@BlockFree
@SCJAllowed
public static int reverseBytes(int i)

Allocates no memory.

@BlockFree
@SCJAllowed
public static int rotateLeft(int i , int distance)

8 July 2010 Version 0.76
Confidentiality: Public Distribution

283

Safety Critical Specification for Java

Allocates no memory.

@BlockFree
@SCJAllowed
public static int rotateRight(int i , int distance)

Allocates no memory.

@BlockFree
@SCJAllowed
public short shortValue()

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public static int sigNum(int i)

Allocates no memory.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public static String toBinaryString(int v)

Does not allow ”this” to escape local variables. Allocates a String and associ-
ated internal ”structure” (e.g. char[]) in caller’s scope.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public static String toHexString(int v)

284 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

Does not allow ”this” to escape local variables. Allocates a String and associ-
ated internal ”structure” (e.g. char[]) in caller’s scope.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public static String toOctalString(int v)

Does not allow ”this” to escape local variables. Allocates a String and associ-
ated internal ”structure” (e.g. char[]) in caller’s scope.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public static String toString(int v)

Allocates a String and associated internal ”structure” (e.g. char[]) in caller’s
scope.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public static String toString(int v , int base)

Does not allow ”this” to escape local variables. Allocates a String and associ-
ated internal ”structure” (e.g. char[]) in caller’s scope.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public String toString()

Does not allow ”this” to escape local variables. Allocates a String and associ-
ated internal ”structure” (e.g. char[]) in caller’s scope. (Note: this semantics is
desired for consistency with overridden implementation of Object.toString()).

8 July 2010 Version 0.76
Confidentiality: Public Distribution

285

Safety Critical Specification for Java

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public static Integer valueOf(String str , int base)

Does not allow ”str” argument to escape local variables. Allocates an Integer
in caller’s scope.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public static Integer valueOf(String str)

Does not allow ”str” argument to escape local variables. Allocates an Integer
in caller’s scope.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public static Integer valueOf(int val)

Allocates an Integer in caller’s scope.

B.2.28 CLASS InternalError

DECLARATION

@SCJAllowed
public class InternalError

implements java.io.Serializable
extends java.lang.VirtualMachineError

CONSTRUCTORS

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree

286 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

@SCJAllowed
public InternalError()

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@MemoryAreaEncloses(inner = {”this”}, outer = {”msg”})
@SCJAllowed
public InternalError(String msg)

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Ille-
galAssignmentError will be thrown.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

B.2.29 CLASS InterruptedException

DECLARATION

@SCJAllowed
public class InterruptedException

implements java.io.Serializable
extends java.lang.Exception

CONSTRUCTORS

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public InterruptedException()

8 July 2010 Version 0.76
Confidentiality: Public Distribution

287

Safety Critical Specification for Java

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@MemoryAreaEncloses(inner = {”this”}, outer = {”msg”})
@SCJAllowed
public InterruptedException(String msg)

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Ille-
galAssignmentError will be thrown.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

B.2.30 CLASS InvocationTargetException

DECLARATION

@SCJAllowed
public class InvocationTargetException

extends java.lang.Exception

CONSTRUCTORS

@SCJAllowed
public InvocationTargetException()

@SCJAllowed
public InvocationTargetException(String msg)

@SCJAllowed
public InvocationTargetException(Throwable cause)

288 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

@SCJAllowed
public InvocationTargetException(String msg , Throwable cause)

B.2.31 CLASS Long

DECLARATION

@SCJAllowed
public class Long

implements java.lang.Comparable, java.io.Serializable
extends java.lang.Number

FIELDS

@SCJAllowed
public static final long MAX VALUE

@SCJAllowed
public static final long MIN VALUE

@SCJAllowed
public static final int SIZE

@SCJAllowed
public static final Class TYPE

CONSTRUCTORS

@BlockFree
@SCJAllowed
public Long(long val)

Allocates no memory. Does not allow ”this” to escape local variables.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

289

Safety Critical Specification for Java

@BlockFree
@SCJAllowed
public Long(String str)

Allocates no memory. Does not allow ”this” or ”str” argument to escape local
variables.

METHODS

@BlockFree
@SCJAllowed
public static int bitCount(long i)

Allocates no memory.

@BlockFree
@SCJAllowed
public byte byteValue()

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public int compareTo(Long other)

Allocates no memory. Does not allow ”this” or ”other” argument to escape
local variables.

@BlockFree
@SCJAllowed
public static Long decode(String str)

Does not allow ”str” argument to escape local variables. Allocates a Long
result object in the caller’s scope.

290 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

@BlockFree
@SCJAllowed
public double doubleValue()

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public boolean equals(Object obj)

Allocates no memory. Does not allow ”this” or ”obj” argument to escape local
variables.

@BlockFree
@SCJAllowed
public float floatValue()

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public static Long getLong(String str , Long v)

Does not allow ”str” argument to escape local variables. Allocates a Long
result object in the caller’s scope.

@BlockFree
@SCJAllowed
public static Long getLong(String str , long v)

Does not allow ”str” argument to escape local variables. Allocates a Long
result object in the caller’s scope.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

291

Safety Critical Specification for Java

@BlockFree
@SCJAllowed
public static Long getLong(String str)

Does not allow ”str” argument to escape local variables. Allocates a Long
result object in the caller’s scope.

@BlockFree
@SCJAllowed
public int hashCode()

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public static long highestOneBit(long i)

Allocates no memory.

@BlockFree
@SCJAllowed
public int intValue()

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public long longValue()

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public static long lowestOneBit(long i)

292 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

Allocates no memory.

@BlockFree
@SCJAllowed
public static int numberOfLeadingZeros(long i)

Allocates no memory.

@BlockFree
@SCJAllowed
public static int numberOfTrailingZeros(long i)

Allocates no memory.

@BlockFree
@SCJAllowed
public static long parseLong(String str , int base)

Allocates no memory. Does not allow ”this” or ”other” argument to escape
local variables.

@BlockFree
@SCJAllowed
public static long parseLong(String str)

Allocates no memory. Does not allow ”this” or ”other” argument to escape
local variables.

@BlockFree
@SCJAllowed
public static long reverse(long i)

Allocates no memory.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

293

Safety Critical Specification for Java

@BlockFree
@SCJAllowed
public static long reverseBytes(long i)

Allocates no memory.

@BlockFree
@SCJAllowed
public static long rotateLeft(long i , int distance)

Allocates no memory.

@BlockFree
@SCJAllowed
public static long rotateRight(long i , int distance)

Allocates no memory.

@BlockFree
@SCJAllowed
public short shortValue()

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public static int signum(long i)

Allocates no memory.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public static String toBinaryString(long v)

294 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

Does not allow ”this” to escape local variables. Allocates a String and associ-
ated internal ”structure” (e.g. char[]) in caller’s scope.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public static String toHexString(long v)

Does not allow ”this” to escape local variables. Allocates a String and associ-
ated internal ”structure” (e.g. char[]) in caller’s scope.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public static String toOctalString(long v)

Does not allow ”this” to escape local variables. Allocates a String and associ-
ated internal ”structure” (e.g. char[]) in caller’s scope.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public static String toString(long v)

Allocates a String and associated internal ”structure” (e.g. char[]) in caller’s
scope.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public static String toString(long v , int base)

Allocates a String and associated internal ”structure” (e.g. char[]) in caller’s
scope.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

295

Safety Critical Specification for Java

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public String toString()

Does not allow ”this” to escape local variables. Allocates a String and associ-
ated internal ”structure” (e.g. char[]) in caller’s scope. (Note: this semantics is
desired for consistency with overridden implementation of Object.toString()).

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public static Long valueOf(String str , int base)

Does not allow ”str” argument to escape local variables. Allocates a Long in
caller’s scope.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public static Long valueOf(String str)

Does not allow ”str” argument to escape local variables. Allocates a Long in
caller’s scope.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public static Long valueOf(long val)

Allocates a Long in caller’s scope.

296 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

B.2.32 CLASS Math

DECLARATION

@SCJAllowed
public final class Math

extends java.lang.Object

FIELDS

@SCJAllowed
public static final double E

@SCJAllowed
public static final double PI

METHODS

@BlockFree
@SCJAllowed
public static double IEEEremainder(double f1 , double f2)

Allocates no memory.

@BlockFree
@SCJAllowed
public static long abs(long a)

Allocates no memory.

@BlockFree
@SCJAllowed
public static double abs(double a)

8 July 2010 Version 0.76
Confidentiality: Public Distribution

297

Safety Critical Specification for Java

Allocates no memory.

@BlockFree
@SCJAllowed
public static float abs(float a)

Allocates no memory.

@BlockFree
@SCJAllowed
public static int abs(int a)

Allocates no memory.

@BlockFree
@SCJAllowed
public static double acos(double a)

Allocates no memory.

@BlockFree
@SCJAllowed
public static double asin(double a)

Allocates no memory.

@BlockFree
@SCJAllowed
public static double atan(double a)

Allocates no memory.

298 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

@BlockFree
@SCJAllowed
public static double atan2(double a , double b)

Allocates no memory.

@BlockFree
@SCJAllowed
public static double cbrt(double a)

Allocates no memory.

@BlockFree
@SCJAllowed
public static double ceil(double a)

Allocates no memory.

@BlockFree
@SCJAllowed
public static double copySign(float magnitude , float sign)

Allocates no memory.

@BlockFree
@SCJAllowed
public static double copySign(double magnitude , double sign)

Allocates no memory.

@BlockFree
@SCJAllowed
public static double cos(double a)

8 July 2010 Version 0.76
Confidentiality: Public Distribution

299

Safety Critical Specification for Java

Allocates no memory.

@BlockFree
@SCJAllowed
public static double cosh(double a)

Allocates no memory.

@BlockFree
@SCJAllowed
public static double exp(double a)

Allocates no memory.

@BlockFree
@SCJAllowed
public static double expm1(double a)

Allocates no memory.

@BlockFree
@SCJAllowed
public static double floor(double a)

Allocates no memory.

@BlockFree
@SCJAllowed
public static int getExponent(float a)

Allocates no memory.

300 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

@BlockFree
@SCJAllowed
public static int getExponent(double a)

Allocates no memory.

@BlockFree
@SCJAllowed
public static double hypot(double x , double y)

Allocates no memory.

@BlockFree
@SCJAllowed
public static double log(double a)

Allocates no memory.

@BlockFree
@SCJAllowed
public static double log10(double a)

Allocates no memory.

@BlockFree
@SCJAllowed
public static double log1p(double a)

Allocates no memory.

@BlockFree
@SCJAllowed
public static double max(double a , double b)

8 July 2010 Version 0.76
Confidentiality: Public Distribution

301

Safety Critical Specification for Java

Allocates no memory.

@BlockFree
@SCJAllowed
public static long max(long a , long b)

Allocates no memory.

@BlockFree
@SCJAllowed
public static float max(float a , float b)

Allocates no memory.

@BlockFree
@SCJAllowed
public static int max(int a , int b)

Allocates no memory.

@BlockFree
@SCJAllowed
public static long min(long a , long b)

Allocates no memory.

@BlockFree
@SCJAllowed
public static double min(double a , double b)

Allocates no memory.

302 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

@BlockFree
@SCJAllowed
public static float min(float a , float b)

Allocates no memory.

@BlockFree
@SCJAllowed
public static int min(int a , int b)

Allocates no memory.

@BlockFree
@SCJAllowed
public static float nextAfter(float start , float direction)

Allocates no memory.

@BlockFree
@SCJAllowed
public static double nextAfter(double start , double direction)

Allocates no memory.

@BlockFree
@SCJAllowed
public static float nextUp(float d)

Allocates no memory.

@BlockFree
@SCJAllowed
public static double nextUp(double d)

8 July 2010 Version 0.76
Confidentiality: Public Distribution

303

Safety Critical Specification for Java

Allocates no memory.

@BlockFree
@SCJAllowed
public static double pow(double a , double b)

Allocates no memory.

@BlockFree
@SCJAllowed
public static double random()

Allocates no memory.

@BlockFree
@SCJAllowed
public static double rint(double a)

Allocates no memory.

@BlockFree
@SCJAllowed
public static long round(double a)

Allocates no memory.

@BlockFree
@SCJAllowed
public static int round(float a)

Allocates no memory.

304 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

@BlockFree
@SCJAllowed
public static float scalb(float f , int scaleFactor)

Allocates no memory.

@BlockFree
@SCJAllowed
public static double scalb(double d , int scaleFactor)

Allocates no memory.

@BlockFree
@SCJAllowed
public static float signum(float f)

Allocates no memory.

@BlockFree
@SCJAllowed
public static double signum(double d)

Allocates no memory.

@BlockFree
@SCJAllowed
public static double sin(double a)

Allocates no memory.

@BlockFree
@SCJAllowed
public static double sinh(double a)

8 July 2010 Version 0.76
Confidentiality: Public Distribution

305

Safety Critical Specification for Java

Allocates no memory.

@BlockFree
@SCJAllowed
public static double sqrt(double a)

Allocates no memory.

@BlockFree
@SCJAllowed
public static double tan(double a)

Allocates no memory.

@BlockFree
@SCJAllowed
public static double tanh(double a)

Allocates no memory.

@BlockFree
@SCJAllowed
public static double toDegrees(double val)

Allocates no memory.

@BlockFree
@SCJAllowed
public static double toRadians(double val)

Allocates no memory.

306 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

@BlockFree
@SCJAllowed
public static float ulp(float d)

Allocates no memory.

@BlockFree
@SCJAllowed
public static double ulp(double d)

Allocates no memory.

B.2.33 CLASS NegativeArraySizeException

DECLARATION

@SCJAllowed
public class NegativeArraySizeException

implements java.io.Serializable
extends java.lang.RuntimeException

CONSTRUCTORS

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public NegativeArraySizeException()

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@MemoryAreaEncloses(inner = {”this”}, outer = {”msg”})

8 July 2010 Version 0.76
Confidentiality: Public Distribution

307

Safety Critical Specification for Java

@SCJAllowed
public NegativeArraySizeException(String msg)

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Ille-
galAssignmentError will be thrown.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

B.2.34 CLASS NullPointerException

DECLARATION

@SCJAllowed
public class NullPointerException

implements java.io.Serializable
extends java.lang.RuntimeException

CONSTRUCTORS

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public NullPointerException()

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@MemoryAreaEncloses(inner = {”this”}, outer = {”msg”})
@SCJAllowed
public NullPointerException(String msg)

308 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Ille-
galAssignmentError will be thrown.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

B.2.35 CLASS Number

DECLARATION

@SCJAllowed
public abstract class Number

implements java.io.Serializable
extends java.lang.Object

CONSTRUCTORS

@BlockFree
@SCJAllowed
public Number()

The implementation of this method shall not allow ”this” to escape the method’s
local variables.

METHODS

@BlockFree
@SCJAllowed
public byte byteValue()

The implementation of this method shall not allow ”this” to escape the method’s
local variables.

@BlockFree
@SCJAllowed
public abstract double doubleValue()

8 July 2010 Version 0.76
Confidentiality: Public Distribution

309

Safety Critical Specification for Java

The implementation of this method shall not allow ”this” to escape the method’s
local variables.

@BlockFree
@SCJAllowed
public abstract float floatValue()

The implementation of this method shall not allow ”this” to escape the method’s
local variables.

@BlockFree
@SCJAllowed
public abstract int intValue()

The implementation of this method shall not allow ”this” to escape the method’s
local variables.

@BlockFree
@SCJAllowed
public abstract long longValue()

The implementation of this method shall not allow ”this” to escape the method’s
local variables.

@BlockFree
@SCJAllowed
public abstract short shortValue()

The implementation of this method shall not allow ”this” to escape the method’s
local variables.

310 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

B.2.36 CLASS NumberFormatException

DECLARATION

@SCJAllowed
public class NumberFormatException

implements java.io.Serializable
extends java.lang.IllegalArgumentException

CONSTRUCTORS

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public NumberFormatException()

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@MemoryAreaEncloses(inner = {”this”}, outer = {”msg”})
@SCJAllowed
public NumberFormatException(String msg)

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Ille-
galAssignmentError will be thrown.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

B.2.37 CLASS Object

DECLARATION

@SCJAllowed
public class Object

8 July 2010 Version 0.76
Confidentiality: Public Distribution

311

Safety Critical Specification for Java

CONSTRUCTORS

@BlockFree
@SCJAllowed
public Object()

Allocates no memory. Does not allow ”this” to escape local variables.

METHODS

@BlockFree
@SCJAllowed
public boolean equals(Object obj)

Allocates no memory. Does not allow ”this” or ”obj” argument to escape local
variables.

@BlockFree
@SCJAllowed
public final Class getClass()

Allocates no memory. Does not allow ”this” or ”obj” argument to escape local
variables.

@BlockFree
@SCJAllowed
public int hashCode()

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
public final void notify()

312 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
public final void notifyAll()

Allocates no memory. Does not allow ”this” to escape local variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public String toString()

Does not allow ”this” to escape local variables. Allocates a String and associ-
ated internal ”structure” (e.g. char[]) in caller’s scope.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
public final void wait(long timeout , int nanos)

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
public final void wait(long timeout)

Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
public final void wait()

Allocates no memory. Does not allow ”this” to escape local variables.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

313

Safety Critical Specification for Java

B.2.38 CLASS OutOfMemoryError

DECLARATION

@SCJAllowed
public class OutOfMemoryError

implements java.io.Serializable
extends java.lang.VirtualMachineError

CONSTRUCTORS

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public OutOfMemoryError()

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@MemoryAreaEncloses(inner = {”this”}, outer = {”msg”})
@SCJAllowed
public OutOfMemoryError(String msg)

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Ille-
galAssignmentError will be thrown.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

314 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

B.2.39 CLASS RuntimeException

DECLARATION

@SCJAllowed
public class RuntimeException

implements java.io.Serializable
extends java.lang.Exception

CONSTRUCTORS

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public RuntimeException()

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@MemoryAreaEncloses(inner = {”this”}, outer = {”msg”})
@SCJAllowed
public RuntimeException(String msg)

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Ille-
galAssignmentError will be thrown.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@MemoryAreaEncloses(inner = {”this”, ”this”}, outer = {”msg”, ”t”})
@SCJAllowed
public RuntimeException(String msg , Throwable t)

8 July 2010 Version 0.76
Confidentiality: Public Distribution

315

Safety Critical Specification for Java

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Ille-
galAssignmentError will be thrown.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@MemoryAreaEncloses(inner = {”this”}, outer = {”t”})
@SCJAllowed
public RuntimeException(Throwable t)

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Ille-
galAssignmentError will be thrown.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

B.2.40 CLASS Short

DECLARATION

@SCJAllowed
public class Short

implements java.lang.Comparable, java.io.Serializable
extends java.lang.Number

FIELDS

@SCJAllowed
public static final short MAX VALUE

@SCJAllowed
public static final short MIN VALUE

316 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

@SCJAllowed
public static final int SIZE

@SCJAllowed
public static final Class TYPE

CONSTRUCTORS

@BlockFree
@SCJAllowed
public Short(short val)

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public Short(String str)

Allocates no memory. Does not allow ”this” or ”str” argument to escape local
variables.

METHODS

@BlockFree
@SCJAllowed
public byte byteValue()

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public int compareTo(Short other)

8 July 2010 Version 0.76
Confidentiality: Public Distribution

317

Safety Critical Specification for Java

Allocates no memory. Does not allow ”this” or ”other” argument to escape
local variables.

@BlockFree
@SCJAllowed
public static Short decode(String str)

Does not allow ”str” argument to escape local variables. Allocates a Short in
caller’s scope.

@BlockFree
@SCJAllowed
public double doubleValue()

Allocates no memory.

@BlockFree
@SCJAllowed
public boolean equals(Object obj)

Allocates no memory. Does not allow ”this” or ”obj” argument to escape local
variables.

@BlockFree
@SCJAllowed
public float floatValue()

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public int hashCode()

318 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public int intValue()

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public long longValue()

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public static short parseShort(String str , int base)

Allocates no memory. Does not allow ”str” argument to escape local variables.

@BlockFree
@SCJAllowed
public static short parseShort(String str)

Allocates no memory. Does not allow ”str” argument to escape local variables.

@BlockFree
@SCJAllowed
public static short reverseBytes(short i)

Allocates no memory.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

319

Safety Critical Specification for Java

@BlockFree
@SCJAllowed
public short shortValue()

Allocates no memory. Does not allow ”this” to escape local variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public static String toString(short v)

Allocates a String and associated internal ”structure” (e.g. char[]) in caller’s
scope.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public String toString()

Does not allow ”this” to escape local variables. Allocates a String and associ-
ated internal ”structure” (e.g. char[]) in caller’s scope. (Note: this semantics is
desired for consistency with overridden implementation of Object.toString()).

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public static Short valueOf(String str , int base)

Does not allow ”str” argument to escape local variables. Allocates an Integer
in caller’s scope.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public static Short valueOf(String str)

320 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

Does not allow ”str” argument to escape local variables. Allocates an Integer
in caller’s scope.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public static Short valueOf(short val)

Allocates a Short in caller’s scope.

B.2.41 CLASS StackOverflowError

DECLARATION

@SCJAllowed
public class StackOverflowError

implements java.io.Serializable
extends java.lang.VirtualMachineError

CONSTRUCTORS

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public StackOverflowError()

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@MemoryAreaEncloses(inner = {”this”}, outer = {”msg”})
@SCJAllowed
public StackOverflowError(String msg)

8 July 2010 Version 0.76
Confidentiality: Public Distribution

321

Safety Critical Specification for Java

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Ille-
galAssignmentError will be thrown.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

B.2.42 CLASS StackTraceElement

DECLARATION

@SCJAllowed
public class StackTraceElement

extends java.lang.Object

CONSTRUCTORS

@SCJAllowed
@BlockFree
@MemoryAreaEncloses(inner = {”this”, ”this”, ”this”}, outer = {”declaringClass”, ”method-
Name”, ”fileName”})
public StackTraceElement(String declaringClass , String methodName , String file-
Name , int lineNumber)

Shall not copy ”this” to any instance or static field.

METHODS

@BlockFree
@SCJAllowed
public boolean equals(Object obj)

Allocates no memory. Does not allow ”this” or ”obj” argument to escape local
variables.

@BlockFree
@SCJAllowed
public String getClassName()

322 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

Performs no memory allocation. Returns a reference to the same String mes-
sage that was supplied as an argument to the constructor, or null if the class
name was not specified at construction time.

@BlockFree
@SCJAllowed
public String getFileName()

Performs no memory allocation. Returns a reference to the same String mes-
sage that was supplied as an argument to the constructor, or null if the file name
was not specified at construction time.

@BlockFree
@SCJAllowed
public int getLineNumber()

Performs no memory allocation.

@BlockFree
@SCJAllowed
public String getMethodName()

Performs no memory allocation. Returns a reference to the same String mes-
sage that was supplied as an argument to the constructor, or null if the method
name was not specified at construction time.

@BlockFree
@SCJAllowed
public int hashCode()

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public boolean isNativeMethod()

8 July 2010 Version 0.76
Confidentiality: Public Distribution

323

Safety Critical Specification for Java

Allocates no memory. Does not allow ”this” to escape local variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public String toString()

Does not allow ”this” to escape local variables. Allocates a String and associ-
ated internal ”structure” (e.g. char[]) in caller’s scope. (Note: this semantics is
desired for consistency with overridden implementation of Object.toString()).

B.2.43 CLASS StrictMath

DECLARATION

@SCJAllowed
public final class StrictMath

extends java.lang.Object

FIELDS

@SCJAllowed
public static final double E

@SCJAllowed
public static final double PI

METHODS

@BlockFree
@SCJAllowed
public static double IEEEremainder(double f1 , double f2)

Allocates no memory.

324 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

@BlockFree
@SCJAllowed
public static long abs(long a)

Allocates no memory.

@BlockFree
@SCJAllowed
public static double abs(double a)

Allocates no memory.

@BlockFree
@SCJAllowed
public static float abs(float a)

Allocates no memory.

@BlockFree
@SCJAllowed
public static int abs(int a)

Allocates no memory.

@BlockFree
@SCJAllowed
public static double acos(double a)

Allocates no memory.

@BlockFree
@SCJAllowed
public static double asin(double a)

8 July 2010 Version 0.76
Confidentiality: Public Distribution

325

Safety Critical Specification for Java

Allocates no memory.

@BlockFree
@SCJAllowed
public static double atan(double a)

Allocates no memory.

@BlockFree
@SCJAllowed
public static double atan2(double a , double b)

Allocates no memory.

@BlockFree
@SCJAllowed
public static double cbrt(double a)

Allocates no memory.

@BlockFree
@SCJAllowed
public static double ceil(double a)

Allocates no memory.

@BlockFree
@SCJAllowed
public static double copySign(float magnitude , float sign)

Allocates no memory.

326 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

@BlockFree
@SCJAllowed
public static double copySign(double magnitude , double sign)

Allocates no memory.

@BlockFree
@SCJAllowed
public static double cos(double a)

Allocates no memory.

@BlockFree
@SCJAllowed
public static double cosh(double a)

Allocates no memory.

@BlockFree
@SCJAllowed
public static double exp(double a)

Allocates no memory.

@BlockFree
@SCJAllowed
public static double expm1(double a)

Allocates no memory.

@BlockFree
@SCJAllowed
public static double floor(double a)

8 July 2010 Version 0.76
Confidentiality: Public Distribution

327

Safety Critical Specification for Java

Allocates no memory.

@BlockFree
@SCJAllowed
public static int getExponent(float a)

Allocates no memory.

@BlockFree
@SCJAllowed
public static int getExponent(double a)

Allocates no memory.

@BlockFree
@SCJAllowed
public static double hypot(double x , double y)

Allocates no memory.

@BlockFree
@SCJAllowed
public static double log(double a)

Allocates no memory.

@BlockFree
@SCJAllowed
public static double log10(double a)

Allocates no memory.

328 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

@BlockFree
@SCJAllowed
public static double log1p(double a)

Allocates no memory.

@BlockFree
@SCJAllowed
public static double max(double a , double b)

Allocates no memory.

@BlockFree
@SCJAllowed
public static long max(long a , long b)

Allocates no memory.

@BlockFree
@SCJAllowed
public static float max(float a , float b)

Allocates no memory.

@BlockFree
@SCJAllowed
public static int max(int a , int b)

Allocates no memory.

@BlockFree
@SCJAllowed
public static long min(long a , long b)

8 July 2010 Version 0.76
Confidentiality: Public Distribution

329

Safety Critical Specification for Java

Allocates no memory.

@BlockFree
@SCJAllowed
public static double min(double a , double b)

Allocates no memory.

@BlockFree
@SCJAllowed
public static float min(float a , float b)

Allocates no memory.

@BlockFree
@SCJAllowed
public static int min(int a , int b)

Allocates no memory.

@BlockFree
@SCJAllowed
public static float nextAfter(float start , float direction)

Allocates no memory.

@BlockFree
@SCJAllowed
public static double nextAfter(double start , double direction)

Allocates no memory.

330 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

@BlockFree
@SCJAllowed
public static float nextUp(float d)

Allocates no memory.

@BlockFree
@SCJAllowed
public static double nextUp(double d)

Allocates no memory.

@BlockFree
@SCJAllowed
public static double pow(double a , double b)

Allocates no memory.

@BlockFree
@SCJAllowed
public static double random()

Allocates no memory.

@BlockFree
@SCJAllowed
public static double rint(double a)

Allocates no memory.

@BlockFree
@SCJAllowed
public static long round(double a)

8 July 2010 Version 0.76
Confidentiality: Public Distribution

331

Safety Critical Specification for Java

Allocates no memory.

@BlockFree
@SCJAllowed
public static int round(float a)

Allocates no memory.

@BlockFree
@SCJAllowed
public static float scalb(float f , int scaleFactor)

Allocates no memory.

@BlockFree
@SCJAllowed
public static double scalb(double d , int scaleFactor)

Allocates no memory.

@BlockFree
@SCJAllowed
public static float signum(float f)

Allocates no memory.

@BlockFree
@SCJAllowed
public static double signum(double d)

Allocates no memory.

332 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

@BlockFree
@SCJAllowed
public static double sin(double a)

Allocates no memory.

@BlockFree
@SCJAllowed
public static double sinh(double a)

Allocates no memory.

@BlockFree
@SCJAllowed
public static double sqrt(double a)

Allocates no memory.

@BlockFree
@SCJAllowed
public static double tan(double a)

Allocates no memory.

@BlockFree
@SCJAllowed
public static double tanh(double a)

Allocates no memory.

@BlockFree
@SCJAllowed
public static double toDegrees(double val)

8 July 2010 Version 0.76
Confidentiality: Public Distribution

333

Safety Critical Specification for Java

Allocates no memory.

@BlockFree
@SCJAllowed
public static double toRadians(double val)

Allocates no memory.

@BlockFree
@SCJAllowed
public static float ulp(float d)

Allocates no memory.

@BlockFree
@SCJAllowed
public static double ulp(double d)

Allocates no memory.

B.2.44 CLASS String

DECLARATION

@SCJAllowed
public final class String

implements java.lang.CharSequence, java.lang.Comparable, java.io.Serializable
extends java.lang.Object

CONSTRUCTORS

@BlockFree
@SCJAllowed
public String()

334 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

Does not allow ”this” argument to escape local variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.THIS})
@BlockFree
@SCJAllowed
public String(byte []b)

Does not allow ”this” or ”b” argument to escape local variables. Allocates
internal structure to hold the contents of b within the same scope as ”this”.

@Allocate({javax.safetycritical.annotate.Allocate.Area.THIS})
@BlockFree
@SCJAllowed
public String(String s)

Does not allow ”this” or ”s” argument to escape local variables. Allocates
internal structure to hold the contents of s within the same scope as ”this”.

@Allocate({javax.safetycritical.annotate.Allocate.Area.THIS})
@BlockFree
@SCJAllowed
public String(byte []b , int offset , int length)

Does not allow ”this” or ”b” argument to escape local variables. Allocates
internal structure to hold the contents of b within the same scope as ”this”.

@Allocate({javax.safetycritical.annotate.Allocate.Area.THIS})
@BlockFree
@SCJAllowed
public String(char []c)

Does not allow ”this” or ”c” argument to escape local variables. Allocates
internal structure to hold the contents of c within the same scope as ”this”.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

335

Safety Critical Specification for Java

@BlockFree
@MemoryAreaEncloses(inner = {”this”}, outer = {”b”})
@SCJAllowed
public String(StringBuilder b)

Allocates no memory.

Does not allow ”this” to escape local variables. Requires that argument ”b”
reside in a scope that encloses the scope of ”this”. Builds a link from ”this” to
the internal structure of argument b.

Note that the subset implementation of StringBuilder does not mutate existing
buffer contents.

@Allocate({javax.safetycritical.annotate.Allocate.Area.THIS})
@BlockFree
@SCJAllowed
public String(char []c , int offset , int length)

Does not allow ”this” or ”c” argument to escape local variables. Allocates
internal structure to hold the contents of c within the same scope as ”this”.

METHODS

@BlockFree
@SCJAllowed
public char charAt(int index)

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public int compareTo(String str)

Allocates no memory. Does not allow ”this” or ”str” argument to escape local
variables.

336 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

@BlockFree
@SCJAllowed
public int compareToIgnoreCase(String str)

Allocates no memory. Does not allow ”this” or ”str” argument to escape local
variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public String concat(String arg)

Does not allow ”this” or ”str” argument to escape local variables. Allocates a
String and internal structure to hold the catenation result in the caller’s scope.

@BlockFree
@SCJAllowed
public boolean contains(CharSequence arg)

Does not allow ”this” or ”str” argument to escape local variables.

@BlockFree
@SCJAllowed
public boolean contentEquals(CharSequence cs)

Does not allow ”this” or ”str” argument to escape local variables.

@BlockFree
@SCJAllowed
public final boolean endsWith(String suffix)

Allocates no memory. Does not allow ”this” or ”suffix” argument to escape
local variables.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

337

Safety Critical Specification for Java

@BlockFree
@SCJAllowed
public boolean equals(Object obj)

Allocates no memory. Does not allow ”this” or ”obj” argument to escape local
variables.

@BlockFree
@SCJAllowed
public boolean equalsIgnoreCase(String str)

Allocates no memory. Does not allow ”this” or ”str” argument to escape local
variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public byte [] getBytes()

Does not allow ”this” to escape local variables. Allocates a byte array in the
caller’s context.

@BlockFree
@SCJAllowed
public void getChars(int src begin , int src end , char []dst , int dst begin)

Allocates no memory. Does not allow ”this” or ”dst” argument to escape local
variables.

@BlockFree
@SCJAllowed
public int hashCode()

Allocates no memory. Does not allow ”this” to escape local variables.

338 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

@BlockFree
@SCJAllowed
public int indexOf(int ch , int from index)

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public int indexOf(String str , int from index)

Allocates no memory. Does not allow ”this” or ”str” argument to escape local
variables.

@BlockFree
@SCJAllowed
public int indexOf(String str)

Allocates no memory. Does not allow ”this” or ”str” argument to escape local
variables.

@BlockFree
@SCJAllowed
public int indexOf(int ch)

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public boolean isEmpty()

Allocates no memory. Does not allow ”this” argument to escape local vari-
ables.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

339

Safety Critical Specification for Java

@BlockFree
@SCJAllowed
public int lastIndexOf(String str)

Allocates no memory. Does not allow ”this” or ”str” argument to escape local
variables.

@BlockFree
@SCJAllowed
public int lastIndexOf(String str , int from index)

Allocates no memory. Does not allow ”this” or ”str” argument to escape local
variables.

@BlockFree
@SCJAllowed
public int lastIndexOf(int ch , int from index)

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public int lastIndexOf(int ch)

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public int length()

Allocates no memory. Does not allow ”this” to escape local variables.

340 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

@BlockFree
@SCJAllowed
public boolean regionMatches(int myoffset , String str , int offset , int len)

Allocates no memory. Does not allow ”this” or ”str” argument to escape local
variables.

@BlockFree
@SCJAllowed
public boolean regionMatches(boolean ignore case , int myoffset , String str , int
offset , int len)

Allocates no memory. Does not allow ”this” or ”str” argument to escape local
variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public String replace(CharSequence target , CharSequence replacement)

Does not allow ”this”, ”target”, or ”replacement” arguments to escape local
variables. Allocates a String and internal structure to hold the result in the
caller’s scope.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public String replace(char oldChar , char newChar)

Does not allow ”this” argument to escape local variables. Allocates a String
and internal structure to hold the result in the caller’s scope.

@BlockFree
@SCJAllowed
public final boolean startsWith(String prefix , int toffset)

8 July 2010 Version 0.76
Confidentiality: Public Distribution

341

Safety Critical Specification for Java

Allocates no memory. Does not allow ”this” or ”prefix” argument to escape
local variables.

@BlockFree
@SCJAllowed
public final boolean startsWith(String prefix)

Allocates no memory. Does not allow ”this” or ”prefix” argument to escape
local variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@MemoryAreaEncloses(inner = {”@result”}, outer = {”this”})
@SCJAllowed
public String subSequence(int start , int end)

Allocates a String object in the caller’s scope. Requires that ”this” reside in
a scope that encloses the caller’s scope, since the the returned String retains a
reference to the internal structure of ”this” String.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@MemoryAreaEncloses(inner = {”@result”}, outer = {”this”})
@SCJAllowed
public String substring(int begin index , int end index)

Allocates a String object in the caller’s scope. Requires that ”this” reside in
a scope that encloses the caller’s scope, since the the returned String retains a
reference to the internal structure of ”this” String.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@MemoryAreaEncloses(inner = {”@result”}, outer = {”this”})
@SCJAllowed
public String substring(int begin index)

342 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

Allocates a String object in the caller’s scope. Requires that ”this” reside in
a scope that encloses the caller’s scope, since the the returned String retains a
reference to the internal structure of ”this” String.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public char [] toCharArray()

Does not allow ”this” to escape local variables. Allocates a char array to hold
the result of this method in the caller’s scope.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public String toLowerCase()

Does not allow ”this” to escape local variables. Allocates a String and internal
structure to hold the result of this method in the caller’s scope.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public String toString()

Does not allow ”this” to escape local variables. Allocates a String and associ-
ated internal ”structure” (e.g. char[]) in caller’s scope. (Note: this semantics is
desired for consistency with overridden implementation of Object.toString()).

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public String toUpperCase()

Does not allow ”this” to escape local variables. Allocates a String and internal
structure to hold the result of this method in the caller’s scope.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

343

Safety Critical Specification for Java

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@MemoryAreaEncloses(inner = {”@result”}, outer = {”this”})
@SCJAllowed
public final String trim()

Allocates a String object in the caller’s scope. Requires that ”this” reside in a
scope that encloses the caller’s scope, since the returned String retains a refer-
ence to the internal structure of ”this” String.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public static String valueOf(float f)

Allocates a String and associated internal ”structure” (e.g. char[]) in caller’s
scope.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public static String valueOf(int i)

Allocates a String and associated internal ”structure” (e.g. char[]) in caller’s
scope.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public static String valueOf(long l)

Allocates a String and associated internal ”structure” (e.g. char[]) in caller’s
scope.

344 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public static String valueOf(Object o)

Allocates a String object in the caller’s scope.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public static String valueOf(char []data)

Does not allow ”data” argument to escape local variables. Allocates a String
and associated internal ”structure” (e.g. char[]) in caller’s scope.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public static String valueOf(char []data , int offset , int count)

Does not allow ”data” argument to escape local variables. Allocates a String
and associated internal ”structure” (e.g. char[]) in caller’s scope.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public static String valueOf(double d)

Allocates a String and associated internal ”structure” (e.g. char[]) in caller’s
scope.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public static String valueOf(char c)

8 July 2010 Version 0.76
Confidentiality: Public Distribution

345

Safety Critical Specification for Java

Allocates a String and associated internal ”structure” (e.g. char[]) in caller’s
scope.

@BlockFree
@SCJAllowed
public static String valueOf(boolean b)

Allocates no memory. Returns a preallocated String residing in the scope of
the String class’s ClassLoader.

B.2.45 CLASS StringBuilder

DECLARATION

@SCJAllowed
public final class StringBuilder

implements java.lang.Appendable, java.lang.CharSequence, java.io.Serializable
extends java.lang.Object

CONSTRUCTORS

@Allocate({javax.safetycritical.annotate.Allocate.Area.THIS})
@BlockFree
@SCJAllowed
public StringBuilder()

Does not allow ”this” to escape local variables. Allocates internal structure of
sufficient size to represent 16 characters in the scope of ”this”.

@Allocate({javax.safetycritical.annotate.Allocate.Area.THIS})
@BlockFree
@SCJAllowed
public StringBuilder(int length)

Does not allow ”this” to escape local variables. Allocates internal structure of
sufficient size to represent length characters within the scope of ”this”.

346 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

@Allocate({javax.safetycritical.annotate.Allocate.Area.THIS})
@BlockFree
@SCJAllowed
public StringBuilder(String str)

Does not allow ”this” to escape local variables. Allocates a character internal
structure of sufficient size to represent str.length() + 16 characters within the
scope of ”this”.

@Allocate({javax.safetycritical.annotate.Allocate.Area.THIS})
@BlockFree
@SCJAllowed
public StringBuilder(CharSequence seq)

Does not allow ”this” to escape local variables. Allocates a character internal
structure of sufficient size to represent seq.length() + 16 characters within the
scope of ”this”.

METHODS

@Allocate({javax.safetycritical.annotate.Allocate.Area.THIS})
@BlockFree
@SCJAllowed
public StringBuilder append(char c)

Does not allow ”this” to escape local variables. If expansion of ”this” String-
Builder’s internal character buffer is necessary, a new char array is allocated
within the scope of ”this”. The new array will be twice the length of the exist-
ing array, plus 1.

@Allocate({javax.safetycritical.annotate.Allocate.Area.THIS})
@BlockFree
@SCJAllowed
public StringBuilder append(char []buf , int offset , int length)

8 July 2010 Version 0.76
Confidentiality: Public Distribution

347

Safety Critical Specification for Java

Does not allow ”this” or ”buf” to escape local variables. If expansion of ”this”
StringBuilder’s internal character buffer is necessary, a new char array is allo-
cated within the scope of ”this”. The new array will be twice the length of the
existing array, plus 1.

@Allocate({javax.safetycritical.annotate.Allocate.Area.THIS})
@BlockFree
@SCJAllowed
public StringBuilder append(CharSequence cs , int start , int end)

Does not allow ”this” or argument ”cs” to escape local variables. If expansion
of ”this” StringBuilder’s internal character buffer is necessary, a new char array
is allocated within the scope of ”this”. The new array will be twice the length
of the existing array, plus 1.

@Allocate({javax.safetycritical.annotate.Allocate.Area.THIS})
@BlockFree
@SCJAllowed
public StringBuilder append(float f)

Does not allow ”this” to escape local variables. If expansion of ”this” String-
Builder’s internal character buffer is necessary, a new char array is allocated
within the scope of ”this”. The new array will be twice the length of the exist-
ing array, plus 1.

@Allocate({javax.safetycritical.annotate.Allocate.Area.THIS})
@BlockFree
@SCJAllowed
public StringBuilder append(long l)

Does not allow ”this” to escape local variables. If expansion of ”this” String-
Builder’s internal character buffer is necessary, a new char array is allocated
within the scope of ”this”. The new array will be twice the length of the exist-
ing array, plus 1.

@Allocate({javax.safetycritical.annotate.Allocate.Area.THIS})
@BlockFree

348 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

@SCJAllowed
public StringBuilder append(String s)

Does not allow ”this” or argument ”s” to escape local variables. If expansion
of ”this” StringBuilder’s internal character buffer is necessary, a new char array
is allocated within the scope of ”this”. The new array will be twice the length
of the existing array, plus 1.

@Allocate({javax.safetycritical.annotate.Allocate.Area.THIS})
@BlockFree
@SCJAllowed
public StringBuilder append(Object o)

Does not allow ”this” to escape local variables. If expansion of ”this” String-
Builder’s internal character buffer is necessary, a new char array is allocated
within the scope of ”this”. The new array will be twice the length of the exist-
ing array, plus 1.

Requires that argument ”o” reside in a scope that encloses ”this”

@Allocate({javax.safetycritical.annotate.Allocate.Area.THIS})
@BlockFree
@SCJAllowed
public StringBuilder append(int i)

Does not allow ”this” to escape local variables. If expansion of ”this” String-
Builder’s internal character buffer is necessary, a new char array is allocated
within the scope of ”this”. The new array will be twice the length of the exist-
ing array, plus 1.

@Allocate({javax.safetycritical.annotate.Allocate.Area.THIS})
@BlockFree
@SCJAllowed
public StringBuilder append(double d)

8 July 2010 Version 0.76
Confidentiality: Public Distribution

349

Safety Critical Specification for Java

Does not allow ”this” to escape local variables. If expansion of ”this” String-
Builder’s internal character buffer is necessary, a new char array is allocated
within the scope of ”this”. The new array will be twice the length of the exist-
ing array, plus 1.

@Allocate({javax.safetycritical.annotate.Allocate.Area.THIS})
@BlockFree
@SCJAllowed
public StringBuilder append(CharSequence cs)

Does not allow ”this” or argument ”cs” to escape local variables. If expansion
of ”this” StringBuilder’s internal character buffer is necessary, a new char array
is allocated within the scope of ”this”. The new array will be twice the length
of the existing array, plus 1.

@Allocate({javax.safetycritical.annotate.Allocate.Area.THIS})
@BlockFree
@SCJAllowed
public StringBuilder append(char []buf)

Does not allow ”this” or ”buf” to escape local variables. If expansion of ”this”
StringBuilder’s internal character buffer is necessary, a new char array is allo-
cated within the scope of ”this”. The new array will be twice the length of the
existing array, plus 1.

@Allocate({javax.safetycritical.annotate.Allocate.Area.THIS})
@BlockFree
@SCJAllowed
public StringBuilder append(boolean b)

Does not allow ”this” to escape local variables. If expansion of ”this” String-
Builder’s internal character buffer is necessary, a new char array is allocated
within the scope of ”this”. The new array will be twice the length of the exist-
ing array, plus 1.

@BlockFree
@SCJAllowed

350 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

public int capacity()

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public char charAt(int index)

Allocates no memory. Does not allow ”this” to escape local variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.THIS})
@BlockFree
@SCJAllowed
public void ensureCapacity(int minimum capacity)

Does not allow ”this” to escape local variables. If expansion of ”this” String-
Builder’s internal character buffer is necessary, a new char array is allocated
within the scope of ”this”. The new array will be twice the length of the exist-
ing array, plus 1.

@BlockFree
@SCJAllowed
public void getChars(int srcBegin , int srcEnd , char []dst , int dstBegin)

Does not allow ”this” or ”dst” to escape local variables.

@BlockFree
@SCJAllowed
public void indexOf(String str , int fromIndex)

Does not allow ”this” or ”dst” to escape local variables.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

351

Safety Critical Specification for Java

@BlockFree
@SCJAllowed
public void indexOf(String str)

Does not allow ”this” or ”dst” to escape local variables.

@BlockFree
@SCJAllowed
public void lastIndexOf(String str , int fromIndex)

Does not allow ”this” or ”dst” to escape local variables.

@BlockFree
@SCJAllowed
public void lastIndexOf(String str)

Does not allow ”this” or ”dst” to escape local variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.THIS})
@BlockFree
@SCJAllowed
public int length()

Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed
public void setLength(int new length)

Does not allow ”this” to escape local variables.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public CharSequence subSequence(int start , int end)

352 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

Does not allow ”this” to escape local variables. Allocates a String in caller’s
scope.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public String toString()

Does not allow ”this” to escape local variables. Allocates a String in caller’s
scope.

B.2.46 CLASS StringIndexOutOfBoundsException

DECLARATION

@SCJAllowed
public class StringIndexOutOfBoundsException

implements java.io.Serializable
extends java.lang.IndexOutOfBoundsException

CONSTRUCTORS

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public StringIndexOutOfBoundsException()

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public StringIndexOutOfBoundsException(int index)

8 July 2010 Version 0.76
Confidentiality: Public Distribution

353

Safety Critical Specification for Java

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@MemoryAreaEncloses(inner = {”this”}, outer = {”msg”})
@SCJAllowed
public StringIndexOutOfBoundsException(String msg)

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Ille-
galAssignmentError will be thrown.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

B.2.47 CLASS System

DECLARATION

@SCJAllowed
public final class System

extends java.lang.Object

CONSTRUCTORS

@BlockFree
@SCJAllowed
protected System()

Allocates no memory.

METHODS

@BlockFree
@SCJAllowed

354 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

public static void arraycopy(Object src , int srcPos , Object dest , int destPos , int
length)

Allocates no memory. Does not allow ”src” or ”dest” arguments to escape local
variables. Allocates no memory. <b\> Requires that the contents of array src
enclose array dest. TBD: our annotation system doesn’t have a way to describe
this scope constraint.

@BlockFree
@SCJAllowed
public static long currentTimeMillis()

Allocates no memory.

@BlockFree
@SCJAllowed
public static void exit(int code)

Allocates no memory.

@BlockFree
@SCJAllowed
public static String getProperty(String key , String default value)

Allocates no memory.

Unlike traditional J2SE, this method shall not cause a set of system properties
to be created and initialized if not already existing. Any necessary initialization
shall occur during system startup.

returns The value of the property associated with key, or the value of default value if
no property is associated with key. The value returned resides in immortal memory,
or it is the value of default.

@BlockFree
@SCJAllowed

8 July 2010 Version 0.76
Confidentiality: Public Distribution

355

Safety Critical Specification for Java

public static String getProperty(String key)

Allocates no memory.

Unlike traditional J2SE, this method shall not cause a set of system properties
to be created and initialized if not already existing. Any necessary initialization
shall occur during system startup.

returns the value returned is either null or it resides in immortal memory.

@BlockFree
@SCJAllowed
public static int identityHashCode(Object x)

Does not allow argument ”x” to escape local variables. Allocates no memory.

@BlockFree
@SCJAllowed
public static long nanoTime()

Allocates no memory.

B.2.48 CLASS Thread

DECLARATION

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 0)
public class Thread

implements java.lang.Runnable
extends java.lang.Object

METHODS

@BlockFree
@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)

356 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

public static Thread.UncaughtExceptionHandler getDefaultUncaughtException-
Handler()

@memory
Allocates no memory. Does not allow ”this” to escape local variables. The result
returned from this method may reside in scoped memory in some scope that encloses
”this”.

@BlockFree
@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
public static Thread.UncaughtExceptionHandler getUncaughtExceptionHandler(
)

@memory
Allocates no memory. Does not allow ”this” to escape local variables. The result
returned from this method may reside in scoped memory in some scope that encloses
”this”.

@BlockFree
@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
public void interrupt()

@memory
Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
public static boolean interrupted()

@memory
Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
public final boolean isAlive()

@memory
Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)

8 July 2010 Version 0.76
Confidentiality: Public Distribution

357

Safety Critical Specification for Java

public boolean isDaemon()

@memory
Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
public boolean isInterrupted()

@memory
Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
public final void join(long millis)

@memory
Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
public final void join(long millis , int nanos)

@memory
Allocates no memory. Does not allow ”this” to escape local variables.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
public final void join()

@memory
Allocates no memory. Does not allow ”this” to escape local variables.

@BlockFree
@MemoryAreaEncloses(inner = {”@immortal”}, outer = {”eh”})
@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
public static void setDefaultUncaughtExceptionHandler(Thread.UncaughtExceptionHandler
eh)

@memory
Allocates no memory. Does not allow ”this” to escape local variables. The eh argu-
ment must reside in immortal memory.

@BlockFree

358 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

@MemoryAreaEncloses(inner = {”this”}, outer = {”eh”})
@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
public void setUncaughtExceptionHandler(Thread.UncaughtExceptionHandler eh
)

@memory
Allocates no memory. Does not allow ”this” to escape local variables. The eh argu-
ment must reside in a scope that encloses the scope of ”this”.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public String toString()

@memory
Does not allow ”this” to escape local variables. Allocates a String and associated
internal ”structure” (e.g. char[]) in caller’s scope.

@BlockFree
@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
public static void yield()

@memory
Allocates no memory.

B.2.49 CLASS Throwable

DECLARATION

@SCJAllowed
public class Throwable

implements java.io.Serializable
extends java.lang.Object

CONSTRUCTORS

@SCJAllowed
public Throwable()

8 July 2010 Version 0.76
Confidentiality: Public Distribution

359

Safety Critical Specification for Java

Shall not copy ”this” to any instance or static field.

Invokes System.captureStackBacktrace(this) to save the back trace associated
with the current thread.

@BlockFree
@MemoryAreaEncloses(inner = {”this”}, outer = {”cause”})
@SCJAllowed
public Throwable(Throwable cause)

Shall not copy ”this” to any instance or static field.

Does not invoke System.captureStackBacktrace(this) so as to not overwrite the
backtrace associated with cause.

@BlockFree
@MemoryAreaEncloses(inner = {”this”, ”this”}, outer = {”cause”, ”msg”})
@SCJAllowed
public Throwable(String msg , Throwable cause)

Shall not copy ”this” to any instance or static field.

Does not invoke System.captureStackBacktrace(this) so as to not overwrite the
backtrace associated with cause.

@BlockFree
@MemoryAreaEncloses(inner = {”this”}, outer = {”msg”})
@SCJAllowed
public Throwable(String msg)

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Ille-
galAssignmentError will be thrown.

Invokes System.captureStackBacktrace(this) to save the back trace associated
with the current thread.

360 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

METHODS

@BlockFree
@SCJAllowed
public Throwable getCause()

Performs no memory allocation. Returns a reference to the same Throwable
that was supplied as an argument to the constructor, or null if no cause was
specified at construction time.

@BlockFree
@SCJAllowed
public String getMessage()

Performs no memory allocation. Returns a reference to the same String mes-
sage that was supplied as an argument to the constructor, or null if no message
was specified at construction time.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public StackTraceElement [] getStackTrace()

Shall not copy ”this” to any instance or static field.

Allocates a StackTraceElement array, StackTraceElement objects, and all in-
ternal structure, including String objects referenced from each StackTraceEle-
ment to represent the stack backtrace information available for the exception
that was most recently associated with this Throwable object.

Each Schedulable maintains a single thread-local buffer to represent the stack
back trace information associated with the most recent invocation of System.captureStackBacktrace().
The size of this buffer is specified by providing a StorageParameters object
as an argument to construction of the Schedulable. Most commonly, Sys-
tem.captureStackBacktrace() is invoked from within the constructor of java.lang.Throwable.
getStackTrace() returns a representation of this thread-local back trace infor-
mation.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

361

Safety Critical Specification for Java

If System.captureStackBacktrace() has been invoked within this thread more
recently than the construction of this Throwable, then the stack trace informa-
tion returned from this method may not represent the stack back trace for this
particular Throwable.

B.2.50 CLASS UnsatisfiedLinkError

DECLARATION

@SCJAllowed
public class UnsatisfiedLinkError

implements java.io.Serializable
extends java.lang.RuntimeException

CONSTRUCTORS

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public UnsatisfiedLinkError()

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@MemoryAreaEncloses(inner = {”this”}, outer = {”msg”})
@SCJAllowed
public UnsatisfiedLinkError(String msg)

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Ille-
galAssignmentError will be thrown.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

362 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

B.2.51 CLASS UnsupportedOperationException

DECLARATION

@SCJAllowed
public class UnsupportedOperationException

implements java.io.Serializable
extends java.lang.RuntimeException

CONSTRUCTORS

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public UnsupportedOperationException()

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@MemoryAreaEncloses(inner = {”this”}, outer = {”msg”})
@SCJAllowed
public UnsupportedOperationException(String msg)

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Ille-
galAssignmentError will be thrown.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@MemoryAreaEncloses(inner = {”this”, ”this”}, outer = {”msg”, ”t”})
@SCJAllowed
public UnsupportedOperationException(String msg , Throwable t)

8 July 2010 Version 0.76
Confidentiality: Public Distribution

363

Safety Critical Specification for Java

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Ille-
galAssignmentError will be thrown.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@MemoryAreaEncloses(inner = {”this”}, outer = {”t”})
@SCJAllowed
public UnsupportedOperationException(Throwable t)

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Ille-
galAssignmentError will be thrown.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

B.2.52 CLASS VirtualMachineError

DECLARATION

@SCJAllowed
public class VirtualMachineError

implements java.io.Serializable
extends java.lang.Error

CONSTRUCTORS

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public VirtualMachineError()

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

364 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@MemoryAreaEncloses(inner = {”this”}, outer = {”msg”})
@SCJAllowed
public VirtualMachineError(String msg)

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Ille-
galAssignmentError will be thrown.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

B.2.53 CLASS Void

DECLARATION

@SCJAllowed
public final class Void

extends java.lang.Object

FIELDS

@SCJAllowed
public static final Class TYPE

8 July 2010 Version 0.76
Confidentiality: Public Distribution

365

Safety Critical Specification for Java

366 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Appendix C

Javadoc Description of Package
javax.microedition.io
Package Contents Page

Interfaces
Connection . 369

A generic connection that just provides the ability to be closed.

InputConnection . 369

A marker for connections that can input data.

OutputConnection . 370

A marker for connections that can output data.

StreamConnection . 370

A Marker for Connections that can both read and write data.

Classes
ConnectionNotFoundException . 370

An exception to throw when the connection for a given URL cannot be
created because the resources are not available or no factory exists.

Connector . 371

367

Safety Critical Specification for Java

...no description...

368 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

C.1 Interfaces

C.1.1 INTERFACE Connection

A generic connection that just provides the ability to be closed.

DECLARATION

@SCJAllowed
public interface Connection

METHODS

@SCJAllowed
public void close()

Clean up all resources for this connection and make it unusable.

C.1.2 INTERFACE InputConnection

A marker for connections that can input data.

DECLARATION

@SCJAllowed
public interface InputConnection

implements javax.microedition.io.Connection

METHODS

@SCJAllowed
public InputStream openInputStream()

The method for getting a stream from the connection to input data.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

369

Safety Critical Specification for Java

C.1.3 INTERFACE OutputConnection

A marker for connections that can output data.

DECLARATION

@SCJAllowed
public interface OutputConnection

implements javax.microedition.io.Connection

METHODS

@SCJAllowed
public OutputStream openOutputStream()

The method for getting a stream from a connection to output data.

C.1.4 INTERFACE StreamConnection

A Marker for Connections that can both read and write data.

DECLARATION

@SCJAllowed
public interface StreamConnection

implements javax.microedition.io.InputConnection,
javax.microedition.io.OutputConnection

C.2 Classes

C.2.1 CLASS ConnectionNotFoundException

An exception to throw when the connection for a given URL cannot be created
because the resources are not available or no factory exists.

370 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

DECLARATION

@SCJAllowed
public class ConnectionNotFoundException

extends java.lang.Exception

CONSTRUCTORS

@SCJAllowed
public ConnectionNotFoundException(String message)

Create this exception with a text description.

@SCJAllowed
public ConnectionNotFoundException()

Create this exception with no description.

C.2.2 CLASS Connector

DECLARATION

@SCJAllowed
public class Connector

extends java.lang.Object

FIELDS

@SCJAllowed
public static final int READ

@SCJAllowed
public static final int READ WRITE

8 July 2010 Version 0.76
Confidentiality: Public Distribution

371

Safety Critical Specification for Java

@SCJAllowed
public static final int WRITE

METHODS

@SCJAllowed
public static Connection open(String name , int mode)

@SCJAllowed
public static Connection open(String name)

@SCJAllowed
public static InputStream openInputStream(String name)

@SCJAllowed
public static OutputStream openOutputStream(String name)

372 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Appendix D

Javadoc Description of Package
javax.realtime
Package Contents Page

Interfaces
AllocationContext . 379

This is the base interface for all memory areas.

ClockCallBack . 381

The ClockEvent interface may be used by subclasses of Clock to in-
dicate to the clock infrastructure that the clock has either reached a
designated time, or has experienced a discontinuity.

EventExaminer . 382

Note:

PhysicalMemoryName . 382

...no description...

RawIntegralAccess . 382

...no description...

RawIntegralAccessFactory . 384

373

Safety Critical Specification for Java

...no description...

RawMemoryName . 385

...no description...

RawScalarAccess . 385

...no description...

RawScalarAccessFactory . 385

...no description...

Schedulable . 385

...no description...

ScopedAllocationContext . 386

This is the base interface for all scoped memory areas.

Classes
AbsoluteTime . 387

An object that represents a specific point in time given by milliseconds
plus nanoseconds past some point in time fixed by the clock.

AffinitySet . 392

...no description...

AperiodicParameters . 394

...no description...

AsyncEvent . 394

...no description...

AsyncEventHandler . 395

374 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

...no description...

AutonomousHappening . 395

...no description...

BoundAsyncEventHandler . 396

...no description...

Clock . 396

A clock marks the passing of time.

ControlledHappening . 400

Note:

EventHappening .401

...no description...

Happening . 402

...no description...

HighResolutionTime . 404

Class HighResolutionTime is the base class for AbsoluteTime, Rela-
tiveTime, RationalTime.

IllegalAssignmentError . 408

...no description...

ImmortalMemory . 408

...no description...

InaccessibleAreaException . 409

8 July 2010 Version 0.76
Confidentiality: Public Distribution

375

Safety Critical Specification for Java

TBD: do we make this SCJAllowed? It may be that the restrictions put
in place for JSR 302 code will guarantee that this exception is never
thrown.

InterruptHappening . 410

Note: IT IS NOT CLEAR WHICH PACKAGE THIS LIVES IN IF THIS
DOES NOT APPEAR I AN RTSJ EXTENSION PACKAGE THEN
THIS AND ManagedInterruptHappenings SHOULD BE MERGED.

LTMemory . 412

...no description...

MemoryAccessError .413

...no description...

MemoryArea . 413

...no description...

MemoryInUseException . 416

...no description...

MemoryScopeException . 417

...no description...

NoHeapRealtimeThread . 417

...no description...

PeriodicParameters . 418

...no description...

PhysicalMemoryManager . 419

...no description...

PriorityParameters . 420

376 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

...no description...

PriorityScheduler . 420

...no description...

ProcessorAffinityException . 421

...no description...

RawMemoryAccess . 421

...no description...

RealtimeThread . 424

...no description...

RelativeTime . 425

An object that represents a time interval milliseconds/103̂ + nanosec-
onds/109̂ seconds long that is divided into subintervals by some fre-
quency.

ReleaseParameters . 429

...no description...

Scheduler . 429

...no description...

SchedulingParameters . 429

...no description...

ScopedCycleException . 430

...no description...

SizeEstimator . 430

8 July 2010 Version 0.76
Confidentiality: Public Distribution

377

Safety Critical Specification for Java

TBD: we need additional methods to allow SizeEstimation of thread
stacks.

ThrowBoundaryError . 432

...no description...

378 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

D.1 Interfaces

D.1.1 INTERFACE AllocationContext

This is the base interface for all memory areas. It is a generalization of the Java
Heap to allow for alternate forms of memory management. All memory areas
implement this interface.

DECLARATION

@SCJAllowed
public interface AllocationContext

Author
James J. Hunt, aicas GmbH

METHODS

@SCJAllowed
public void executeInArea(Runnable logic)

Execute some logic with this memory area as the default allocation context.
The effect on the scope stack is specified in the implementing classes.

logic — is the runnable to execute in this memory area.

@SCJAllowed
public long memoryConsumed()

Get the amount of allocated memory in this memory area.

returns the amount of memory consumed.

@SCJAllowed
public long memoryRemaining()

8 July 2010 Version 0.76
Confidentiality: Public Distribution

379

Safety Critical Specification for Java

Get the amount of memory available for allocation in this memory area.

returns the amount of memory remaining.

@SCJAllowed
public Object newArray(Class type , int number)

Create a new array of the given type in this memory area. This method may be
concurrently used by multiple threads.

type — is the class of object this memory area should hold. An array of a primitive
type can be created using a type such as Integer.TYPE, which would create an array
of the int type.
number — is the number of elements the array should have.
returns the new array of type type and size

number .
Throws IllegalArgumentException when number is less than zero.

@SCJAllowed
public Object newInstance(Class type)

Create a new instance of a class in this memory area using its default construc-
tor.

type — is the class of the object to be created
returns a new instance of the given class.
Throws ExceptionInInitializerError when an unexpected exception has occurred in a
static initializer.
Throws IllegalAccessException when the class or initializer is inaccessible under
Java access control.
Throws InstantiationException when the specified class object could not be instan-
tiated. Possible causes are the class is an interface, abstract class, or array.
Throws InvocationTargetException when the underlying constructor throws an ex-
ception.

@SCJAllowed
public long size()

380 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

Get the size of this memory area.

returns the current size of this memory area.

D.1.2 INTERFACE ClockCallBack

The ClockEvent interface may be used by subclasses of Clock to indicate to
the clock infrastructure that the clock has either reached a designated time, or
has experienced a discontinuity.

Invocations of the methods in ClockCallBack are serialized. The callback is de-
registered before a method in it is invoked, and the Clock blocks any attempt
by another thread to register another callback while control is in a callback.

DECLARATION

@SCJAllowed
public interface ClockCallBack

METHODS

@BlockFree
@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public void atTime(Clock clock)

Clock has reached the designated time.

This clock event is de-registered before this method is invoked.

clock — the clock that has reached a designated time.

@BlockFree
@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public void discontinuity(Clock clock , AbsoluteTime updatedTime)

clock experienced a time discontinuity. (It changed its time value other than by
ticking.) and clock has de-registered this clock event.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

381

Safety Critical Specification for Java

clock — the clock that has experienced a discontinuity.
updatedTime — the signed length of the time discontinuity.

D.1.3 INTERFACE EventExaminer

Note:

DECLARATION

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
public interface EventExaminer

METHODS

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
public Object visit(AsyncEvent ae)

D.1.4 INTERFACE PhysicalMemoryName

DECLARATION

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 0)
public interface PhysicalMemoryName

D.1.5 INTERFACE RawIntegralAccess

DECLARATION

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public interface RawIntegralAccess

382 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

METHODS

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public byte getByte(long offset)

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public void getBytes(long offset , byte []bytes , int low , int number)

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public int getInt(long offset)

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public void getInts(long offset , int []ints , int low , int number)

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public long getLong(long offset)

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public void getLongs(long offset , long []longs , int low , int number)

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public short getShort(long offset)

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public void getShorts(long offset , short []shorts , int low , int number)

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public void setByte(long offset , byte value)

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public void setByte(long offset , long value)

8 July 2010 Version 0.76
Confidentiality: Public Distribution

383

Safety Critical Specification for Java

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public void setBytes(long offset , byte []bytes , int low , int number)

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public void setInt(long offset , int value)

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public void setInts(long offset , int []its , int low , int number)

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public void setLongs(long offset , long []longs , int low , int number)

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public void setShort(long offset , short value)

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public void setShorts(long offset , short []shorts , int low , int number)

D.1.6 INTERFACE RawIntegralAccessFactory

DECLARATION

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public interface RawIntegralAccessFactory

METHODS

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public RawMemoryName getName()

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public RawIntegralAccess newIntegralAccess(long base , long size)

384 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

D.1.7 INTERFACE RawMemoryName

DECLARATION

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 0)
public interface RawMemoryName

D.1.8 INTERFACE RawScalarAccess

DECLARATION

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 0)
public interface RawScalarAccess

implements javax.realtime.RawIntegralAccess, javax.realtime.RawRealAccess

D.1.9 INTERFACE RawScalarAccessFactory

DECLARATION

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public interface RawScalarAccessFactory

METHODS

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public RawMemoryName getName()

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public RawScalarAccess newRawScalarAccess(long base , long size)

D.1.10 INTERFACE Schedulable

DECLARATION

@SCJAllowed
public interface Schedulable

implements java.lang.Runnable

8 July 2010 Version 0.76
Confidentiality: Public Distribution

385

Safety Critical Specification for Java

D.1.11 INTERFACE ScopedAllocationContext

This is the base interface for all scoped memory areas. Scoped memory is
a region based memory management strategy that can only be cleared when
no thread is executing in the area. The exact deallocation semantics depend
depend on the implementing class.

DECLARATION

@SCJAllowed
public interface ScopedAllocationContext

implements javax.realtime.AllocationContext

Author
James J. Hunt, aicas GmbH, 2010

getMaximumSize, visitScopedChildren

METHODS

@SCJAllowed
public Object getPortal()

Get this memory area’s portal object. The portal provides a means of passing
information between Schedulable objects in a memory area. Assignment rules
are enforced on the value returned by getPortal as if the return value were first
stored in an object allocated in the current allocation context, then moved to its
final destination.

returns the portal object.
Throws MemoryAccessError when a reference to the portal object cannot be stored
in the caller’s allocation context; that is, if this is ”inner” relative to the current allo-
cation context or not on the caller’s scope stack.
Throws IllegalAssignmentError when caller is a Java thread.

@SCJAllowed
public void resize(long size)

386 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

Change the guarenteed and maximum size of the scoped memory area. The
method may only be called when the memory area is empty, i.e., all objects
have been reclaimed and no Schedulable object has the area as its allocation
context.

size — is the new size for this memory area.
Throws IllegalStateException when the area is not empty.

@SCJAllowed
public void setPortal(Object object)

Sets the portal object of the memory area to the given object. The object must
have been allocated in this ScopedMemory instance.

object — the new portal object
Throws IllegalThreadStateException when the caller is a Java Thread.
Throws IllegalAssignmentError when the object is not allocated in this scoped mem-
ory instance and not null.
Throws InaccessibleAreaException when the caller is a Schedulable object, this
memory area is not in the caller’s scope stack, and object is not null.

D.2 Classes

D.2.1 CLASS AbsoluteTime

An object that represents a specific point in time given by milliseconds plus
nanoseconds past some point in time fixed by the clock. For the default real-
time clock the fixed point is the implementation dependent Epoch. The correct-
ness of the Epoch as a time base depends on the real-time clock synchronization
with an external world time reference.

A time object in normalized form represents negative time if both components
are nonzero and negative, or one is nonzero and negative and the other is zero.
For add and subtract negative values behave as they do in arithmetic.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

387

Safety Critical Specification for Java

DECLARATION

@SCJAllowed
public class AbsoluteTime

extends javax.realtime.HighResolutionTime

CONSTRUCTORS

@BlockFree
@SCJAllowed
public AbsoluteTime(long millis , int nanos)

Construct an AbsoluteTime object with time millisecond and nanosecond com-
ponents past the real-time clock’s Epoch.

ms — The desired value for the millisecond component of this. The actual value is
the result of parameter normalization.
ns — The desired value for the nanosecond component of this. The actual value is
the result of parameter normalization.

@BlockFree
@SCJAllowed
public AbsoluteTime(AbsoluteTime time)

Make a new AbsoluteTime object from the given AbsoluteTime object.

The — AbsoluteTime object which is the source for the copy.

@BlockFree
@SCJAllowed
public AbsoluteTime(long millis , int nanos , Clock clock)

Construct an AbsoluteTime object with time millisecond and nanosecond com-
ponents past the epoch for clock.

388 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

ms — The desired value for the millisecond component of this. The actual value is
the result of parameter normalization.
ns — The desired value for the nanosecond component of this. The actual value is
the result of parameter normalization.
clock — The clock providing the association for the newly constructed object.

@BlockFree
@SCJAllowed
public AbsoluteTime(Clock clock)

Equivalent to new AbsoluteTime(0,0,clock).

clock — The clock providing the association for the newly constructed object.

METHODS

@BlockFree
@SCJAllowed
public AbsoluteTime add(long millis , int nanos , AbsoluteTime dest)

Return an object containing the value resulting from adding millis and nanos
to the values from this and normalizing the result.

millis — The number of milliseconds to be added to this.
nanos — The number of nanoseconds to be added to this.
dest — If dest is not null, the result is placed there and returned. Otherwise, a new
object is allocated for the result.
returns the result of the normalization of this plus millis and nanos in dest if dest is
not null, otherwise the result is returned in a newly allocated object.

@BlockFree
@SCJAllowed
public AbsoluteTime add(RelativeTime time , AbsoluteTime dest)

Return an object containing the value resulting from adding time to the value
of this and normalizing the result.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

389

Safety Critical Specification for Java

time — The time to add to this.
dest — If dest is not null, the result is placed there and returned. Otherwise, a new
object is allocated for the result.
returns the result of the normalization of this plus the RelativeTime parameter time
in dest if dest is not null, otherwise the result is returned in a newly allocated object.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public AbsoluteTime add(RelativeTime time)

Create a new instance of AbsoluteTime representing the result of adding time
to the value of this and normalizing the result.

time — The time to add to this.
returns A new AbsoluteTime object whose time is the normalization of this plus the
parameter time.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public AbsoluteTime add(long millis , int nanos)

Create a new object representing the result of adding millis and nanos to the
values from this and normalizing the result.

millis — The number of milliseconds to be added to this.
nanos — The number of nanoseconds to be added to this.
returns A new AbsoluteTime object whose time is the normalization of this plus
millis and nanos.

@BlockFree
@SCJAllowed
public RelativeTime subtract(AbsoluteTime time , RelativeTime dest)

Return an object containing the value resulting from subtracting time from the
value of this and normalizing the result.

390 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

time — The time to subtract from this.
dest — If dest is not null, the result is placed there and returned. Otherwise, a new
object is allocated for the result.
returns the result of the normalization of this minus the AbsoluteTime parameter
time in dest if dest is not null, otherwise the result is returned in a newly allocated
object.

@BlockFree
@SCJAllowed
public AbsoluteTime subtract(RelativeTime time , AbsoluteTime dest)

Return an object containing the value resulting from subtracting time from the
value of this and normalizing the result.

time — The time to subtract from this.
dest — If dest is not null, the result is placed there and returned. Otherwise, a new
object is allocated for the result.
returns the result of the normalization of this minus the RelativeTime parameter time
in dest if dest is not null, otherwise the result is returned in a newly allocated object.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public AbsoluteTime subtract(RelativeTime time)

Create a new instance of AbsoluteTime representing the result of subtracting
time from the value of this and normalizing the result.

time — The time to subtract from this.
returns A new AbsoluteTime object whose time is the normalization of this minus
the parameter time.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public RelativeTime subtract(AbsoluteTime time)

8 July 2010 Version 0.76
Confidentiality: Public Distribution

391

Safety Critical Specification for Java

Create a new instance of RelativeTime representing the result of subtracting
time from the value of this and normalizing the result.

time — The time to subtract from this.
returns A new RelativeTime object whose time is the normalization of this minus
the AbsoluteTime parameter time.

D.2.2 CLASS AffinitySet

DECLARATION

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 0)
public final class AffinitySet

extends java.lang.Object

METHODS

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
public static AffinitySet generate(BitSet bitSet)

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
public static final AffinitySet getAffinitySet(Thread thread)

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public static final AffinitySet getAffinitySet(BoundAsyncEventHandler handler)

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public static final BitSet getAvailableProcessors(BitSet dest)

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public static final BitSet getAvailableProcessors()

392 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public final BitSet getBitSet()

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public static final AffinitySet getNoHeapSoDefaultAffinity()

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public static int getPredefinedAffinitySetCount()

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public static AffinitySet [] getPredefinedAffinitySets(AffinitySet []dest)

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public static AffinitySet [] getPredefinedAffinitySets()

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
public final BitSet getProcessors(BitSet dest)

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
public final boolean isProcessorInSet(int processorNumber)

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
public static final void setProcessorAffinity(AffinitySet set , Thread thread)

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 0)
public static final void setProcessorAffinity(AffinitySet set , BoundAsyncEven-
tHandler aeh)

8 July 2010 Version 0.76
Confidentiality: Public Distribution

393

Safety Critical Specification for Java

D.2.3 CLASS AperiodicParameters

DECLARATION

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public class AperiodicParameters

extends javax.realtime.ReleaseParameters

CONSTRUCTORS

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public AperiodicParameters()

D.2.4 CLASS AsyncEvent

DECLARATION

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public class AsyncEvent

extends java.lang.Object

METHODS

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public void fire()

fire this event, i.e., releases the execution of all handlers that were added to this
event.

@memory
Does not allocate memory. Does not allow this to escape local variables.

394 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

D.2.5 CLASS AsyncEventHandler

DECLARATION

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 0)
public class AsyncEventHandler

implements javax.realtime.Schedulable
extends java.lang.Object

D.2.6 CLASS AutonomousHappening

DECLARATION

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public class AutonomousHappening

extends javax.realtime.EventHappening

CONSTRUCTORS

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public AutonomousHappening()

Creates a Happening in the current memory area with a system assigned name
and id.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public AutonomousHappening(int id)

Creates a Happening in the current memory area with the specified id and a
system-assigned name.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public AutonomousHappening(int id , String name)

Creates a Happening in the current memory area with the name and id given.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

395

Safety Critical Specification for Java

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public AutonomousHappening(String name)

Creates a Happening in the current memory area with the name name and a
system-assigned id.

D.2.7 CLASS BoundAsyncEventHandler

DECLARATION

@SCJAllowed
public class BoundAsyncEventHandler

extends javax.realtime.AsyncEventHandler

D.2.8 CLASS Clock

A clock marks the passing of time. It has a concept of now that can be queried
through Clock.getTime(), and it can have events queued on it which will be
fired when their appointed time is reached.

The Clock instance returned by getRealtimeClock() may be used in any context
that requires a clock.

TBD: is the following still true for us? I (MS) assume that Kelvin would like
to drive scheduling with user defined clocks.

HighResolutionTime instances that use other clocks are not valid for any pur-
pose that involves sleeping or waiting, including in members of the Real-
timeThread.waitForNextPeriod() family. They may, however, be used in the
fire time and the period of OneShotTimer and PeriodicTimer.

DECLARATION

@SCJAllowed
public abstract class Clock

extends java.lang.Object

396 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

CONSTRUCTORS

@Allocate({javax.safetycritical.annotate.Allocate.Area.THIS})
@BlockFree
@SCJAllowed
public Clock()

Constructor for the abstract class.

Allocates resolution here.

METHODS

@BlockFree
@SCJAllowed
protected abstract boolean drivesEvents()

Returns true if and only if this Clock is able to trigger the execution of time-
driven activities. Some user-defined clocks may be read-only, meaning the
clock can be used to obtain timestamps, but the clock cannot be used to trigger
the execution of events. If a clock that does not return drivesEvents() equal true
is used to configure a Timer or a sleep() request, an IllegalArgumentException
will be thrown by the infrastructure.

The default real-time clock does drive events.

returns true if the clock can drive events.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public abstract RelativeTime getEpochOffset()

Returns the relative time of the offset of the epoch of this clock from the Epoch.
For the real-time clock it will return a RelativeTime value equal to 0. An Un-
supportedOperationException is thrown if the clock does not support the con-
cept of date.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

397

Safety Critical Specification for Java

returns A newly allocated RelativeTime object in the current execution context with
the offset past the Epoch for this clock. The returned object is associated with this
clock.

@BlockFree
@SCJAllowed
public static Clock getRealtimeClock()

There is always at least one clock object available: the system real-time clock.
This is the default Clock.

returns The singleton instance of the default Clock.

@BlockFree
@SCJAllowed
public abstract RelativeTime getResolution()

Gets the resolution of the clock, the nominal interval between ticks.

returns previously allocated resolution object.

@BlockFree
@SCJAllowed
public abstract RelativeTime getResolution(RelativeTime dest)

Gets the resolution of the clock, the nominal interval between ticks.

TBD: getTime with a destination null will ignore it and return null. This
method (getResolution) will allocated a new object when dest is null.

dest — return the relative time value in dest. If dest is null, allocate a new Relative-
Time instance to hold the returned value.
returns dest set to values representing the resolution of this. The returned object is
associated with this clock.

398 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

@BlockFree
@SCJAllowed
public abstract AbsoluteTime getTime(AbsoluteTime dest)

Gets the current time in an existing object. The time represented by the given
AbsoluteTime is changed at some time between the invocation of the method
and the return of the method. Note: This method will return an absolute time
value that represents the clock’s notion of an absolute time. For clocks that do
not measure calendar time this absolute time may not represent a wall clock
time.

dest — The instance of AbsoluteTime object which will be updated in place. The
clock association of the dest parameter is ignored. When dest is not null the returned
object is associated with this clock. If dest is null, then nothing happens.
returns The instance of AbsoluteTime passed as parameter, representing the current
time, associated with this clock, or null if dest was null.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public abstract AbsoluteTime getTime()

Gets the current time in a newly allocated object. Note: This method will
return an absolute time value that represents the clock’s notion of an absolute
time. For clocks that do not measure calendar time this absolute time may not
represent a wall clock time.

returns A newly allocated instance of AbsoluteTime in the current allocation con-
text, representing the current time. The returned object is associated with this clock.

@BlockFree
@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
protected abstract void registerCallBack(AbsoluteTime time , ClockCallBack clock-
Event)

Code in the abstract base Clock class makes this call to the subclass. The
method is expected to implement a mechanism that will invoke atTime() in

8 July 2010 Version 0.76
Confidentiality: Public Distribution

399

Safety Critical Specification for Java

ClockCallBack at time time, and if this clock is subject to discontinuities, in-
voke ClockCallBack.discontinuity(javax.realtime.Clock, javax.realtime.RelativeTime)
each time a clock discontinuity is detected.

This method behaves effectively as if it and invocations of clock events by this
clock hold a common lock.

time — The absolute time value on this clock at which ClockCallBack.atTime(Clock)
should be invoked.
clockEvent — The object that should be notified at time. If clockEvent is null, un-
register the current clock event.

@BlockFree
@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
protected abstract boolean resetTargetTime(AbsoluteTime time)

Replace the target time being used by the ClockCallBack registered by regis-
terCallBack(AbsoluteTime, ClockCallBack).

time — The new target time.
returns false if no ClockEvent is currently registered.

D.2.9 CLASS ControlledHappening

Note:

DECLARATION

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
public class ControlledHappening

extends javax.realtime.EventHappening

CONSTRUCTORS

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
public ControlledHappening()

400 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
public ControlledHappening(int id)

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
public ControlledHappening(int id , String name)

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
public ControlledHappening(String name)

METHODS

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
public final void attach(AsyncEvent ae)

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
protected void process()

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
public final void takeControl()

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
public final void takeControlInterruptible()

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
protected final Object visit(EventExaminer logic)

D.2.10 CLASS EventHappening

DECLARATION

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public abstract class EventHappening

extends javax.realtime.Happening

8 July 2010 Version 0.76
Confidentiality: Public Distribution

401

Safety Critical Specification for Java

METHODS

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public void attach(AsyncEvent ae)

Attach the AsyncEvent ae to this Happening. ADD LEVEL CONSTRAINTS????

Throws ???? if called from outside the mission initialization phase.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public void detach(AsyncEvent ae)

Detach the AsyncEvent ae from this Happening.

Throws ???? if called from outside the mission initialization phase.

D.2.11 CLASS Happening

DECLARATION

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public abstract class Happening

extends java.lang.Object

METHODS

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public static Happening getHappening(String name)

Find a happening by its name.

402 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public static int getId(String name)

Return the ID of the happening with the name name. If there is not happening
with that name return 0.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public final int getId()

Return the id of this happening.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public final String getName()

Returns the string name of this happening

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public static boolean isHappening(String name)

Is there a Happening with name name?

returns True if there is.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public boolean isRegistered()

returns Return true if this happening is presently registered.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public final void register()

Register this Happening.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

403

Safety Critical Specification for Java

@mem

Throws ???? if called from outside the mission initialization phase.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public static final boolean trigger(int happeningId)

Causes the happening corresponding to happeningId to occur.

returns true if a happening with id happeningId was found, false otherwise.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public final void unRegister()

Unregister this Happening.

Throws ???? if called from outside the mission initialization phase.

D.2.12 CLASS HighResolutionTime

Class HighResolutionTime is the base class for AbsoluteTime, RelativeTime,
RationalTime. Used to express time with nanosecond accuracy. This class is
never used directly: it is abstract and has no public constructor. Instead, one of
its subclasses AbsoluteTime, RelativeTime, or RationalTime should be used.

DECLARATION

@SCJAllowed
public abstract class HighResolutionTime

implements java.lang.Comparable
extends java.lang.Object

404 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

METHODS

@BlockFree
@SCJAllowed
public int compareTo(HighResolutionTime time)

Compares this HighResolutionTime with the specified HighResolutionTime
time.

time — Compares with the time of this.
returns

@BlockFree
@SCJAllowed
public int compareTo(Object object)

Compares this HighResolutionTime with the specified object.

object — Compares with the time of this.
returns

@BlockFree
@SCJAllowed
public boolean equals(HighResolutionTime time)

Returns true if the argument object has the same type and values as this.

time — Value compared to this.
returns true if the parameter object is of the same type and has the same values as
this.

@BlockFree
@SCJAllowed
public boolean equals(Object object)

8 July 2010 Version 0.76
Confidentiality: Public Distribution

405

Safety Critical Specification for Java

Returns true if the argument object has the same type and values as this.

object — Value compared to this.
returns true if the parameter object is of the same type and has the same values as
this.

@BlockFree
@SCJAllowed
public Clock getClock()

returns A reference to the clock associated with this.

@BlockFree
@SCJAllowed
public final long getMilliseconds()

returns The milliseconds component of the time represented by this.

@BlockFree
@SCJAllowed
public final int getNanoseconds()

returns The nanoseconds component of the time represented by this.

@BlockFree
@SCJAllowed
public int hashCode()

Returns a hash code for this object in accordance with the general contract of
Object.hashCode().

returns The hashcode value for this instance.

@BlockFree
@SCJAllowed
public void set(long millis)

406 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

Sets the millisecond component of this to the given argument, and the nanosec-
ond component of this to 0.

millis — This value shall be the value of the millisecond component of this at the
completion of the call.

@BlockFree
@SCJAllowed
public void set(long millis , int nanos)

Sets the millisecond and nanosecond components of this.

millis — The desired value for the millisecond component of this at the completion
of the call. The actual value is the result of parameter normalization.
nanos — The desired value for the nanosecond component of this at the completion
of the call. The actual value is the result of parameter normalization.

@BlockFree
@SCJAllowed
public void set(HighResolutionTime time)

Change the value represented by this to that of the given time.

time — The new value for this.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
public static void waitForObject(Object target , HighResolutionTime time)

Behaves exactly like target.wait() but with the enhancement that it waits with a
precision of HighResolutionTime.

target — The object on which to wait. The current thread must have a lock on the
object.
time — The time for which to wait. If it is RelativeTime(0,0) then wait indefinitely.
If it is null then wait indefinitely.
Throws java.lang.InterruptedException java.lang.InterruptedException

8 July 2010 Version 0.76
Confidentiality: Public Distribution

407

Safety Critical Specification for Java

D.2.13 CLASS IllegalAssignmentError

DECLARATION

@SCJAllowed
public class IllegalAssignmentError

implements java.io.Serializable
extends java.lang.Error

CONSTRUCTORS

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public IllegalAssignmentError()

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@MemoryAreaEncloses(inner = {”this”}, outer = {”description”})
@SCJAllowed
public IllegalAssignmentError(String description)

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Ille-
galAssignmentError will be thrown.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

D.2.14 CLASS ImmortalMemory

DECLARATION

@SCJAllowed
public final class ImmortalMemory

extends javax.realtime.MemoryArea

408 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

METHODS

@BlockFree
@SCJAllowed
public void enter(Runnable logic)

@BlockFree
@SCJAllowed
public static ImmortalMemory instance()

@BlockFree
@SCJAllowed
public long memoryConsumed()

@BlockFree
@SCJAllowed
public long memoryRemaining()

@BlockFree
@SCJAllowed
public long size()

D.2.15 CLASS InaccessibleAreaException

TBD: do we make this SCJAllowed? It may be that the restrictions put in place
for JSR 302 code will guarantee that this exception is never thrown. However,
such restrictions are not yet sufficiently defined to allow this determination.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

409

Safety Critical Specification for Java

DECLARATION

@SCJAllowed
public class InaccessibleAreaException

implements java.io.Serializable
extends java.lang.RuntimeException

CONSTRUCTORS

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public InaccessibleAreaException()

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@MemoryAreaEncloses(inner = {”this”}, outer = {”msg”})
@SCJAllowed
public InaccessibleAreaException(String description)

Shall not copy ”this” to any instance or static field. The scope containing the
msg argument must enclose the scope containing ”this”. Otherwise, an Ille-
galAssignmentError will be thrown.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

D.2.16 CLASS InterruptHappening

Note: IT IS NOT CLEAR WHICH PACKAGE THIS LIVES IN IF THIS
DOES NOT APPEAR I AN RTSJ EXTENSION PACKAGE THEN THIS
AND ManagedInterruptHappenings SHOULD BE MERGED.

410 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

DECLARATION

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public class InterruptHappening

extends javax.realtime.Happening

CONSTRUCTORS

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public InterruptHappening()

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public InterruptHappening(int id)

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public InterruptHappening(int id , String name)

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public InterruptHappening(String name)

METHODS

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public final int getPriority(int id)

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
protected void process()

8 July 2010 Version 0.76
Confidentiality: Public Distribution

411

Safety Critical Specification for Java

D.2.17 CLASS LTMemory

DECLARATION

@SCJAllowed
public class LTMemory

extends javax.realtime.ScopedMemory

METHODS

@BlockFree
@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public void enter(Runnable logic)

In vanilla RTSJ, enter() is not necessarily block-free because entering an LT-
Memory region may have to wait for the region to be finalized. However, a
compliant implementation of JSR 302 shall provide a block-free implemen-
tation of enter. Note that JSR 302 specifies that finalization of LTMemory
regions is not performed.

@BlockFree
@SCJAllowed
public long memoryConsumed()

@BlockFree
@SCJAllowed
public long memoryRemaining()

@Override
@SCJAllowed
public void resize(long size)
See Also: javax.realtime.ScopedAllocationContext.resize(long)

@BlockFree
@SCJAllowed
public long size()

412 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

D.2.18 CLASS MemoryAccessError

DECLARATION

@SCJAllowed
public class MemoryAccessError

implements java.io.Serializable
extends java.lang.RuntimeException

CONSTRUCTORS

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public MemoryAccessError()

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@MemoryAreaEncloses(inner = {”this”}, outer = {”msg”})
@SCJAllowed
public MemoryAccessError(String description)

D.2.19 CLASS MemoryArea

DECLARATION

@SCJAllowed
public abstract class MemoryArea

implements javax.realtime.AllocationContext
extends java.lang.Object

METHODS

@BlockFree
@SCJAllowed
public abstract void enter(Runnable logic)

8 July 2010 Version 0.76
Confidentiality: Public Distribution

413

Safety Critical Specification for Java

@BlockFree
@Allocate(sameAreaAs = {”object”})
@MemoryAreaEncloses(inner = {”logic”}, outer = {”this”})
@SCJAllowed
public void executeInArea(Runnable logic)

TBD: This method has no object argument, so this commentary is not mean-
ingful.

Execute logic in the memory area containing

object .

”@param” object is the reference for determining the area in which to execute
logic .

logic — is the runnable to execute in the memory area containing object .

@BlockFree
@SCJAllowed
public static MemoryArea getMemoryArea(Object object)

@BlockFree
@SCJAllowed
public abstract long memoryConsumed()

@BlockFree
@SCJAllowed
public abstract long memoryRemaining()

@Allocate(sameAreaAs = {”this.area”})
@BlockFree
@SCJAllowed
public Object newArray(Class type , int size)

This method creates an object of type type in the memory area containing
object .

414 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

type — is the type of the object returned.
returns a new object of type type

@Allocate(sameAreaAs = {”object”})
@BlockFree
@SCJAllowed
public Object newArrayInArea(Object object , Class type , int size)

This method creates an array of type type in the memory area containing
object .

object — is the reference for determining the area in which to allocate the array.
type — is the type of the array element for the returned array.
size — is the size of the array to return.
returns a new array of element type type with size

size .

@Allocate(sameAreaAs = {”this.area”})
@BlockFree
@SCJAllowed
public Object newInstance(Class type)

TBD: this method has no object argument, so this commentary is not meaning-
ful

This method creates an object of type type in the memory area containing
object .

”@param” object is the reference for determining the area in which to allocate
the array.

type — is the type of the object returned.
returns a new object of type type
Throws IllegalAccessException IllegalAccessException
Throws IllegalArgumentException IllegalArgumentException
Throws InstantiationException InstantiationException
Throws OutOfMemoryError OutOfMemoryError

8 July 2010 Version 0.76
Confidentiality: Public Distribution

415

Safety Critical Specification for Java

Throws ExceptionInInitializerError ExceptionInInitializerError
Throws InaccessibleAreaException InaccessibleAreaException

@Allocate(sameAreaAs = {”object”})
@SCJAllowed
public Object newInstanceInArea(Object object , Class type)

This method creates an object of type type in the memory area containing
object .

object — is the reference for determining the area in which to allocate the array.
type — is the type of the object returned.
returns a new object of type type

@BlockFree
@SCJAllowed
public abstract long size()

D.2.20 CLASS MemoryInUseException

DECLARATION

@SCJAllowed
public class MemoryInUseException

extends java.lang.RuntimeException

CONSTRUCTORS

@BlockFree
@SCJAllowed
public MemoryInUseException()

@Allocate({javax.safetycritical.annotate.Allocate.Area.IMMORTAL})
@BlockFree
@SCJAllowed
public MemoryInUseException(String description)

416 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

D.2.21 CLASS MemoryScopeException

DECLARATION

@SCJAllowed
public class MemoryScopeException

extends java.lang.RuntimeException

CONSTRUCTORS

@BlockFree
@SCJAllowed
public MemoryScopeException()

@Allocate({javax.safetycritical.annotate.Allocate.Area.IMMORTAL})
@BlockFree
@SCJAllowed
public MemoryScopeException(String description)

D.2.22 CLASS NoHeapRealtimeThread

DECLARATION

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
public class NoHeapRealtimeThread

extends javax.realtime.RealtimeThread

CONSTRUCTORS

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
public NoHeapRealtimeThread(SchedulingParameters schedule , MemoryArea area
)

TBD: do we use this constructor, which expects a MemoryArea argument?

8 July 2010 Version 0.76
Confidentiality: Public Distribution

417

Safety Critical Specification for Java

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
public NoHeapRealtimeThread(SchedulingParameters schedule , ReleaseParam-
eters release)

TBD: do we use this constructor, which expects a ReleaseParameters argu-
ment?

METHODS

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
@BlockFree
public void start()

Creation of thread may block, but starting shall not

D.2.23 CLASS PeriodicParameters

DECLARATION

@SCJAllowed
public class PeriodicParameters

extends javax.realtime.ReleaseParameters

CONSTRUCTORS

@MemoryAreaEncloses(inner = {”this”, ”this”}, outer = {”start”, ”period”})
@SCJAllowed
@BlockFree
public PeriodicParameters(HighResolutionTime start , RelativeTime period)

@memory
Does not allocate memory. Does not allow this to escape local variables. Builds links
from this to start and period. Thus, start and period must reside in scopes that enclose
this.

TBD: If this maintains references to start and period, then we really should make
sure that RelativeTime is immutable. Otherwise, we should make internal copies of
these parameters. ****AJW NO – THE COPY IS DONE on creation of schedulable
object

418 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

METHODS

@BlockFree
@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public RelativeTime getPeriod()

returns Returns the object originally passed in to the constructor, which is known to
reside in a memory area that encloses this.

@BlockFree
@SCJAllowed
public HighResolutionTime getStart()

returns Returns the object originally passed in to the constructor, which is known to
reside in a memory area that encloses this.

D.2.24 CLASS PhysicalMemoryManager

DECLARATION

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public final class PhysicalMemoryManager

extends java.lang.Object

FIELDS

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public static final PhysicalMemoryName DEVICE

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public static final PhysicalMemoryName DMA

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public static final PhysicalMemoryName IO PAGE

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)

8 July 2010 Version 0.76
Confidentiality: Public Distribution

419

Safety Critical Specification for Java

public static final PhysicalMemoryName SHARED

D.2.25 CLASS PriorityParameters

DECLARATION

@SCJAllowed
public class PriorityParameters

extends javax.realtime.SchedulingParameters

CONSTRUCTORS

@BlockFree
@SCJAllowed
public PriorityParameters(int priority)

METHODS

@BlockFree
@SCJAllowed
public int getPriority()

D.2.26 CLASS PriorityScheduler

DECLARATION

@SCJAllowed
public class PriorityScheduler

extends javax.realtime.Scheduler

METHODS

@BlockFree
@SCJAllowed

420 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

public int getMaxPriority()

@BlockFree
@SCJAllowed
public int getMinPriority()

@BlockFree
@SCJAllowed
public int getNormPriority()

D.2.27 CLASS ProcessorAffinityException

DECLARATION

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public class ProcessorAffinityException

extends java.lang.Exception

CONSTRUCTORS

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public ProcessorAffinityException()

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public ProcessorAffinityException(String msg)

D.2.28 CLASS RawMemoryAccess

DECLARATION

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 0)
public class RawMemoryAccess

implements javax.realtime.RawIntegralAccess
extends java.lang.Object

8 July 2010 Version 0.76
Confidentiality: Public Distribution

421

Safety Critical Specification for Java

FIELDS

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 0)
public static final RawMemoryName IO ACCESS

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 0)
public static final RawMemoryName MEM ACCESS

CONSTRUCTORS

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 0)
public RawMemoryAccess(PhysicalMemoryName type , long size)

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 0)
public RawMemoryAccess(PhysicalMemoryName type , long base , long size)

METHODS

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 0)
public static RawIntegralAccess createRmaInstance(RawMemoryName type , long
base , long size)

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 0)
public byte getByte(long offset)

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 0)
public void getBytes(long offset , byte []bytes , int low , int number)

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 0)
public int getInt(long offset)

422 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 0)
public void getInts(long offset , int []ints , int low , int number)

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 0)
public long getLong(long offset)

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 0)
public void getLongs(long offset , long []longs , int low , int number)

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 0)
public short getShort(long offset)

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 0)
public void getShorts(long offset , short []shorts , int low , int number)

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 0)
public void setByte(long offset , byte value)

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 0)
public void setByte(long offset , long value)

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 0)
public void setBytes(long offset , byte []bytes , int low , int number)

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 0)
public void setInt(long offset , int value)

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 0)
public void setInts(long offset , int []its , int low , int number)

8 July 2010 Version 0.76
Confidentiality: Public Distribution

423

Safety Critical Specification for Java

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 0)
public void setLongs(long offset , long []longs , int low , int number)

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 0)
public void setShort(long offset , short value)

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 0)
public void setShorts(long offset , short []shorts , int low , int number)

D.2.29 CLASS RealtimeThread

DECLARATION

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public class RealtimeThread

implements javax.realtime.Schedulable
extends java.lang.Thread

METHODS

@BlockFree
@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
public static RealtimeThread currentRealtimeThread()

Allocates no memory. Returns an object that resides in the current mission’s
MissionMemory.

@BlockFree
@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public static MemoryArea getCurrentMemoryArea()

Allocates no memory. The returned object may reside in scoped memory,
within a scope that encloses the current execution context.

424 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

@BlockFree
@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
public MemoryArea getMemoryArea()

Allocates no memory. Does not allow this to escape local variables. The re-
turned object may reside in scoped memory, within a scope that encloses this.

@BlockFree
@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
public static void sleep(HighResolutionTime time)

D.2.30 CLASS RelativeTime

An object that represents a time interval milliseconds/103̂ + nanoseconds/109̂
seconds long that is divided into subintervals by some frequency. This is gener-
ally used in periodic events, threads, and feasibility analysis to specify periods
where there is a basic period that must be adhered to strictly (the interval), but
within that interval the periodic events are supposed to happen frequency times,
as uniformly spaced as possible, but clock and scheduling jitter is moderately
acceptable.

DECLARATION

@SCJAllowed
public class RelativeTime

extends javax.realtime.HighResolutionTime

CONSTRUCTORS

@BlockFree
@SCJAllowed
public RelativeTime()

Equivalent to new RelativeTime(0,0).

8 July 2010 Version 0.76
Confidentiality: Public Distribution

425

Safety Critical Specification for Java

@BlockFree
@SCJAllowed
public RelativeTime(long ms , int ns)

Construct a RelativeTime object representing an interval based on the parame-
ter millis plus the parameter nanos.

ms — The desired value for the millisecond component of this. The actual value is
the result of parameter normalization.
ns — The desired value for the nanosecond component of this. The actual value is
the result of parameter normalization.

@BlockFree
@SCJAllowed
public RelativeTime(Clock clock)

Equivalent to new RelativeTime(0,0,clock).

clock — The clock providing the association for the newly constructed object.

@BlockFree
@SCJAllowed
public RelativeTime(long ms , int ns , Clock clock)

Construct a RelativeTime object representing an interval based on the parame-
ter millis plus the parameter nanos.

ms — The desired value for the millisecond component of this. The actual value is
the result of parameter normalization.
ns — The desired value for the nanosecond component of this. The actual value is
the result of parameter normalization.
clock — The clock providing the association for the newly constructed object.

@BlockFree
@SCJAllowed
public RelativeTime(RelativeTime time)

426 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

Make a new RelativeTime object from the given RelativeTime object.

time — The RelativeTime object which is the source for the copy.

METHODS

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public RelativeTime add(RelativeTime time)

Create a new instance of RelativeTime representing the result of adding time
to the value of this and normalizing the result.

time — The time to add to this.
returns A new RelativeTime object whose time is the normalization of this plus
millis and nanos.

@BlockFree
@SCJAllowed
public RelativeTime add(RelativeTime time , RelativeTime dest)

Return an object containing the value resulting from adding time to the value
of this and normalizing the result.

time — The time to add to this.
dest — If dest is not null, the result is placed there and returned. Otherwise, a new
object is allocated for the result.
returns the result of the normalization of this plus the RelativeTime parameter time
in dest if dest is not null, otherwise the result is returned in a newly allocated object.

@BlockFree
@SCJAllowed
public RelativeTime add(long millis , int nanos , RelativeTime dest)

8 July 2010 Version 0.76
Confidentiality: Public Distribution

427

Safety Critical Specification for Java

Return an object containing the value resulting from adding millis and nanos
to the values from this and normalizing the result.

millis — The number of milliseconds to be added to this.
nanos — The number of nanoseconds to be added to this.
dest — If dest is not null, the result is placed there and returned. Otherwise, a new
object is allocated for the result.
returns the result of the normalization of this plus millis and nanos in dest if dest is
not null, otherwise the result is returned in a newly allocated object.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public RelativeTime add(long millis , int nanos)

Create a new object representing the result of adding millis and nanos to the
values from this and normalizing the result.

millis — The number of milliseconds to be added to this.
nanos — The number of nanoseconds to be added to this.
returns A new RelativeTime object whose time is the normalization of this plus
millis and nanos.

@BlockFree
@SCJAllowed
public RelativeTime subtract(RelativeTime time , RelativeTime dest)

Return an object containing the value resulting from subtracting the value of
time from the value of this and normalizing the result.

time — The time to subtract from this.
dest — If dest is not null, the result is placed there and returned. Otherwise, a new
object is allocated for the result.
returns the result of the normalization of this minus the RelativeTime parameter time
in dest if dest is not null, otherwise the result is returned in a newly allocated object.

428 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public RelativeTime subtract(RelativeTime time)

Create a new instance of RelativeTime representing the result of subtracting
time from the value of this and normalizing the result.

time — The time to subtract from this.
returns A new RelativeTime object whose time is the normalization of this minus
the parameter time parameter time.

D.2.31 CLASS ReleaseParameters

DECLARATION

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 0)
public abstract class ReleaseParameters

extends java.lang.Object

D.2.32 CLASS Scheduler

DECLARATION

@SCJAllowed
public abstract class Scheduler

extends java.lang.Object

D.2.33 CLASS SchedulingParameters

DECLARATION

@SCJAllowed
public class SchedulingParameters

extends java.lang.Object

8 July 2010 Version 0.76
Confidentiality: Public Distribution

429

Safety Critical Specification for Java

D.2.34 CLASS ScopedCycleException

DECLARATION

@SCJAllowed
public class ScopedCycleException

implements java.io.Serializable
extends java.lang.RuntimeException

CONSTRUCTORS

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public ScopedCycleException()

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@MemoryAreaEncloses(inner = {”this”}, outer = {”msg”})
@SCJAllowed
public ScopedCycleException(String description)

D.2.35 CLASS SizeEstimator

TBD: we need additional methods to allow SizeEstimation of thread stacks. In
particular, we need to be able to reserve memory for backing store. Perhaps
this belongs in a javax.safetycritical variant of SizeEstimator.

DECLARATION

@SCJAllowed
public final class SizeEstimator

extends java.lang.Object

430 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

CONSTRUCTORS

@BlockFree
@SCJAllowed
public SizeEstimator()

METHODS

@BlockFree
@SCJAllowed
public long getEstimate()

JSR 302 tightens the semantic requirements on the implementation of getEsti-
mate. For compliance with JSR 302, getEstimate() must return a conservative
upper bound on the amount of memory required to represent all of the memory
reservations associated with this SizeEstimator object.

@BlockFree
@SCJAllowed
public void reserve(SizeEstimator size , int num)

@BlockFree
@SCJAllowed
public void reserve(SizeEstimator size)

@BlockFree
@SCJAllowed
public void reserve(Class clazz , int num)

@BlockFree
@SCJAllowed
public void reserveArray(int length , Class type)

@BlockFree
@SCJAllowed

8 July 2010 Version 0.76
Confidentiality: Public Distribution

431

Safety Critical Specification for Java

public void reserveArray(int length)

D.2.36 CLASS ThrowBoundaryError

DECLARATION

@SCJAllowed
public class ThrowBoundaryError

implements java.io.Serializable
extends java.lang.Error

432 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Appendix E

Javadoc Description of Package
javax.safetycritical
SCJ provides some additional classes to provide the mission framework and handle
startup and shutdown of safety-critical applications. Package Contents Page

Interfaces
ManagedSchedulable . 437

An interface implemented by all Safety Critical Java Schedulable
classes.

Safelet . 437

A safety-critical application consists of one or more missions, exe-
cuted concurrently or in sequence.

Schedulable . 438

...no description...

Classes
AperiodicEvent . 439

TBD(kdn - july 5, 2010): Note that Mission.

AperiodicEventHandler . 440

...no description...

Cyclet . 441

433

Safety Critical Specification for Java

TBD: Does the JSR302 expert group approve of the following revi-
sion?

A safety-critical application consists of one or more missions, exe-
cuted concurrently or in sequence.

CyclicExecutive . 443

TBD: An earlier version of CyclicExecutive extended Mission.

CyclicSchedule . 445

A CyclicSchedule represents a time-driven sequence of firings for de-
terministic scheduling of periodic event handlers.

CyclicSchedule.Frame . 446

...no description...

InterruptHandler . 447

...no description...

InterruptHappening . 448

...no description...

Level0Mission . 448

A Level-Zero Safety Critical Java application is comprised of one or
more Level0Missions.

Level0MissionSequencer . 449

A MissionSequencer runs a sequence of independent Missions inter-
leaved with repeated execution of certain Missions.

ManagedEventHandler . 450

...no description...

ManagedInterruptHappening . 451

...no description...

ManagedMemory . 452

434 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

This is the base class for all safety critical Java memory areas.

ManagedThread . 453

...no description...

Mission . 454

A Safety Critical Java application is comprised of one or more Mis-
sions.

MissionSequencer . 457

A MissionSequencer runs a sequence of independent Missions inter-
leaved with repeated execution of certain Missions.

NoHeapRealtimeThread . 459

...no description...

PeriodicEventHandler . 460

...no description...

PortalExtender . 462

TBD: what is this?

PriorityScheduler . 462

...no description...

PrivateMemory .462

...no description...

Services . 463

System wide information

SingleMissionSequencer . 465

...no description...

StorageConfigurationParameters . 466

...no description...

StorageParameters . 467

8 July 2010 Version 0.76
Confidentiality: Public Distribution

435

Safety Critical Specification for Java

...no description...

Terminal . 469

A simple Terminal that puts out UTF8 version of String/StringBuilder,.

ThrowBoundaryError . 470

One ThrowBoundaryError is preallocated for each Schedulable in its
outer-most private scope.

436 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

E.1 Interfaces

E.1.1 INTERFACE ManagedSchedulable
An interface implemented by all Safety Critical Java Schedulable classes. It
defines the register mechanism.

DECLARATION

@SCJAllowed
public interface ManagedSchedulable

METHODS

@SCJAllowed
public void register()

Register the task with its Mission.

E.1.2 INTERFACE Safelet
A safety-critical application consists of one or more missions, executed con-
currently or in sequence. Every safety-critical application is represented by an
implementation of Safelet which identifies the outer-most MissionSequencer.
This outer-most MissionSequencer takes responsibility for running the sequence
of Missions that comprise this safety-critical application.

The mechanism used to identify the Safelet to a particular SCJ environment is
implementation defined.

Given the implementation s of Safelet that represents a particular SCJ ap-
plication, the SCJ infrastructure invokes in sequence s.setUp() followed by
s.getSequencer(). For the MissionSequencer q returned from s.getSequencer(),
the SCJ infrastructure arranges for an independent thread to begin executing the
code forthat sequencer and then waits for that thread to terminate its execution.
Upon termination of the MissionSequencer’s thread, the SCJ infrastructure in-
vokes s.tearDown().

DECLARATION

@SCJAllowed
public interface Safelet

8 July 2010 Version 0.76
Confidentiality: Public Distribution

437

Safety Critical Specification for Java

METHODS

@SCJAllowed
@SCJRestricted({javax.safetycritical.annotate.Restrict.INITIALIZATION})
public MissionSequencer getSequencer()

returns the MissionSequencer that oversees execution of Missions for this appli-
cation.

@SCJAllowed
public void setUp()

Code to execute before the sequencer starts.

@SCJAllowed
public void tearDown()

Code to execute after the sequencer ends.

E.1.3 INTERFACE Schedulable

DECLARATION

@SCJAllowed
public interface Schedulable

implements java.lang.Runnable

METHODS

@BlockFree
@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
public StorageParameters getThreadConfigurationParameters()

Does not allocate memory. Does not allow this to escape local variables.
Returns an object that resides in the corresponding thread’s MissionMemory
scope.

438 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

E.2 Classes

E.2.1 CLASS AperiodicEvent
TBD(kdn - july 5, 2010): Note that Mission.requestTermination() must disable
all AperiodicEvent objects associated with the Mission, in order to arrange that
all AperiodicEventHandlers associated with the Mission can be terminated and
joined. This means that the Mission needs to keep track of all AperiodicEvents,
so we really need to ”manage” AperiodicEvents, and I believe this means we’ll
have to register each one in the Mission.initialize() code. Should this class
extend an abstract ManagedEvent class?

DECLARATION

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public class AperiodicEvent

extends javax.realtime.AsyncEvent

CONSTRUCTORS

@Allocate({javax.safetycritical.annotate.Allocate.Area.THIS})
@MemoryAreaEncloses(inner = {”this”}, outer = {”handler”})
@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public AperiodicEvent(AperiodicEventHandler handler)

Constructor for an aperiodic event that is linked to a given handler.

Does not allocate memory. Does not allow this to escape the local variables.
Builds a link from “this” to handler, so handler must reside in memory that
encloses “this”.

handler — – the handler that is to be added to this event.

@Allocate({javax.safetycritical.annotate.Allocate.Area.THIS})
@MemoryAreaEncloses(inner = {”this”}, outer = {”handlers”})
@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public AperiodicEvent(AperiodicEventHandler []handlers)

Constructor for an aperiodic event that is linked to multiple handlers.

Does not allow this or handlers to escape the local variables. Allocates and
initializes an array of AperiodicEventHandler within the same scope as this

8 July 2010 Version 0.76
Confidentiality: Public Distribution

439

Safety Critical Specification for Java

in order to copy the handlers array. The elements of the handlers array must
reside in memory areas that enclose this.

Aside: we do not need to require that “handlers” encloses “this”, because we
need to make a copy of handlers in order to be robust. However, we do need
to required that handlers[i] encloses this for every value of i. Our existing
notation does not allow us to say what we might want to say. What I have said
is sufficient, but not necessary.

handlers — the handlers that are to be added to this event.

E.2.2 CLASS AperiodicEventHandler
DECLARATION

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public abstract class AperiodicEventHandler

extends javax.safetycritical.ManagedEventHandler

CONSTRUCTORS

@MemoryAreaEncloses(inner = {”this”, ”this”, ”this”}, outer = {”priority”, ”release info”,
”mem info”})
@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public AperiodicEventHandler(PriorityParameters priority , AperiodicParameters
release info , StorageParameters scp , long memSize)

Constructor to create an aperiodic event handler.

Does not perform memory allocation. Does not allow this to escape local
scope. Builds links from this to priority and parameters, so those two argu-
ments must reside in scopes that enclose this.

priority — specifies the priority parameters for this periodic event handler. Must not
be null.
release info — specifies the periodic release parameters, in particular the start time,
period and deadline miss and cost overrun handlers. Note that a relative start time is
not relative to NOW but relative to the point in time when initialization is finished
and the timers are started. This argument must not be null. TBD whether we support
deadline misses and cost overrun detection.
scp — The mem info parameter describes the organization of memory dedicated to

440 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

execution of the underlying thread.
memSize — the size in bytes of the memory area to be used for the execution of this
event handler. 0 for an empty memory area. Must not be negative. (added by MS)
Throws IllegalArgumentException if priority, parameters or if memSize is negative.

@MemoryAreaEncloses(inner = {”this”, ”this”, ”this”, ”this”}, outer = {”priority”, ”re-
lease info”, ”mem info”, ”name”})
@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public AperiodicEventHandler(PriorityParameters priority , AperiodicParameters
release info , StorageParameters scp , long memSize , String name)

Constructor to create an aperiodic event handler.

Does not perform memory allocation. Does not allow this to escape local
scope. Builds links from this to priority, parameters, and name so those three
arguments must reside in scopes that enclose this.

priority — specifies the priority parameters for this periodic event handler. Must not
be null.

release info — specifies the periodic release parameters, in particular the deadline
and deadline miss handlers.

scp — The mem info parameter describes the organization of memory dedicated to
execution of the underlying thread.

memSize — the size in bytes of the memory area to be used for the execution of this
event handler. 0 for an empty memory area. Must not be negative. (added by MS)
Throws IllegalArgumentException if priority, parameters or if memSize is nega-
tive.

E.2.3 CLASS Cyclet
TBD: Does the JSR302 expert group approve of the following revision?

A safety-critical application consists of one or more missions, executed concur-
rently or in sequence. Every Level-0 safety-critical application is represented
by Cyclet or a subclass of Cyclet which identifies the outer-most MissionSe-
quencer. This outer-most MissionSequencer takes responsibility for running
the sequence of Missions that comprise this safety-critical application.

The mechanism used to identify the Safelet to a particular SCJ environment is
implementation defined.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

441

Safety Critical Specification for Java

Given class c of type Cyclet or a subclass of Cyclet that represents a particular
SCJ application, the SCJ infrastructure invokes in sequence c.setUp() followed
by c.getSequencer(). For the MissionSequencer q returned from s.getSequencer(),
the SCJ infrastructure arranges for an independent thread to begin executing the
code for that sequencer and then waits for that thread to terminate its execution.
Upon termination of the MissionSequencer’s thread, the SCJ infrastructure in-
vokes s.tearDown().

DECLARATION

@SCJAllowed
public class Cyclet

implements javax.safetycritical.Safelet
extends java.lang.Object

CONSTRUCTORS

@SCJAllowed
public Cyclet()

Construct a Cyclet.

METHODS

@SCJAllowed
@SCJRestricted({javax.safetycritical.annotate.Restrict.INITIALIZATION})
public Level0MissionSequencer getSequencer()

The default implementation of getSequencer() returns a SingleMissionSequencer()
which runs the Level0Mission represented by getPrimordialMission() exactly
once. The default sequencer runs at ”normal” priority and uses a conservatively
large value for StorageParameters.

returns the Level0MissionSequencer that oversees execution of Level0Missions for
this application.

@SCJAllowed
public void setUp()

442 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

Code to execute before the sequencer starts. The default implementation does
nothing.

@SCJAllowed
public void tearDown()

Code to execute after the sequencer ends. The default implementation does
nothing.

E.2.4 CLASS CyclicExecutive
TBD: An earlier version of CyclicExecutive extended Mission. In the current
design, CyclicExecutive produces a MissionSequencer which has the ability to
run a sequence of Missions. There’s been some back and forth on this. Many of
our earlier design choices were based on the assumption that a Level0 Safelet
consists of only one Mission, but we subsequently reversed that choice without
fixing the relevant libraries. I understand a fundamental desire that ”simple
things be simple”. But there’s some question in my mind as to what is simple.
The current draft document pursues option 2.

Option 1: CyclicExecutive extends Level0Mission and implements Safelet,
with the following consequences:

a. The application developer extends CyclicExecutive b. We need a variant of
CyclicExecutive that doesn’t extend Level0Mission, because some Level0 ap-
plications are going to be sequences of Missions rather than a single mission.
c. CyclicExecutive can define a default getSequencer method which returns a
SingleMissionSequencer with a ”normal” priority and a ”reasonably conserva-
tive” StorageParameters object, with the single mission represented by ”this”
CyclicExecutive. d. The user overrides the initialize() and getSchedule() meth-
ods, and optionally, the cleanup method. e. I don’t like the name CyclicExec-
utive for this. I’d rather call it CyclicApplication as it is both a Safelet and a
Mission.

Option 2: Cyclet is a concrete class that implements Safelet, but does not ex-
tend Level0Mission, with the following consequences:

a. Configuraton of the SCJ run-time specifies both the name of the Cyclet sub-
class (or Cyclet itself) and an optional name of the primordial mission. Infras-
tructure invokes in sequence the setUp(), getSequencer(), ”sequencer.run()”,
and tearDown(). b. The default implementation of getSequencer returns a
SingleMissionSequencer with a normal priority and a reasonably conservative
StorageParameters object, representing the single mission that is obtained by
invoking the static method of Cyclet that is declared as:

8 July 2010 Version 0.76
Confidentiality: Public Distribution

443

Safety Critical Specification for Java

public static Level0Mission getPrimordialMission();

The vendor is required to implement this method in a vendor-specific way. It
could, for example, obtain this mission from a command-line argument, or
from a configuration choice specified at build time. c. The application de-
veloper extends Level0Mission and overrides the initialize() and getSchedule()
methods.

DECLARATION

@SCJAllowed
public abstract class CyclicExecutive

implements javax.safetycritical.Safelet
extends java.lang.Object

CONSTRUCTORS

@SCJAllowed
@MemoryAreaEncloses(inner = {”this”}, outer = {”storage”})
public CyclicExecutive(StorageParameters storage)

Constructor for a Cyclic Executive. Level 0 Applications need to extend CyclicEx-
ecutive and define a getSchedule() method. Level 1 and Level 2 applications
should not extend CyclicExecutive, but rather should implement Safelet more
directly.

storage —

METHODS

@SCJAllowed
public static CyclicSchedule getSchedule(Level0Mission m)

TBD: Does the JSR302 expert group approve of the following revision?

A previous revision declared this to be an abstract instance method taking an
array of PeriodicEventHandlers as its argument. That earlier design did not
generalize to the situation under which a Level0 application consists of a se-
quence of Missions, each of which needs a distinct cyclic scheduler. This newer
design generalizes to sequences of Level-0 missions, and also makes more ef-
fective use of the revised design under which Missions reside in the same scope

444 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

as their ManagedSchedulables, so a Mission can easily find all of its Managed-
Schedulables.

returns the schedule to be used by for the Level0Mission identified by argument
m. The cyclic schedule is typically generated by vendor-specific tools. The returned
object is expected to reside within the MissionMemory of Level0Mission m.

@SCJAllowed
public MissionSequencer getSequencer()

Under normal circumstances, this is invoked from SCJ infrastructure code with
ImmortalMemory as the current allocation area.

returns the sequencer to be used for the Level 0 application. By default this is a
SingleMissionSequencer, although this method can be overridden by the application
if an alternative sequencer is desired.

E.2.5 CLASS CyclicSchedule
A CyclicSchedule represents a time-driven sequence of firings for deterministic
scheduling of periodic event handlers. The static cyclic scheduler repeatedly
executes the firing sequence.

DECLARATION

@SCJAllowed
public class CyclicSchedule

extends java.lang.Object

CONSTRUCTORS

@Allocate({javax.safetycritical.annotate.Allocate.Area.THIS})
@MemoryAreaEncloses(inner = {”this”}, outer = {”frames”})
@SCJAllowed
public CyclicSchedule(CyclicSchedule.Frame []frames)

Construct a cyclic schedule by copying the frames array into a private array
within the same memory area as this newly constructed CyclicSchedule ob-
ject. Under normal circumstances, the CyclicSchedule is constructed within

8 July 2010 Version 0.76
Confidentiality: Public Distribution

445

Safety Critical Specification for Java

the MissionMemory area that corresponds to the Level0Mission that is to be
scheduled.

The frames array represents the order in which event handlers are to be sched-
uled. Note that some Frame entries within this array may have zero Peri-
odicEventHandlers associated with them. This would represent a period of
time during which the Level0Mission is idle.

E.2.6 CLASS CyclicSchedule.Frame

DECLARATION

@SCJAllowed
public static final class CyclicSchedule.Frame

extends java.lang.Object

CONSTRUCTORS

@Allocate({javax.safetycritical.annotate.Allocate.Area.THIS})
@MemoryAreaEncloses(inner = {”this”, ”this”}, outer = {”duration”, ”handlers”})
@SCJAllowed
public CyclicSchedule.Frame(RelativeTime duration , PeriodicEventHandler []handlers
)

Allocates and retains private shallow copies of the duration and handlers array
within the same memory area as this. The elements within the copy of the
handlers array are the exact same elements as in the handlers array. Thus, it
is essential that the elements of the handlers array reside in memory areas that
enclose this. Under normal circumstances, this Frame object is instantiated
within the MissionMemory area that corresponds to the Level0Mission that is
to be scheduled.

Within each execution frame of the CyclicSchedule, the PeriodicEventHandler
objects represented by the handlers array will be fired in same order as they
appear within this array. Normally, PeriodicEventHandlers are sorted into de-
creasing priority order prior to invoking this constructor.

446 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

E.2.7 CLASS InterruptHandler
DECLARATION

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public abstract class InterruptHandler

extends java.lang.Object

CONSTRUCTORS

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public InterruptHandler(int InterruptID)

Create and register an interrupt handler. Can only be called during the initial-
ization phase of a mission. The interrupt is automatically enabled. The ceiling
of the objects is set to the hardware priority of the interrupt. It is assumed that
the associated MissionManager will unregister the interrupt handler on mission
termination.

Throws IllegalArgument when InterruptId is unsupported
Throws IllegalStateException when a handler is already registered or if called out-
side the initialization phase.

METHODS

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public static int getInterruptPriority(int InterruptId)

Every interrupt has an implementation-defined integer id.

returns The priority of the code that the first-level interrupts code executes. The
returned value is always greater than PriorityScheduler.getMaxPriority().
Throws IllegalArgument if unsupported InterruptId

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public synchronized void handleInterrupt()

Override this method to provide the first level interrupt handler. It is TBD
whether global interrupts are automatically enabled before this method is called.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

447

Safety Critical Specification for Java

E.2.8 CLASS InterruptHappening

DECLARATION

@SCJAllowed
public class InterruptHappening

extends javax.realtime.Happening

CONSTRUCTORS

@SCJAllowed
public InterruptHappening()

@SCJAllowed
public InterruptHappening(int id)

@SCJAllowed
public InterruptHappening(int id , String name)

@SCJAllowed
public InterruptHappening(String name)

METHODS

@SCJAllowed
public final int getPriority(int id)

@SCJAllowed
protected synchronized void process()

E.2.9 CLASS Level0Mission

A Level-Zero Safety Critical Java application is comprised of one or more
Level0Missions. Each Level0Mission is implemented as a subclass of this ab-
stract Level0Mission class.

448 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

DECLARATION

@SCJAllowed
public abstract class Level0Mission

extends javax.safetycritical.Mission

CONSTRUCTORS

@Allocate({javax.safetycritical.annotate.Allocate.Area.THIS})
@SCJAllowed
public Level0Mission()

Constructor for a Level0Mission. Normally, application-specific code found
within the application-defined subclass of MissionSequencer instantiates a new
Level0Mission in the MissionMemory area that is dedicated to that Level0Mission.
Upon entry into the constructor, this same MissionMemory area is the current
allocation area.

Note that this class inherits missionMemorySize(), initialize(), requestTermi-
nation(), terminationRequested(), requestSequenceTermination(), sequenceTer-
minationRequested(), and cleanUp() methods from Mission.

TBD: Under what conditions would we want to prohibit construction of a new
Level0Mission. Presumably, it is ”harmless” for a PEH to instantiate a new
Level0Mission. But what if the PEH instantiates a Mission, and then tries to
”start” it? Kelvin suggests to resolve this problem by hiding the start method.

E.2.10 CLASS Level0MissionSequencer
A MissionSequencer runs a sequence of independent Missions interleaved with
repeated execution of certain Missions.

DECLARATION

@SCJAllowed
public abstract class Level0MissionSequencer

extends javax.safetycritical.MissionSequencer

CONSTRUCTORS

@MemoryAreaEncloses(inner = {”this”}, outer = {”priority”})
@SCJAllowed

8 July 2010 Version 0.76
Confidentiality: Public Distribution

449

Safety Critical Specification for Java

@SCJRestricted({javax.safetycritical.annotate.Restrict.INITIALIZATION})
public Level0MissionSequencer(PriorityParameters priority , StorageParameters
storage)

Construct a Level0MissionSequencer to run at the priority and with the mem-
ory resources specified by its parameters.

Throws IllegalStateException if invoked at an inappropriate time. The only appro-
priate times for instantiation of a new MissionSequencer are (a) during execution of
Safelet.getSequencer() by SCJ infrastructure during startup of an SCJ application, or
(b) during execution of Mission.initialize() by SCJ infrastructure during initialization
of a new Mission in a LevelTwo configuration of the SCJ run-time environment.

METHODS

@SCJAllowed
protected abstract Level0Mission getNextMission()

This method is called by infrastructure to select the initial Mission to execute,
and subsequently, each time one Mission terminates, to determine the next
Mission to execute.

Prior to each invocation of getNextMission() by infrastructure, infrastructure
instantiates and enters a very large MissionMemory allocation area. The typi-
cal behavior is for getNextMission() to return a Mission object that resides in
this MissionMemory area.

returns the next Mission to run, or null if no further Missions are to run under the
control of this MissionSequencer.

E.2.11 CLASS ManagedEventHandler

DECLARATION

@SCJAllowed
public abstract class ManagedEventHandler

implements javax.safetycritical.ManagedSchedulable
extends javax.realtime.BoundAsyncEventHandler

450 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

METHODS

@SCJAllowed
protected void cleanUp()

Application developers override this method with code to be executed when
this event handler’s execution is disabled (upon termination of the enclosing
mission).

@SCJAllowed
public String getName()

returns the name of this event handler.

@Override
@SCJAllowed
public abstract void handleAsyncEvent()

Application developers override this method with code to be executed when-
ever the event(s) to which this event handler is bound is fired.

@Override
@SCJAllowed
public void register()
See Also: javax.safetycritical.ManagedSchedulable.register()

E.2.12 CLASS ManagedInterruptHappening
DECLARATION

@SCJAllowed
public class ManagedInterruptHappening

extends javax.safetycritical.InterruptHappening

CONSTRUCTORS

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public ManagedInterruptHappening()

8 July 2010 Version 0.76
Confidentiality: Public Distribution

451

Safety Critical Specification for Java

Creates a Happening in the current memory area with a system assigned name
and id.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public ManagedInterruptHappening(int id)

Creates a Happening in the current memory area with the specified id and a
system-assigned name.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public ManagedInterruptHappening(int id , String name)

Creates a Happening in the current memory area with the name and id given.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public ManagedInterruptHappening(String name)

Creates a Happening in the current memory area with the name name and a
system-assigned id.

METHODS

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public void uncaughtException(Exception E)

Called by the Infrastructure if an interrupt handler throws an uncaught excep-
tion

E.2.13 CLASS ManagedMemory
This is the base class for all safety critical Java memory areas. The class pro-
vides a uniform method of retrieving the mission manager of the memory areas’
mission.

DECLARATION

@SCJAllowed
public abstract class ManagedMemory

extends javax.realtime.LTMemory

452 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

METHODS

@SCJAllowed
public ManagedSchedulable getOwner()

E.2.14 CLASS ManagedThread
DECLARATION

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
public class ManagedThread

implements javax.safetycritical.ManagedSchedulable
extends javax.realtime.NoHeapRealtimeThread

CONSTRUCTORS

@MemoryAreaEncloses(inner = {”this”}, outer = {”scheduling”})
@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
public ManagedThread(PriorityParameters scheduling , StorageParameters stor-
age)

Does not allow this to escape local variables. Creates a link from the con-
structed object to the scheduling parameter. Thus, scheduling must reside in a
scope that encloses ”this”.

The priority represented by scheduling parameter is consulted only once, at
construction time. If scheduling.getPriority() returns different values at differ-
ent times, only the initial value is honored.

TBD: what is the ”default” ThreadConfigurationParameters? Or should re re-
move this constructor?

@MemoryAreaEncloses(inner = {”this”, ”this”, ”this”}, outer = {”schedule”, ”mem info”,
”logic”})
@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
public ManagedThread(PriorityParameters scheduling , StorageParameters mem info
, Runnable logic)

Does not allow this to escape local variables. Creates a link from the con-
structed object to the scheduling, memory, and logic parameters . Thus, all of
these parameters must reside in a scope that enclose ”this”.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

453

Safety Critical Specification for Java

The priority represented by scheduling parameter is consulted only once, at
construction time. If scheduling.getPriority() returns different values at differ-
ent times, only the initial value is honored.

METHODS

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
public void delay(HighResolutionTime time)

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
public void start()

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
public boolean terminationPending()

E.2.15 CLASS Mission

A Safety Critical Java application is comprised of one or more Missions. Each
Mission is implemented as a subclass of this abstract Mission class.

DECLARATION

@SCJAllowed
public abstract class Mission

extends java.lang.Object

CONSTRUCTORS

@Allocate({javax.safetycritical.annotate.Allocate.Area.THIS})
@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public Mission()

Constructor for a Mission. Normally, application-specific code found within
the application-defined subclass of MissionSequencer instantiates a new Mis-
sion in the MissionMemory area that is dedicated to that Mission. Upon entry
into the constructor, this same MissionMemory area is the current allocation
area.

454 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

TBD: Under what conditions would we want to prohibit construction of a new
Mission. Presumably, it is ”harmless” for a PEH to instantiate a new Mission.
But what if the PEH instantiates a Mission, and then tries to ”start” it? Kelvin
suggests to resolve this problem by hiding the start method.

METHODS

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
protected void cleanUp()

Method to clean up after an application terminates. Infrastructure calls cleanup
after all ManagedSchedulables associated with this Mission have terminated,
but before control leaves the dedicated MissionMemory area. The default im-
plementation of cleanUp does nothing. User-defined subclasses may override
its implementation.

@SCJAllowed
public static Mission getCurrentMission()

Obtain the current mission.

returns the current mission instance.

@SCJAllowed
protected abstract void initialize()

Perform initialization of the Mission. Infrastructure calls initialize after the
Mission has been instantiated and the MissionMemory has been resized to
match the size returned from Mission.missionMemorySize. Upon entry into
the initialize() method, the current allocation context is the MissionMemory
area dedicated to this particular Mission.

The default implementation of initialize() does nothing. User-defined sub-
classes may override its implementation.

The typical implementation of initialize() instantiates and registers all Man-
agedSchedulable objects that consitute this Mission. The infrastructure en-
forces that ManagedSchedulables can only be instantiated and registered if
the currently executing ManagedSchedulable is running a Mission.initialize()
method under the direction of the Safety Critical Java infrastructure. The in-
frastructure arranges to begin executing the registered ManagedSchedulable

8 July 2010 Version 0.76
Confidentiality: Public Distribution

455

Safety Critical Specification for Java

objects associated with a particular Mission upon return from the initialize()
method.

Besides initiating the associated ManagedSchedulable objects, this method
may also instantiate and/or initialize certain Mission-level data structures. Note
that objects shared between ManagedSchedulables typically reside within the
MissionMemory scope. Individual ManagedSchedulables can gain access to
these objects by passing references to their constructors, or by obtaining a ref-
erence to the current mission (by invoking Mission.getCurrentMission()) and
coercing this reference to the known Mission subclass.

@SCJAllowed
public abstract long missionMemorySize()

returns the desired size of the MissionMemory assocciated with this Mission. Note
that the MissionMemory is allocated initially with a very large size, and then is trun-
cated to the size returned from this method, which is invoked immediately following
return from instantiation and construction of this Mission object.

@SCJAllowed
public final void requestSequenceTermination()

Ask for termination of the current mission and its sequencer. The effect of this
method is to invoke requestSequenceTermination() on the MissionSequencer
that is responsible for execution of this Mission.

TBD: Kelvin made this method final. Ok?

@SCJAllowed
public void requestTermination()

This method provides a standard interface for requesting termination of a Mis-
sion. The default implementation has the effect of setting internal state so that
subsequent invocations of terminationPending() shall return true. The addi-
tional effects are to (1) arrange for all of the periodic event handlers associated
with this Mission to be disabled so that no further firings will occur, and (2)
arranging to disable all AperiodicEventHandlers so that no further firings will
be honored, and (3) decrementing the pending fire count for each event handler
so that the event handler can be effectively shut down following completion of
any event handling that is currently active.

An application-specific subclass of Mission may override this method in order
to insert application-specific code to communicate the intent to shutdown to

456 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

specific ManagedSchedulables. It is especially useful to override requestTer-
mination() within Missions that include ManagedThread or inner-nested Mis-
sionSequencers.

TBD: there’s no mention of pending fire count in the @SCJAllowed API of
BoundAsyncEventHandler. What is our intended treatment of this?

@SCJAllowed
public final boolean sequenceTerminationPending()

Check if the current MissionSequencer is trying to terminate.

returns true if and only if the requestSequenceTermination() method for the Mis-
sionSequencer that controls execution of this Mission has been invoked.

@SCJAllowed
public final boolean terminationPending()

Check if the current mission is trying to terminate.

returns true if and only if this Mission’s requestTermination() method has been in-
voked.

E.2.16 CLASS MissionSequencer
A MissionSequencer runs a sequence of independent Missions interleaved with
repeated execution of certain Missions.

DECLARATION

@SCJAllowed
public abstract class MissionSequencer

extends javax.realtime.BoundAsyncEventHandler

CONSTRUCTORS

@MemoryAreaEncloses(inner = {”this”}, outer = {”priority”})
@SCJAllowed
@SCJRestricted({javax.safetycritical.annotate.Restrict.INITIALIZATION})

8 July 2010 Version 0.76
Confidentiality: Public Distribution

457

Safety Critical Specification for Java

public MissionSequencer(PriorityParameters priority , StorageParameters storage
)

Construct a MissionSequencer to run at the priority and with the memory re-
sources specified by its parameters.

Throws IllegalStateException if invoked at an inappropriate time. The only appro-
priate times for instantiation of a new MissionSequencer are (a) during execution of
Safelet.getSequencer() by SCJ infrastructure during startup of an SCJ application, or
(b) during execution of Mission.initialize() by SCJ infrastructure during initialization
of a new Mission in a LevelTwo configuration of the SCJ run-time environment.

METHODS

@SCJAllowed
protected abstract Mission getNextMission()

This method is called by infrastructure to select the initial Mission to execute,
and subsequently, each time one Mission terminates, to determine the next
Mission to execute.

Prior to each invocation of getNextMission() by infrastructure, infrastructure
instantiates and enters a very large MissionMemory allocation area. The typi-
cal behavior is for getNextMission() to return a Mission object that resides in
this MissionMemory area.

returns the next Mission to run, or null if no further Missions are to run under the
control of this MissionSequencer.

@SCJAllowed
public final synchronized void handleAsyncEvent()

This method is declared final because the implementation is provided by the
vendor of the SCJ implementation and shall not be overridden. This method
performs all of the activities that correspond to sequencing of Missions by this
MissionSequencer.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
public final void requestSequenceTermination()

458 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

Try to finish the work of this mission sequencer soon by invoking the cur-
rently running Mission’s requestTermination method. Upon completion of the
currently running Mission, this MissionSequencer shall return from its even-
tHandler method without invoking getNextMission and without starting any
additional missions.

Note that requestSequenceTermination does not force the sequence to termi-
nate because the currently running Mission must voluntarily relinquish its re-
sources.

TBD: shouldn’t we also have a sequenceTerminationPending() method? We
need something like this in order to implement Mission.sequenceTerminationPending().

TBD: why restrict this to level 2? in level 0 and level 1, requesting sequence
termination represents a mechanism to request ”graceful” shutdown of an ap-
plication.

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
public final boolean sequenceTerminationPending()

E.2.17 CLASS NoHeapRealtimeThread
DECLARATION

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
public class NoHeapRealtimeThread

extends javax.realtime.RealtimeThread

CONSTRUCTORS

@MemoryAreaEncloses(inner = {”this”}, outer = {”scheduling”})
@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
public NoHeapRealtimeThread(PriorityParameters scheduling , StorageParame-
ters mem info)

Does not allow this to escape local variables. Creates a link from the con-
structed object to the scheduling parameter. Thus, scheduling must reside in a
scope that encloses ”this”.

The priority represented by scheduling parameter is consulted only once, at
construction time. If scheduling.getPriority() returns different values at differ-
ent times, only the initial value is honored.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

459

Safety Critical Specification for Java

TBD: what is the ”default” ThreadConfigurationParameters? Or should re re-
move this constructor?

@MemoryAreaEncloses(inner = {”this”, ”this”, ”this”}, outer = {”schedule”, ”mem info”,
”logic”})
@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
public NoHeapRealtimeThread(PriorityParameters scheduling , StorageParame-
ters mem info , Runnable logic)

Does not allow this to escape local variables. Creates a link from the con-
structed object to the scheduling, memory, and logic parameters . Thus, all of
these parameters must reside in a scope that enclose ”this”.

The priority represented by scheduling parameter is consulted only once, at
construction time. If scheduling.getPriority() returns different values at differ-
ent times, only the initial value is honored.

METHODS

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
public void start()

E.2.18 CLASS PeriodicEventHandler
DECLARATION

@SCJAllowed
public abstract class PeriodicEventHandler

extends javax.safetycritical.ManagedEventHandler

CONSTRUCTORS

@MemoryAreaEncloses(inner = {”this”, ”this”, ”this”}, outer = {”priority”, ”parame-
ters”, ”memSize”})
@SCJAllowed
public PeriodicEventHandler(PriorityParameters priority , PeriodicParameters pa-
rameters , StorageParameters scp , long memSize)

Constructor to create a periodic event handler.

460 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

Does not perform memory allocation. Does not allow this to escape local
scope. Builds links from this to priority and parameters, so those two argu-
ments must reside in scopes that enclose this.

priority — specifies the priority parameters for this periodic event handler. Must not
be null.
parameters — specifies the periodic release parameters, in particular the start time,
period and deadline miss and cost overrun handlers. Note that a relative start time is
not relative to NOW but relative to the point in time when initialization is finished
and the timers are started. This argument must not be null.
scp — The scp parameter describes the organization of memory dedicated to execu-
tion of the underlying thread. (added by MS)
memSize — the size in bytes of the memory area to be used for the execution of this
event handler. 0 for an empty memory area. Must not be negative.
Throws IllegalArgumentException if priority, parameters or if memSize is negative.

@MemoryAreaEncloses(inner = {”this”, ”this”, ”this”, ”this”}, outer = {”priority”, ”pa-
rameters”, ”memSize”, ”name”})
@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public PeriodicEventHandler(PriorityParameters priority , PeriodicParameters re-
lease , StorageParameters scp , long memSize , String name)

Constructor to create a periodic event handler.

Does not perform memory allocation. Does not allow this to escape local
scope. Builds links from this to priority, parameters, and name so those three
arguments must reside in scopes that enclose this.

priority — specifies the priority parameters for this periodic event handler. Must not
be null.

release — specifies the periodic release parameters, in particular the start time and
period. Note that a relative start time is not relative to NOW but relative to the point
in time when initialization is finished and the timers are started. This argument must
not be null.

scp — The scp parameter describes the organization of memory dedicated to execu-
tion of the underlying thread. (added by MS)

memSize — the size in bytes of the private scoped memory area to be used for the
execution of this event handler. 0 for an empty memory area. Must not be negative.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

461

Safety Critical Specification for Java

Throws IllegalArgumentException if priority parameters are null or if memSize is
negative.

E.2.19 CLASS PortalExtender
TBD: what is this?

DECLARATION

@SCJAllowed
public abstract class PortalExtender

extends java.lang.Object

E.2.20 CLASS PriorityScheduler
DECLARATION

@SCJAllowed
public class PriorityScheduler

extends javax.realtime.PriorityScheduler

METHODS

@BlockFree
@SCJAllowed
public int getMaxHardwarePriority()

@BlockFree
@SCJAllowed
public int getMinHardwarePriority()

E.2.21 CLASS PrivateMemory
DECLARATION

@SCJAllowed
public class PrivateMemory

extends javax.safetycritical.ManagedMemory

462 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

CONSTRUCTORS

@SCJAllowed
public PrivateMemory(long size)

@SCJAllowed
public PrivateMemory(SizeEstimator estimator)

E.2.22 CLASS Services
System wide information

DECLARATION

@SCJAllowed
public class Services

extends java.lang.Object

METHODS

@SCJAllowed
public static void captureBackTrace(Throwable association)

Captures the stack back trace for the current thread into its thread-local stack
back trace buffer and remembers that the current contents of the stack back
trace buffer is associated with the object represented by the association argu-
ment. The size of the stack back trace buffer is determined by the StoragePa-
rameters object that is passed as an argument to the constructor of the corre-
sponding Schedulable. If the stack back trace buffer is not large enough to
capture all of the stack back trace information, the information is truncated in
an implementation dependent manner.

@SCJAllowed
public static AffinitySet createSchedulingDomain(BitSet bitSet)

returns an AffinitySet representing the scheduling domain defined by the bitSet
Throws ProcessorAffinityException if a processor indicated by the bitSet already
appears in a previously created scheduling domain

8 July 2010 Version 0.76
Confidentiality: Public Distribution

463

Safety Critical Specification for Java

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 2)
public static void delay(HighResolutionTime delay)

This is like sleep except that it is not interruptible and it uses nanoseconds
instead of milliseconds.

delay — is the number of nanoseconds to suspend
TBD: should this be called suspend or deepSleep to no have a ridiculously long
name?
TBD: should not be a long nanoseconds?

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public static int getDefaultCeiling()

returns the default ceiling priority The value is the highest software priority.

@SCJAllowed
public static Level getDeploymentLevel()

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public static int getInterruptPriority(int InterruptId)

Every interrupt has an implementation-defined integer id.

returns The priority of the code that the first-level interrupts code executes. The
returned value is always greater than PriorityScheduler.getMaxPriority().
Throws IllegalArgument if unsupported InterruptId

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public static void nanoSpin(int nanos)

Busy wait in nano seconds.

nanos —

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public static void registerInterruptHandler(int InterruptId , InterruptHandler IH)

464 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

Registers an interrupt handler.

Throws IllegalArgument if unsupported InterruptId IllegalStateException if handler
already registered

@SCJAllowed(javax.safetycritical.annotate.Level.LEVEL 1)
public static void setCeiling(Object O , int pri)

sets the ceiling priority of object O The priority can be in the software or hard-
ware priority range.

Throws IllegalThreadState if called outside the mission phase

E.2.23 CLASS SingleMissionSequencer

DECLARATION

@SCJAllowed
public class SingleMissionSequencer

extends javax.safetycritical.Level0MissionSequencer

CONSTRUCTORS

@SCJAllowed
@BlockFree
@SCJRestricted({javax.safetycritical.annotate.Restrict.INITIALIZATION})
public SingleMissionSequencer(PriorityParameters priority , StorageParameters
storage)

METHODS

@SCJAllowed
@BlockFree
@Override
protected Level0Mission getNextMission()
See Also: javax.safetycritical.MissionSequencer.getInitialMission()

8 July 2010 Version 0.76
Confidentiality: Public Distribution

465

Safety Critical Specification for Java

E.2.24 CLASS StorageConfigurationParameters
DECLARATION

@SCJAllowed
public class StorageConfigurationParameters

extends java.lang.Object

CONSTRUCTORS

@SCJAllowed
public StorageConfigurationParameters(long totalBackingStore , int nativeStack ,
int javaStack)

Stack sizes for schedulable objects and sequencers. Passed as parameter to the
constructor of mission sequencers and schedulable objects.

totalBackingStore — size of the backing store reservation for worst-case scope usage
in bytes
nativeStack — size of native stack in bytes (vendor specific)
javaStack — size of Java execution stack in bytes (vendor specific)

@SCJAllowed
public StorageConfigurationParameters(long totalBackingStore , int nativeStack-
Size , int javaStackSize , int messageLength , int stackTraceLength)

Stack sizes for schedulable objects and sequencers. Passed as parameter to the
constructor of mission sequencers and schedulable objects.

totalBackingStore — size of the backing store reservation for worst-case scope usage
in bytes
nativeStack — size of native stack in bytes (vendor specific)
javaStack — size of Java execution stack in bytes (vendor specific)
messageLength — length of the space in bytes dedicated to message associated
with this Schedulable object’s ThrowBoundaryError exception plus all the method
names/identifiers in the stack backtrace
stackTraceLength — the number of byte for the StackTraceElement array dedicated
to stack backtrace associated with this Schedulable object’s ThrowBoundaryError
exception.

466 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

METHODS

@SCJAllowed
public long getJavaStackSize()

returns the size of the Java stack available to the assocated SO.

@SCJAllowed
public int getMessageLength()

return the length of the message buffer

@SCJAllowed
public long getNativeStackSize()

returns the size of the native method stack available to the assocated SO.

@SCJAllowed
public int getStackTraceLength()

return the length of the stack trace buffer

@SCJAllowed
public long getTotalBackingStoreSize()

returns the size of the total backing store available for scoped memory areas cre-
ated by the assocated SO.

E.2.25 CLASS StorageParameters
DECLARATION

@SCJAllowed
public class StorageParameters

extends java.lang.Object

CONSTRUCTORS

@SCJAllowed
public StorageParameters(long totalBackingStore , long nativeStack , long javaS-
tack)

8 July 2010 Version 0.76
Confidentiality: Public Distribution

467

Safety Critical Specification for Java

Stack sizes for schedulable objects and sequencers. Passed as parameter to the
constructor of mission sequencers and schedulable objects.

TBD: kelvin changed nativeStack and javaStack to long. Note that getJavaS-
tackSize() and getNativeStackSize() methods were already declared to return
long. It seems that we have an implicit assumption that memory sizes are rep-
resented by long. do others agree with this change?

totalBackingStore — size of the backing store reservation for worst-case scope usage
in bytes
nativeStack — size of native stack in bytes (vendor specific)
javaStack — size of Java execution stack in bytes (vendor specific)

@SCJAllowed
public StorageParameters(long totalBackingStore , long nativeStackSize , long
javaStackSize , int messageLength , int stackTraceLength)

Stack sizes for schedulable objects and sequencers. Passed as parameter to the
constructor of mission sequencers and schedulable objects.

TBD: kelvin changed nativeStack and javaStack to long. Note that getJavaS-
tackSize() and getNativeStackSize() methods were already declared to return
long. It seems that we have an implicit assumption that memory sizes are rep-
resented by long. do others agree with this change?

totalBackingStore — size of the backing store reservation for worst-case scope usage
in bytes
nativeStack — size of native stack in bytes (vendor specific)
javaStack — size of Java execution stack in bytes (vendor specific)
messageLength — length of the space in bytes dedicated to message associated
with this Schedulable object’s ThrowBoundaryError exception plus all the method
names/identifiers in the stack backtrace
stackTraceLength — the number of byte for the StackTraceElement array dedicated
to stack backtrace associated with this Schedulable object’s ThrowBoundaryError
exception.

METHODS

@SCJAllowed
public long getJavaStackSize()

returns the size of the Java stack available to the assocated SO.

468 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

@SCJAllowed
public int getMessageLength()

return the length of the message buffer

@SCJAllowed
public long getNativeStackSize()

returns the size of the native method stack available to the assocated SO.

@SCJAllowed
public int getStackTraceLength()

return the length of the stack trace buffer

@SCJAllowed
public long getTotalBackingStoreSize()

returns the size of the total backing store available for scoped memory areas cre-
ated by the assocated SO.

E.2.26 CLASS Terminal
A simple Terminal that puts out UTF8 version of String/StringBuilder,.... Does
not allocate memory. The output device is implementation dependent and writ-
ing to /dev/nul is a a valid implementation.

DECLARATION

@SCJAllowed
public class Terminal

extends java.lang.Object

Author
Martin Schoeberl

METHODS

@SCJAllowed
public static Terminal getTerminal()

8 July 2010 Version 0.76
Confidentiality: Public Distribution

469

Safety Critical Specification for Java

Get the single output device.

returns something

@SCJAllowed
public void write(CharSequence s)

Write the character sequence to the implementation dependent output device
in UTF8.

s —

@SCJAllowed
public void writeln()

Just a CRLF output.

@SCJAllowed
public void writeln(CharSequence s)

Same as write, but add a newline. CRLF does not hurt on a Unix terminal.

s —

E.2.27 CLASS ThrowBoundaryError

One ThrowBoundaryError is preallocated for each Schedulable in its outer-
most private scope.

DECLARATION

@SCJAllowed
public class ThrowBoundaryError

extends javax.realtime.ThrowBoundaryError

470 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

CONSTRUCTORS

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public ThrowBoundaryError()

Shall not copy ”this” to any instance or static field.

Allocates an application- and implementation-dependent amount of memory in
the current scope (to represent stack backtrace).

METHODS

@BlockFree
@SCJAllowed
public Class getPropagatedExceptionClass()

Performs no allocation. Shall not copy ”this” to any instance or static field.

Returns a reference to the Class of the exception most recently thrown across a
scope boundary by the current thread.

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public String getPropagatedMessage()

Shall not copy ”this” to any instance or static field.

Allocates and returns a String object and its backing store to represent the mes-
sage associated with the thrown exception that most recently crossed a scope
boundary within this thread.

For each \texttt{Schedulable}, a single shared \texttt{String\-Builder} rep-
resents the stack back trace method and class names for the most recently
constructed \texttt{Throwable}, and the message for the \texttt{Throwable}
that most recently crossed a scope boundary. The \texttt{get\-Propagated\-
Message} method copies data out of this shared \texttt{StringBuilder} object.

The original message is truncated if it is longer than the length of the thread-
local \texttt{StringBuilder} object, which length is specified in the \texttt{Storage\-
Con\-fig\-ura\-tion\-Pa\-ra\-meters} for this \texttt{Schedulable}.

8 July 2010 Version 0.76
Confidentiality: Public Distribution

471

Safety Critical Specification for Java

@Allocate({javax.safetycritical.annotate.Allocate.Area.CURRENT})
@BlockFree
@SCJAllowed
public StackTraceElement [] getPropagatedStackTrace()

Shall not copy ”this” to any instance or static field.

Allocates a StackTraceElement array, StackTraceElement objects, and all in-
ternal structure, including String objects referenced from each StackTraceEle-
ment to represent the stack backtrace information available for the exception
that was most recently associated with this ThrowBoundaryError object.

Each Schedulable maintains a single thread-local buffer to represent the stack
back trace information associated with the most recent invocation of System.captureStackBacktrace().
The size of this buffer is specified by providing a StorageParameters object
as an argument to construction of the Schedulable. Most commonly, Sys-
tem.captureStackBacktrace() is invoked from within the constructor of java.lang.Throwable.
getPropagatedStackTrace() returns a representation of this thread-local back
trace information. Under normal circumstances, this stack back trace infor-
mation corresponds to the exception represented by this ThrowBoundaryError
object. However, certain execution sequences may overwrite the contents of
the buffer so that the stack back trace information so that the stack back trace
information is not relevant.

@BlockFree
@SCJAllowed
public int getPropagatedStackTraceDepth()

Performs no allocation. Shall not copy ”this” to any instance or static field.

Returns the number of valid elements stored within the StackTraceElement
array to be returned by getPropagatedStackTrace().

472 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Appendix F

Javadoc Description of Package
javax.safetycritical.annotate
Package Contents Page

Interfaces

Classes
Level . 474

...no description...

Restrict . 474

...no description...

473

Safety Critical Specification for Java

F.1 Interfaces

F.2 Classes

F.2.1 CLASS Level
DECLARATION

@SCJAllowed
public class Level

extends java.lang.Enum

FIELDS

@SCJAllowed
public static final Level LEVEL 0

@SCJAllowed
public static final Level LEVEL 1

@SCJAllowed
public static final Level LEVEL 2

METHODS

@SCJAllowed
public static Level getLevel(String value)

@SCJAllowed
public abstract int value()

F.2.2 CLASS Restrict
DECLARATION

@SCJAllowed
public class Restrict

extends java.lang.Enum

474 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

FIELDS

@SCJAllowed
public static final Restrict ALLOCATE FREE

@SCJAllowed
public static final Restrict ANY TIME

@SCJAllowed
public static final Restrict BLOCK FREE

@SCJAllowed
public static final Restrict CLEANUP

@SCJAllowed
public static final Restrict INITIALIZATION

@SCJAllowed
public static final Restrict MAY ALLOCATE

@SCJAllowed
public static final Restrict MAY BLOCK

8 July 2010 Version 0.76
Confidentiality: Public Distribution

475

Safety Critical Specification for Java

476 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Appendix G

Javadoc Description of Package
javax.safetycritical.io
Package Contents Page

Interfaces

Classes
Connector . 478

The class holding all static methods for creating all connection ob-
jects.

ConsoleConnection . 479

...no description...

477

Safety Critical Specification for Java

G.1 Interfaces

G.2 Classes

G.2.1 CLASS Connector

The class holding all static methods for creating all connection objects.

DECLARATION

@SCJAllowed
public class Connector

extends java.lang.Object

FIELDS

@SCJAllowed
public static final int READ

@SCJAllowed
public static final int READ WRITE

@SCJAllowed
public static final int WRITE

METHODS

@SCJAllowed
public static Connection open(String name , int mode)

@SCJAllowed
public static OutputStream openOutputStream(String name)

478 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Safety Critical Specification for Java

G.2.2 CLASS ConsoleConnection
DECLARATION

@SCJAllowed
public class ConsoleConnection

implements javax.microedition.io.StreamConnection
extends java.lang.Object

METHODS

@SCJAllowed
public void close()

@SCJAllowed
public InputStream openInputStream()

@SCJAllowed
public OutputStream openOutputStream()

8 July 2010 Version 0.76
Confidentiality: Public Distribution

479

Safety Critical Specification for Java

480 Version 0.76
Confidentiality: Public Distribution

8 July 2010

Bibliography

481

	Introduction
	Definitions, Background, and Scope
	Additional Constraints on Java Technology
	Key Specification Terms
	Specification Context
	Overview of the Remainder of the Document

	Programming Model
	The Mission Concept
	Compliance Levels
	Level 0
	Level 1
	Level 2

	SCJ Annotations
	Use of Asynchronous Event Handlers
	Development vs. Deployment Compliance
	Verification of Safety Properties

	Mission Life Cycle
	Semantics and Requirements
	Level Considerations
	Level 0
	Level 1
	Level 2

	API
	Safelet
	MissionSequencer
	Mission
	Cyclet
	CyclicSchedule
	CyclicSchedule.Frame
	Level0Mission
	Level0MissionSequencer
	SingleMissionSequencer

	Application Initialization Sequence Diagram
	A Sample Level 0 Application
	A Slightly More Complex Level 0 Application
	Level 2 Example
	MyLevel2App.java
	MainMissionSequencer.java
	PrimaryMission.java
	CleanupMission.java
	SubMissionSequencer.java
	StageOneMission.java
	StageTwoMission.java
	MyPeriodicEventHandler.java
	MyCleanupThread.java

	Concurrency and Scheduling Models
	Semantics and Requirements
	Level Considerations
	Level 0
	Level 1
	Level 2

	The Parameter Classes
	Class java.safetycritical.StorageParameters
	Class javax.realtime.ReleaseParameters
	Class java.realtime.PeriodicParameters
	Class javax.realtime.AperiodicParameters
	Class javax.realtime.SchedulingParameters
	Class javax.realtime.PriorityParameters

	Asynchronous Events and their Handlers
	Class javax.realtime.AsyncEvent
	Class javax.safetycritical.AperiodicEvent
	Class javax.realtime.Schedulable
	Class javax.safetycritical.ManagedSchedulable
	Class javax.realtime.AsyncEventHandler
	Class javax.realtime.BoundAsyncEventHandler
	Class javax.safetycritical.ManagedEventHandler
	Class javax.safetycritical.PeriodicEventHandler
	Class javax.safetycritical.AperiodicEventHandler

	Threads and Real-Time Threads
	Class java.lang.Thread
	Class java.lang.Thread.UncaughtExceptionHandler
	Class javax.realtime.RealtimeThread
	Class javax.realtime.NoHeapRealtimeThread
	Class javax.safetycritical.ManagedThread

	Scheduling and Related Activities
	Class java.safetycritical.CyclicExecutive
	Class javax.safetycritical.CyclicSchedule
	Class javax.safetycritical.CyclicSchedule.Frame
	Class javax.realtime.Scheduler
	Class javax.realtime.PriorityScheduler
	Class javax.safetycritical.PriorityScheduler
	Class javax.realtime.AffinitySet
	Class jaxax.safetycritical.Services

	Rationale
	Scheduling and Synchronization Issues
	Multiprocessors
	Feasibility Analysis and Multi-Processors
	Impact of Clock Granularity
	Deadline Miss Detection

	Compatibility

	Interaction with External Devices
	Happenings and Interrupt Handling
	Semantics and Requirements
	Level Considerations

	The Happening Class Hierarchy
	Class javax.realtime.Happening
	javax.realtime.EventHappening
	javax.realtime.AutonomousHappening
	javax.safetycritical.ManagedAutonomousHappening
	javax.realtime.EventExaminer
	javax.realtime.ControlledHappening
	javax.safetycritical.ManagedControlledHappening
	javax.realtime.InterruptHappening
	javax.safetycritical.ManagedInterruptHappening

	Raw Memory Access
	Semantics and Requirements
	Level Considerations
	javax.realtime.RawMemoryName
	javax.realtime.RawIntegralAccess
	javax.realtime.RawIntegralAccessFactory
	javax.realtime.RawMemory

	Rationale
	Compatibility

	Input and Output Model
	Semantics and Requirements
	Level Considerations
	APIs
	Interface javax.microedition.io.Connection
	Class javax.microedition.io.Connector
	Class javax.microedition.io.ConnectionNotFoundException
	Interface javax.microedition.io.InputConnection
	Interface javax.microedition.io.OutputConnection
	Interface javax.microedition.io.StreamConnection

	Rationale
	Compatibility

	Memory Management
	Semantics and Requirements
	Memory Model

	Level Considerations
	Level 0
	Level 1
	Level 2

	Memory related APIs
	Interface javax.realtime.AllocationContext
	Interface javax.realtime.ScopedAllocationContext
	Class javax.realtime.MemoryArea
	Class javax.realtime.ImmortalMemory
	Class javax.realtime.ScopedMemory
	Class javax.realtime.LTMemory
	Class javax.safetycritical.ManagedMemory
	Class javax.safetycritical.MissionMemory
	Class javax.safetycritical.PrivateMemory
	Class javax.realtime.SizeEstimator

	Rationale
	Nesting Scopes

	Compatibility

	Clocks, Timers, and Time
	Semantics and Requirements
	Clocks
	Time
	RTSJ Constraints

	Level Considerations
	API
	Class javax.realtime.Clock
	Interface javax.realtime.ClockCallBack
	Class javax.realtime.HighResolutionTime
	Class javax.realtime.AbsoluteTime
	Class javax.realtime.RelativeTime

	Rationale
	Compatibility

	Java Metadata Annotations
	Semantics and Requirements
	Annotations for Enforcing Compliance Levels
	Annotations for Restricting Behavior
	Annotations for Memory Safety

	Level Considerations
	API
	Class javax.safetycritical.annotate.SCJRestricted
	Class javax.safetycritical.annotate.SCJAllowed
	Class javax.safetycritical.annotate.Level
	Class javax.safetycritical.annotate.Restrict

	Rationale and Examples
	Compliance Level Annotation Example
	Memory Safety Annotations Example
	A Large-Scale Example

	Class Libraries for Safety Critical Applications
	Comparison of SCJ with JDK 1.6 java.io
	Comparison of SCJ with JDK 1.6 java.lang package
	Comparison of SCJ API with JDK 1.6 java.lang.annotation
	Comparison of SCJ Safety Critical Java API with JDK 1.6 java.util

	JNI
	Semantics and Requirements
	Level Considerations
	API
	Supported Services
	Annotations

	Rationale
	Unsupported Services

	Example
	Compatibility
	RTSJ Compatibility Issues
	General Java Compatibility Issues

	Exceptions
	Semantics and Requirements
	New Functionality

	Level Considerations
	API
	Class java.lang.Error
	Class java.lang.Exception
	Class java.lang.Throwable
	Class jaxax.safetycritical.ThrowBoundaryError

	Rationale
	Compatibility
	RTSJ Compatibility Issues
	General Java Compatibility Issues

	Javadoc Description of Package java.io
	Interfaces
	Interface Closeable
	Interface Flushable
	Interface Serializable

	Classes
	Class FilterOutputStream
	Class IOException
	Class InputStream
	Class OutputStream

	Javadoc Description of Package java.lang
	Interfaces
	Interface Appendable
	Interface CharSequence
	Interface Cloneable
	Interface Comparable
	Interface Deprecated
	Interface Override
	Interface Runnable
	Interface SuppressWarnings
	Interface Thread.UncaughtExceptionHandler

	Classes
	Class ArithmeticException
	Class ArrayIndexOutOfBoundsException
	Class ArrayStoreException
	Class AssertionError
	Class BigDecimal
	Class BigInteger
	Class Boolean
	Class Byte
	Class Character
	Class Class
	Class ClassCastException
	Class ClassNotFoundException
	Class CloneNotSupportedException
	Class Double
	Class Enum
	Class Error
	Class Exception
	Class ExceptionInInitializerError
	Class Float
	Class IllegalArgumentException
	Class IllegalMonitorStateException
	Class IllegalStateException
	Class IllegalThreadStateException
	Class IncompatibleClassChangeError
	Class IndexOutOfBoundsException
	Class InstantiationException
	Class Integer
	Class InternalError
	Class InterruptedException
	Class InvocationTargetException
	Class Long
	Class Math
	Class NegativeArraySizeException
	Class NullPointerException
	Class Number
	Class NumberFormatException
	Class Object
	Class OutOfMemoryError
	Class RuntimeException
	Class Short
	Class StackOverflowError
	Class StackTraceElement
	Class StrictMath
	Class String
	Class StringBuilder
	Class StringIndexOutOfBoundsException
	Class System
	Class Thread
	Class Throwable
	Class UnsatisfiedLinkError
	Class UnsupportedOperationException
	Class VirtualMachineError
	Class Void

	Javadoc Description of Package javax.microedition.io
	Interfaces
	Interface Connection
	Interface InputConnection
	Interface OutputConnection
	Interface StreamConnection

	Classes
	Class ConnectionNotFoundException
	Class Connector

	Javadoc Description of Package javax.realtime
	Interfaces
	Interface AllocationContext
	Interface ClockCallBack
	Interface EventExaminer
	Interface PhysicalMemoryName
	Interface RawIntegralAccess
	Interface RawIntegralAccessFactory
	Interface RawMemoryName
	Interface RawScalarAccess
	Interface RawScalarAccessFactory
	Interface Schedulable
	Interface ScopedAllocationContext

	Classes
	Class AbsoluteTime
	Class AffinitySet
	Class AperiodicParameters
	Class AsyncEvent
	Class AsyncEventHandler
	Class AutonomousHappening
	Class BoundAsyncEventHandler
	Class Clock
	Class ControlledHappening
	Class EventHappening
	Class Happening
	Class HighResolutionTime
	Class IllegalAssignmentError
	Class ImmortalMemory
	Class InaccessibleAreaException
	Class InterruptHappening
	Class LTMemory
	Class MemoryAccessError
	Class MemoryArea
	Class MemoryInUseException
	Class MemoryScopeException
	Class NoHeapRealtimeThread
	Class PeriodicParameters
	Class PhysicalMemoryManager
	Class PriorityParameters
	Class PriorityScheduler
	Class ProcessorAffinityException
	Class RawMemoryAccess
	Class RealtimeThread
	Class RelativeTime
	Class ReleaseParameters
	Class Scheduler
	Class SchedulingParameters
	Class ScopedCycleException
	Class SizeEstimator
	Class ThrowBoundaryError

	Javadoc Description of Package javax.safetycritical
	Interfaces
	Interface ManagedSchedulable
	Interface Safelet
	Interface Schedulable

	Classes
	Class AperiodicEvent
	Class AperiodicEventHandler
	Class Cyclet
	Class CyclicExecutive
	Class CyclicSchedule
	Class CyclicSchedule.Frame
	Class InterruptHandler
	Class InterruptHappening
	Class Level0Mission
	Class Level0MissionSequencer
	Class ManagedEventHandler
	Class ManagedInterruptHappening
	Class ManagedMemory
	Class ManagedThread
	Class Mission
	Class MissionSequencer
	Class NoHeapRealtimeThread
	Class PeriodicEventHandler
	Class PortalExtender
	Class PriorityScheduler
	Class PrivateMemory
	Class Services
	Class SingleMissionSequencer
	Class StorageConfigurationParameters
	Class StorageParameters
	Class Terminal
	Class ThrowBoundaryError

	Javadoc Description of Package javax.safetycritical.annotate
	Interfaces
	Classes
	Class Level
	Class Restrict

	Javadoc Description of Package javax.safetycritical.io
	Interfaces
	Classes
	Class Connector
	Class ConsoleConnection

