
ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

901 San Antonio Road
Palo Alto, CA 94303 USA
650 960-1300 fax 650 969-9131

Sun Microsystems, Inc.

Mobile Information Device
Profile (JSR-37)

Specification (JCP Public Draft)

Java 2 Platform Micro Edition, Draft 0.9

Draft 0.9, May 5, 2000

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

May 5, 2000 Contents iii

Contents

Preface 13

1. Introduction and Background 17

1.1 Introduction 17

1.2 Background 17

1.3 Document Conventions 19

1.3.1 Definitions 19

1.3.2 Formatting Conventions 19

2. Requirements and Scope 21

2.1 Requirements 21

2.1.1 Hardware 21

2.1.2 Software 22

2.2 Scope 23

3. Architecture 25

3.1 Overview 25

3.2 Architecture 25

4. System Functions 29

4.1 Overview 29

4.2 System Properties 29

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

iv Mobile Information Device Profile (JSR-37) May 5, 2000

4.3 Application Resource Files 30

4.4 System.exit 30

5. Timers 31

5.1 Overview 31

5.2 Timers 31

6. Networking 33

6.1 Overview 33

6.2 HttpConnection 34

6.2.1 HTTP Request Headers 35

6.3 DatagramConnection 36

7. Persistent Storage 37

7.1 Overview 37

7.2 Record Store 37

7.3 Records 38

8. Applications 39

8.1 Overview 39

8.2 MIDP MIDlet Suite 39

8.3 MIDP Execution Environment 40

8.4 MIDlet Suite Packaging 41

8.4.1 JAR Manifest 43

8.4.2 MIDlet Classes 44

8.5 Application Descriptor 44

8.6 Application Lifecycle 46

9. User Interface 49

9.1 Overview 49

9.2 Structure of the MIDP UI API 50

9.2.1 Class Hierarchy 51

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

May 5, 2000 Contents v

9.2.2 Class Overview 52

9.2.3 Interplay with Application Manager 52

9.3 Event Handling 53

9.3.1 Abstract Commands 53

9.3.2 High-Level API for Events 54

9.3.3 Low-Level API for Events 55

9.3.4 Interplay of High-Level Commands and Low-Level API 57

9.4 Graphics and Text in Low-Level API 57

9.4.1 The Redrawing Scheme 57

9.4.2 Drawing Model 58

9.4.3 Coordinate System 59

9.4.4 Font Support 59

9.4.5 Drawing Text and Images 60

9.5 A Note on Concurrency 62

A. Implementation Notes 65

B. java.lang 71

B.1. IllegalStateException 72

C. java.util 73

C.1. Timer 75

C.2. TimerTask 81

D. javax.microedition.rms 83

D.1. InvalidRecordIDException 88

D.2. RecordComparator 89

D.3. RecordEnumeration 91

D.4. RecordFilter 95

D.5. RecordListener 96

D.6. RecordStore 98

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

vi Mobile Information Device Profile (JSR-37) May 5, 2000

D.7. RecordStoreException 105

D.8. RecordStoreFullException 106

D.9. RecordStoreNotFoundException 107

D.10. RecordStoreNotOpenException 108

E. javax.microedition.midlet 109

E.1. MIDlet 115

E.2. MIDletStateChangeException 118

F. javax.microedition.io 119

F.1. HttpConnection 121

G. javax.microedition.lcdui 137

G.1. Alert 139

G.2. Callable 145

G.3. Canvas 146

G.4. Choice 158

G.5. ChoiceGroup 164

G.6. Command 170

G.7. CommandListener 175

G.8. DateField 176

G.9. Display 180

G.10. Displayable 185

G.11. Font 187

G.12. Form 193

G.13. Gauge 198

G.14. Graphics 201

G.15. Image 216

G.16. ImageItem 219

G.17. Item 223

G.18. ItemStateListener 225

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

May 5, 2000 Contents vii

G.19. List 226

G.20. Screen 233

G.21. StringItem 235

G.22. TextBox 237

G.23. TextField 242

G.24. Ticker 249

Index 251

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

viii Mobile Information Device Profile (JSR-37) May 5, 2000

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

May 5, 2000 List of Tables ix

List of Tables

TABLE P-1. Revision History .. 13
TABLE 1-1. Specification Terms... 19
TABLE 1-2. Formatting Conventions .. 19
TABLE 3-1. MID Application Types... 27
TABLE 4-1. System Properties Defined by MIDP .. 29
TABLE 6-1. System Properties Used for User-Agent Request Header 36
TABLE 8-1. MIDlet Attributes .. 42
TABLE 8-2. Classes in the javax.microedition.midlet Package 47
TABLE A-1. Possible Classes of MIDlets .. 66
TABLE A-2. Typical MIDlet Management Software Operations 67

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

x Mobile Information Device Profile (JSR-37) May 5, 2000

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

May 5, 2000 List of Figures xi

List of Figures

FIGURE 3-1. High-Level Architecture View .. 26
FIGURE 6-1. HTTP Network Connection... 34

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

xii Mobile Information Device Profile (JSR-37) May 5, 2000

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

13

Preface

This document, Mobile Information Device Profile (JSR-37) Specification, (MIDP) is a
working draft of the definition of the Mobile Information Device Profile being defined under
the Java 2 Platform, Micro Edition (J2METM).

Revision History

TABLE P-1 Revision History

Date Version Description

May 5, 2000 0.9 First release for Public Draft.
Changes incorporated from MIDPEG meeting (April 13–
14).

April 13, 2000 0.8 Interim draft for MIDPEG internal review.

Mar. 21, 2000 0.7 Minor revisions for first release of Participant Draft.

Mar. 10, 2000 0.6 Preparing for Participant Draft. Addressed all comments
from third meeting of the MIDPEG.
Fixed minor formatting errors.
Re-ordered chapters to move new APIs toward back of
book.
All changes marked with change bars.

Feb. 25, 2000 0.5 Final draft for MIDPEG meeting (Mar 2–3, 2000).
Comments from MIDPEG incorporated. All revisions
marked with chambers.

Feb. 18, 2000 0.4 Revisions now marked with change bars.
Chapter 3, “Architecture” fleshed out.
“javax.microedition.rms” on page 83 added.

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

14 Mobile Information Device Profile (JSR-37) May 5, 2000

Feb. 11, 2000 0.3 Revisions and addition of following material:
Added Chapter 7, “Persistent Storage”

Feb. 4, 2000 0.2 Revisions and addition of the following material:
Chapter 8, “Applications”
Chapter 6, “Networking”
Chapter 4, “System Functions”
Chapter 5, “Timers”

Jan. 28, 2000 0.1 Initial release:
Chapter 1, “Introduction and Background”
Chapter 2, “Requirements and Scope”
Chapter 3, “Architecture”

TABLE P-1 Revision History

Date Version Description

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

May 5, 2000 Preface 15

Who Should Use This Specification
The audience for this document is the Java Community Process (JCP) expert group defining
this profile, implementors of the MIDP, and application developers targeting the MIDP.

A profile of J2ME defines device-type-specific sets of APIs for a particular vertical market
or industry. Profiles are more exactly defined in the related publication, Configurations and
Profiles Architecture Specification, Sun Microsystems, Inc.

How This Specification Is Organized
The topics in this specification are organized according to the following chapters:

Chapter 1, “Introduction and Background,” provides a context for the MID Profile and
defines key terms used in this specification.

Chapter 2, “Requirements and Scope,” defines the scope of the specification and lists the
requirements.

Chapter 3, “Architecture,” defines the high-level architecture of the MIDP.

Chapter 4, “System Functions,” defines how the MIDP extends or modifies APIs from the
CLDC.

Chapter 5, “Timers,” defines the MIDP APIs for calendar and time functions.

Chapter 6, “Networking,” defines the networking APIs of the MIDP.

Chapter 7, “Persistent Storage,” defines the storage APIs for the MIDP.

Chapter 8, “Applications,” defines the concept of a MIDP application and provides an
overview to the associated APIs.

Chapter 9, “User Interface,” defines the graphical user interface APIs for the MIDP.

Appendix A, “Implementation Notes‚” discusses implementation issues for OEMs and
developers.

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

16 Mobile Information Device Profile (JSR-37) May 5, 2000

Related Literature
The Java Language Specification by James Gosling, Bill Joy, and Guy L. Steele. Addison-
Wesley, 1996, ISBN 0-201-63451-1

The Java Virtual Machine Specification (Java Series), Second Edition by Tim Lindholm
and Frank Yellin. Addison-Wesley, 1999, ISBN 0-201-43294-3

Configurations and Profiles Architecture Specification, Sun Microsystems, Inc.

The Java 2 Platform: Micro Edition, A White Paper, Sun Microsystems, Inc.

K Virtual Machine (KVM) Specification, Sun Microsystems, Inc.

KVM Core Application Programming Interface Specification, Sun Microsystems, Inc.

The K Virtual Machine (KVM), A White Paper, Sun Microsystems, Inc.

Connected, Limited Device Configuration (JSR-30), Sun Microsystems, Inc.

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

17

CHAPTER 1

Introduction and Background

1.1 Introduction
This document, produced as a result of Java Specification Request (JSR) 37, defines the
Mobile Information Device Profile (MIDP) for the Java 2 Platform, Micro Edition (J2ME™).
The goal of this specification is to define the architecture and the associated APIs required to
enable an open, third-party, application development environment for mobile information
devices, or MIDs.

The MIDP is designed to operate on top of the Connected Limited Device Configuration
(CLDC) which is described in Connected, Limited Device Configuration (JSR-30), Sun
Microsystems, Inc.

1.2 Background
This specification was produced by the Mobile Information Profile Expert Group (MIDPEG).
The following companies, listed in alphabetical order, are members of the MIDPEG:

n America Online

n DDI

n Ericsson

n Espial Group, Inc.

n Fujitsu

n Hitachi

n J-Phone

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

18 Mobile Information Device Profile (JSR-37) May 5, 2000

n Matsushita

n Mitsubishi

n Motorola, Inc.1

n NEC

n Nokia2

n NTT DoCoMo

n Palm

n Research In Motion

n Samsung

n Sharp

n Siemens

n Sony

n Sun Microsystems, Inc.3

n Symbian

n Telcordia Technologies, Inc.

Note – Disclaimer. This specification is Draft 0.9, and as such is subject to change.

1. Overall specification lead.

2. User-interface API leader.

3. Networking, persistent-storage, system, internationalization/localization, and timer API leader.

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

Chapter 1 Introduction and Background 19

1.3 Document Conventions

1.3.1 Definitions
This document uses definitions based upon those specified in RFC 2119 (See http://
www.ietf.org)

1.3.2 Formatting Conventions
This specification uses the following formatting conventions.

TABLE 1-1 Specification Terms

Term Definition

MUST The associated definition is an absolute requirement of this specification.

MUST NOT The definition is an absolute prohibition of this specification.

SHOULD Indicates a recommended practice. There may exist valid reasons in
particular circumstances to ignore this recommendation, but the full
implications must be understood and carefully weighed before choosing a
different course.

SHOULD NOT Indicates a non-recommended practice. There may exist valid reasons in
particular circumstances when the particular behavior is acceptable or even
useful, but the full implications should be understood and the case
carefully weighed before implementing any behavior described with this
label.

MAY Indicates that an item is truly optional.

TABLE 1-2 Formatting Conventions

Convention Description

Courier New Used in all Java code including keywords, data types, constants,
method names, variables, class names, and interface names.

Italic Used for emphasis and to signify the first use of a term.

http://www.ietf.org
http://www.ietf.org

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

20 Mobile Information Device Profile (JSR-37) May 5, 2000

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

21

CHAPTER 2

Requirements and Scope

2.1 Requirements
The requirements listed in this chapter are additional requirements above those found in
Connected, Limited Device Configuration (JSR-30), Sun Microsystems, Inc.

At a high level, the MIDP specification assumes that the MID is limited in its processing
power, memory, connectivity, and display size.

2.1.1 Hardware
As mentioned before, the main goal of the MIDPEG is to establish an open, third-party
application development environment for MIDs. To achieve this goal, the MIDPEG has
defined a MID to be a device that SHOULD have the following minimum characteristics:1

n Display:

n Screen-size: 96x54

n Display depth: 1-bit

n Pixel shape (aspect ratio): approximately 1:1

n Input:

n One or more of the following user-input mechanisms: “one-handed keyboard,”2 “two-
handed keyboard,”3 or touch screen

1. Memory requirements cited here are for MIDP components only. CLDC and other system software memory
requirements are beyond the scope of this specification and therefore not included.

2. A “one-handed” keyboard is a term used to describe an ITU-T phone keypad.

3. A “two-handed” keyboard is a term used to describe a QWERTY keyboard.

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

22 Mobile Information Device Profile (JSR-37) May 5, 2000

n Memory:

n 128 kilobytes of non-volatile memory4 for the MIDP components

n 8 kilobytes of non-volatile memory for application-created persistent data

n 32 kilobytes of volatile memory5 for the Java runtime (e.g., the Java heap)

n Networking:

n Two-way, wireless, possibly intermittent, with limited bandwidth

Examples of MIDs include, but are not restricted to, cellular phones, two-way pagers, and
wireless-enabled personal digital assistants (PDAs).

2.1.2 Software
For devices with the aforementioned hardware characteristics, there is still a broad range of
possible system software capabilities. Unlike the consumer desktop computer model where
there are large, dominant system software architectures, the MID space is characterized by a
wide variety of system software. For example, some MIDs may have a full-featured
operating system that supports multi-processing6 and hierarchical filesystems, while other
MIDs may have small, thread-based operating systems with no notion of a filesystem. Faced
with such variety, the MIDP makes minimal assumptions about the MID’s system software.
These requirements are as follows:

n A minimal kernel to manage the underlying hardware (i.e., handling of interrupts,
exceptions, and minimal scheduling). This kernel must provide at least one schedulable
entity to run the Java Virtual Machine (JVM). The kernel does not need to support
separate address spaces (or processes) or make any guarantees about either real-time
scheduling or latency behavior.

n A mechanism to read and write from non-volatile memory to support the APIs discussed
in Chapter 7, “Persistent Storage.”

n Read and write access to the device’s wireless networking to support the APIs discussed
in Chapter 6, “Networking.”

n A mechanism to provide a time base for use in timestamping the records written to
persistent storage (see Chapter 7, “Persistent Storage”) and to provide the basis of the
APIs in Chapter 5, “Timers.”

n A minimal capability to write to a bit-mapped graphics display.

4. Non-volatile means that the memory is expected to retain its contents between the user turning the devices “off” and
“on”. For the purposes of this specification, it is assumed that non-volatile memory is usually accessed in read mode, and
that special setup may be required to write to it. Examples of non-volatile memory include ROM, flash, and battery-
backed SDRAM. This specification does not define which memory technology a device must have, nor does it define the
behavior of such memory in a power-loss scenario.

5. Volatile means that the memory that is not expected to retain its contents between the user turning the device “off” and
“on”. For the purpose of this specification, it is assumed that volatile memory accesses are evenly split between reads and
writes, and no special setup is required to access it. The most common type of volatile memory is DRAM.

6. The ability to run multiple, concurrent processes, each with a separate and distinct memory map.

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

Chapter 2 Requirements and Scope 23

n A mechanism to capture user input from one (or more) of the three input mechanisms
previously discussed (see “Hardware” on page 21).

n A mechanism for managing the application life-cycle of the device. More information on
application management can be found in “Implementation Notes” on page 65.

2.2 Scope
MIDs span a potentially wide set of capabilities. Rather than try to address all such
capabilities, the MIDPEG agreed to limit the set of APIs specified, addressing only those
APIs that were considered absolute requirements to achieve broad portability. These APIs
are:

n Application (i.e., defining the semantics of a MIDP application and how it is controlled)

n User interface, or UI (includes display and input)

n Persistent storage

n Networking

n Timers

These APIs are discussed later in this document.

By the same reasoning, some areas of functionality were considered to be outside the scope
of the MIDP. These areas include:

n System-level APIs: The emphasis on the MIDP APIs is, again, on enabling application
programmers, rather than enabling system programming. Thus, low-level APIs that
specify a system interface to a MID’s power management or voice CODECs are beyond
the scope of this specification.

n Application delivery and management: While it is assumed that a MIDP-compliant
device will support dynamic application downloading, the diversity of the worldwide
wireless infrastructure makes it impractical to specify how the application download
occurs. For example, in a low-bandwidth wireless network, it may not be practical for
applications to be delivered to the device over the wireless link. Instead, such a device
may opt to enable application downloading via a serial link or other physical links. What
is assumed, however, is that an application running on a MID can access the network
through specified network APIs. How applications are actually stored or installed on a
MID is also beyond the scope of the specification. For a MID that has a full-featured,
hierarchical filesystem, storage and installation is easy to accomplish. On the other hand,
for devices that do not have a filesystem, application storage is much more problematic.

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

24 Mobile Information Device Profile (JSR-37) May 5, 2000

n Low-level security:7 The MIDP specifies no additional low-level security features other
than those provided by the CLDC.

n Application-level security:8 The MIDP’s application model is described in Chapter 8,
“Applications.” Other than the semantics implied by the MIDP application model, the
MIDP specifies no additional application-level security features other than those provided
by the CLDC.

n End-to-end security:9 Given the broad diversity of wireless infrastructure in the world,
the MIDPEG found it impossible to architect a single end-to-end security mechanism.

7. Low-level, or VM-level, security ensures that an ill-formed or maliciously-encoded Java class file does not crash the
MID’s Java Virtual Machine.

8. Application-level security defines which APIs that the application can access.

9. End-to-end security establishes a model that guarantees that a transaction initiated on a MID is protected (i.e., encrypted,
etc.) along the entire path from MID to/from the entity providing the services for that transaction.

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

25

CHAPTER 3

Architecture

3.1 Overview
This chapter addresses issues that both implementers and developers will encounter when
implementing and developing MIDP. While not comprehensive, this chapter does reflect the
most important issues raised during deliberations of the MIDPEG.

3.2 Architecture
As stated before, the goal of the MIDPEG is to create an open, third-party application
development environment for MIDs. In a perfect world, this specification would only have to
address functionality defined by the MIDP specification. In reality, most devices that
implement the MIDP specification will be, at least initially, devices that exist on the market
today. Figure 3-1 shows a high-level view of how the MIDP fits into a device. Note that not
all devices that implement the MIDP specification will have all the elements shown in this
figure, nor will every device necessarily layer its software as depicted in this figure.

In Figure 3-1, the lowest-level block (MID) represents the Mobile Information Device
hardware. On top of this hardware is the native system software. This layer includes the
operating system and libraries used by the device.

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

26 Mobile Information Device Profile (JSR-37) May 5, 2000

Starting at the next level, from left to right, is the next layer of software, the CLDC. This
block represents the K-Virtual Machine (KVM) and associated libraries defined by the
CLDC specification. This block provides the underlying Java functionality upon which
higher-level Java APIs may be built.

FIGURE 3-1 High-Level Architecture View

Two categories of APIs are shown on top of the CLDC:

n MIDP APIs: The set of APIs defined in this document.

n “OEM-specific” APIs: Given the broad diversity of devices in the MIDP space, it is not
possible to fully address all OEM requirements. These classes may be provided by an
OEM to access certain functionality specific to a given device. These applications may
not be portable to other MIDs.

Note that in the figure, the CLDC is shown as the basis of the MIDP and OEM-specific
APIs. This does not imply that these APIs cannot have native functionality (i.e., methods
declared as native). Rather, the intent of the figure is to show that any native methods on a
MID are actually part of the KVM, which maps the Java-level APIs to the underlying native
implementation.

MID

CLDC

MIDP

MIDP

Applications

OEM-Specific
Classes

OEM-Specific
Applications

Native

Applications

Native System Software

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

Chapter 3 Architecture 27

The top-most blocks in Figure 3-1 represent the application types possible on a MID. A short
description of each application type is shown in Table 3-1.

It is beyond the scope of this specification to address OEM-specific or native applications.

TABLE 3-1 MID Application Types

Application Type Description

MIDP A MIDP application, or “MIDlet,” is one that uses only the APIs
defined by the MIDP and CLDC specifications. This type of
application is the focus of the MIDP specification and is expected to
be the most common type of application on a MID.

OEM-Specific An OEM-specific application depends on classes that are not part of
the MIDP specification (i.e., the OEM-specific classes). These
applications are not portable across MIDs.

Native A native application is one that is not written in Java and is built on
top of the MID’s existing, native system software.

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

28 Mobile Information Device Profile (JSR-37) May 5, 2000

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

29

CHAPTER 4

System Functions

4.1 Overview
The MIDP is based on the Connected Limited Device Configuration (CLDC). Some features
of the CLDC are modified or extended by the MIDP.

4.2 System Properties
The MIDP defines the following additional property values that MUST be made available to
the application using java.lang.System.getProperty:

Property microedition.locale

The locale property MUST consist of the language, country code, and variant separated by
“-”. For example, “fr-FR” or “us-US”.

The language codes MUST be the lower-case two-letter codes as defined by ISO-639 (See
http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt).

TABLE 4-1 System Properties Defined by MIDP

System Property Description

microedition.locale The current locale of the device (null by default)

microedition.profiles must contain at least “MIDP-1.0”

http://www.ics.uci.edu/pub/ietf/http/related/iso639.txt

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

30 Mobile Information Device Profile (JSR-37) May 5, 2000

The country code MUST be the upper-case two-letter codes as defined by ISO-3166 (See
http://www.chemie.fu-berlin.de/diverse/doc/ISO_3166.html).

4.3 Application Resource Files
Application resource files are accessed using getResourceAsStream(String name) in
java.lang.Class. In the MIDP specification, getResourceAsStream is extended to
allow resource files to be retrieved from the application’s JAR file. The name MUST begin
with a forward slash (/) and MUST be an absolute pathname within the JAR file. This usage
is a subset of the J2SE getResourceAsStream behavior. The pathname requested MUST
exactly match the directory and filename in the JAR file.

4.4 System.exit
The behavior of java.lang.System.exit MUST throw a
java.lang.SecurityException when invoked by a MIDlet. The MIDlet MUST use
MIDlet.notifyDestroyed to indicate that it is complete.

http://www.chemie.fu-berlin.de/diverse/doc/ISO_3166.html

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

31

CHAPTER 5

Timers

5.1 Overview
The MIDP adds functions that allow the application to set and be notified of timers.

5.2 Timers
Applications that need to delay or schedule activities for a later time can use the Timer and
TimerTask classes, including functions for:

n one-time execution

n repeated execution at regular intervals

Classes
n java.util.Timer
n java.util.TimerTask

Please refer to “java.util” on page 73 for the details of the APIs.

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

32 Mobile Information Device Profile (JSR-37) May 5, 2000

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

33

CHAPTER 6

Networking

6.1 Overview
The MIDP extends the connectivity support provided by the Connected Limited Device
Configuration (CLDC) with specific functionality for the GenericConnection framework.
The MIDP supports a subset of the HTTP protocol, which can be implemented using both IP
protocols such as TCP/IP and non-IP protocols such as WAP and i-mode, utilizing a gateway
to provide access to HTTP servers on the Internet.

The GenericConnection framework is used to support client-server and datagram
networks. Using only the protocols specified by the MIDP will allow the application to be
portable to all MIDs. MIDP implementations MUST provide support for accessing HTTP 1.1
servers and services.

There are wide variations in wireless networks. It is the joint responsibility of the device and
the wireless network to provide the application service. It may require a gateway that can
bridge between the wireless transports specific to the network and the wired Internet. The
client application and the internet server MUST NOT need be required to know either that
non-IP networks are being used or the characteristics of those networks. While the client and
server MAY both take advantage of such knowledge to optimize their transmissions, they
MUST NOT be required to do so.

For example, a MID MAY have no in-device support for the Internet Protocol (IP). In this
case, it would utilize a gateway (Figure 6-1) to access the Internet, and the gateway would be
responsible for some services, such as DNS name resolution for Internet URLs. The device
and network may define and implement security and network access policies that restrict
access.

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

34 Mobile Information Device Profile (JSR-37) May 5, 2000

FIGURE 6-1 HTTP Network Connection

6.2 HttpConnection
The GenericConnection framework from the CLDC provides the base stream and content
interfaces. The interface HttpConnection provides the additional functionality needed to
set request headers, parse response headers, and perform other HTTP specific functions.
Please refer to “javax.microedition.io” on page 119 for the details of the
javax.microedition.io.HttpConnection API.

The interface MUST support:

n HTTP 1.1

Each device implementing the MIDP MUST support opening connections using the
following URL schemes1:

n “http” as defined by RFC2616 Hypertext Transfer Protocol -- HTTP/1.1

1. RFC2396 Uniform Resource Identifiers (URI): Generic Syntax.

GatewayGateway

http://

MID
http://

MID
http://

MID
http://

MID

Non-IP stack TCP/IP stack

Origin
Server

Gateway

Non-IP transport
for example,

TCP/IP

for example,

TL/PDC-P or WSP

iMode or WAP

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

Chapter 6 Networking 35

Each device implementing the MIDP MUST support the full specification of RFC2616
HEAD, GET and POST requests. The implementation MUST also support the absolute forms
of URIs.

The implementation MUST pass all request headers supplied by the application and response
headers as supplied by the network server. The ordering of request and response headers
MAY be changed. While the headers may be transformed in transit, they MUST be
reconstructed as equivalent headers on the device and server. Any transformations MUST be
transparent to the application and origin server. The HTTP implementation does not
automatically include any headers. The application itself is responsible for setting any
request headers that it needs.

Connections may be implemented with any suitable protocol providing the ability to reliably
transport the HTTP headers and data.2

6.2.1 HTTP Request Headers
The HTTP 1.1 specification provides a rich set of request and response headers that allow the
application to negotiate the form, format, language, and other attributes of the content
retrieved. In the MIDP, the application is responsible for selection and processing of request
and response headers. Only the User-Agent header is described in detail. Any other header
that is mutually agreed upon with the server may be used.

User-Agent Request Headers

For the MIDP, a simple User-Agent field may be used to identify the current device. As
specified by RFC2616, the field contains blank separated features where the feature contains
a name and optional version number.

The application is responsible for formatting and requesting that the User-Agent field be
included in http requests via the setRequestProperty method in the interface
javax.microedition.io.HttpConnection. It can supply any application-specific
features that are appropriate, in addition to any of the profile-specific request header values
listed below.

Applications are not required be loaded onto the device using HTTP. But if they are, then the
User-Agent request header should be included in requests to load an application descriptor or
application JAR file onto the device. This will allow the server to provide the most
appropriate application for the device.

2. RFC2616 takes great care to not to mandate TCP streams as the only required transport mechanism.

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

36 Mobile Information Device Profile (JSR-37) May 5, 2000

The user-agent field SHOULD contain the following features as defined by system properties
using java.lang.System.getProperty.

Example
User-Agent: Profile/MIDP-1.0 Configuration/CLDC-1.0
Content-Language: en-US

6.3 DatagramConnection
The MIDP specification does not mandate a datagram API/protocol for a MID. MIDs that
implement a datagram API/protocol SHOULD use the GenericConnection framework
(DatagramConnection interface) as defined by the CLDC specification.

TABLE 6-1 System Properties Used for User-Agent Request Header

System Property Description

microedition.profiles The set of profiles supported by this device.
For example, “MIDP-1.0.”

microedition.configuration The J2ME configuration supported by this device.
For example, “CLDC-1.0.”

microedition.locale The name of the current locale on this device.
For example, “en-US.”

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

37

CHAPTER 7

Persistent Storage

7.1 Overview
The MIDP provides a mechanism for MIDlets to persistently store data and retrieve it later.
This persistent storage mechanism, called the Record Management System (RMS), is
modeled after a simple record-oriented database.

7.2 Record Store
A record store consists of a collection of records that will remain persistent across multiple
invocations of a MIDlet. The platform is responsible for making its best effort to maintain
the integrity of the MIDlet’s record stores throughout the normal use of the platform,
including reboots, battery changes, etc.

Record stores are created in platform-dependent locations, which are not exposed to MIDlets.
The naming space for record stores is controlled at the MIDlet suite granularity. MIDlets
within a MIDlet suite are allowed to create multiple record stores, as long as they are each
given different names. When a MIDlet suite is removed from a platform, all record stores
associated with its MIDlets MUST also be removed. These APIs only allow the manipulation
of the MIDlet suite’s own record stores and do not provide any mechanism for record sharing
between MIDlets in different MIDlet suites. MIDlets within a MIDlet suite can access one
another’s record stores directly.

Record store names are case sensitive and may consist of any combination of up to 32
Unicode characters. Record store names MUST be unique within the scope of a given
MIDlet suite. In other words, MIDlets within a MIDlet suite are not allowed to create more

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

38 Mobile Information Device Profile (JSR-37) May 5, 2000

than one record store with the same name; however, a MIDlet in one MIDlet suite is allowed
to have a record store with the same name as a MIDlet in another MIDlet suite. In that case,
the record stores are still distinct and separate.

No locking operations are provided in this API. Record store implementations ensure that all
individual record store operations are atomic, synchronous, and serialized so that no
corruption occurs with multiple accesses. However, if a MIDlet uses multiple threads to
access a record store, it is the MIDlet’s responsibility to coordinate this access, or unintended
consequences may result. For example, if two threads in a MIDlet both call
RecordStore.setRecord() concurrently on the same record, the record store will
serialize these calls properly, and no database corruption will occur as a result. However, one
of the writes will be subsequently overwritten by the other, which may cause problems
within the MIDlet. Similarly, if a platform performs transparent synchronization of a record
store or other access from below, it is the platform’s responsibility to enforce exclusive
access to the record store between the MIDlets and synchronization engine.

This record store API uses long integers for time/date stamps, in the format used by
System.currentTimeMillis(). The record store is time stamped with the last time it was
modified. The record store also maintains a version, which is an integer that is incremented
for each operation that modifies the contents of the record store. These are useful for
synchronization engines as well as applications.

7.3 Records
Records are arrays of bytes. Developers can use DataInputStream and
DataOutputStream as well as ByteArrayInputStream and ByteArrayOutputStream
to pack and unpack different data types into and out of the byte arrays.

Records are uniquely identified within a given record store by their recordId, which is an
integer value. This recordId is used as the primary key for the records. The first record
created in a record store will have recordId equal to 1, and each subsequent recordId will
monotonically increase by one. For example, if two records are added to a record store, and
the first has a recordId of 'n', the next will have a recordId of (n+1). MIDlets can create
other indices by using the RecordEnumeration class.

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

39

CHAPTER 8

Applications

8.1 Overview
The MIDP defines an application model to allow the limited resources of the device to be
shared by multiple MIDP Applications, or MIDlets. It defines what a MIDlet is, how it is
packaged, what runtime environment is available to the MIDlet, and how it should be behave
so that the device can manage its resources. The application model defines how multiple
MIDlets forming a suite can be packaged together and share resources within the context of
a single Java Virtual Machine. Sharing is feasible with the limited resources and security
framework of the device since they are required to share class files and to be subject to a
single set of policies and controls.

8.2 MIDP MIDlet Suite
A MIDP application MUST use only functionality specified by the MIDP specification as it
is developed, tested, deployed, and run.

The elements of a MIDlet suite are:

n Runtime execution environment

n MIDlet suite packaging

n Application descriptor

n Application lifecycle

Each device is presumed to implement the functions required by its users to install, select,
run, and remove MIDlets. The term application management software is used to refer
collectively to these device specific functions (see Appendix A, “Implementation Notes”).

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

40 Mobile Information Device Profile (JSR-37) May 5, 2000

The application management software provides an environment in which the MIDlet is
installed, started, stopped, and uninstalled. It is responsible for handling errors during the
installation, execution, and removal of MIDlet suites and interacting with the user as needed.
It provides to the MIDlet(s) the Java™ runtime environment required by the MIDP
Specification.

One or more MIDlets MAY be packaged in a single JAR file. Each MIDlet consists of a
class that implements the MIDlet interface and other classes as may be needed by the
MIDlet. The manifest in the JAR file identifies for each MIDlet the class implementing the
MIDlet, its name, and icon. The MIDlet is the entity that is launched by the application
management software. When a MIDlet suite is invoked, a Java Virtual Machine is needed on
which the classes can be executed. A new instance of the MIDlet is created by the
application management software and used to direct the MIDlet to start, pause, and destroy
itself.

Sharing of data and other information between MIDlets is controlled by the individual APIs
and their implementations. For example, the Record Management System API specifies the
methods that should be used when the record stores associated with an MIDlet suite are
shared among MIDlets.

8.3 MIDP Execution Environment
The MIDP defines the execution environment provided to MIDlets. The execution
environment is shared by all MIDlets, and any MIDlet can interact directly with other
MIDlets packaged together. The application management software initiates the applications
and makes the following available to the MIDlet:

n Classes and native code that implement the CLDC, including a Java Virtual Machine

n Classes and native code that implement the MIDP runtime

n All classes from a single JAR file for execution

n Non-class files from a single JAR file as resources

n Contents of the descriptor file

The CLDC and Java Virtual Machine provide multi-threading, locking and synchronization,
the execution of byte codes, dispatching of methods, etc. A single VM is the scope of all
policy, naming, and resource management. If a device supports multiple VMs, each may
have its own scope, naming, and resource management policies. No CLDC functionality can
be superceded by a MIDlet suite.

The MIDP provides the classes that implement the MIDP APIs. MIDP classes MUST NOT
be superceded by MIDlet suite classes.

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

Chapter 8 Applications 41

A single JAR file contains all of the MIDlet’s classes. The MIDlet may load and invoke
methods from any class in the JAR file, in the MIDP, or in the CLDC. All of the classes
within these three scopes are shared among all of the threads running in the KVM. All states
accessible via those classes are available to any Java class running in the VM. There is a
single space containing the objects of all MIDlets, MIDP, and CLDC. The usual Java locking
and synchronization primitives should be used when necessary to avoid concurrency
problems. Each library will specify how it handles concurrency and how the MIDlet should
use it to run safely in a multi-threaded environment.

The class files of the MIDlet are only available for execution and can neither be read as
resources nor extracted for re-use. The implementation of the CLDC may store and interpret
the contents of the JAR file in any manner suitable.

The files from the JAR file that are not Java class files are made available using methods on
getResourceAsStream (see “Application Resource Files” on page 30).

The contents of the MIDlet descriptor file, if it is present, are made available via the
MIDlet.getAppProperty method.

8.4 MIDlet Suite Packaging
One or more MIDlets are packaged in a single JAR file that includes:

n A manifest describing the contents

n Java classes for the MIDlet(s) and classes shared by the MIDlets

n Resource files used by the MIDlet(s)

The developer is responsible for creating and distributing the components of the JAR file as
appropriate for the target user, device, network, locale, and jurisdiction. For example, for a
particular locale, the resource files would be tailored to contain the strings and images
needed for that locale.

The JAR manifest defines attributes that are used by the application management software to
identify and install the MIDlet suite and as defaults for attributes not found in the application
descriptor. The attributes are defined for use in both the manifest and the application
descriptor.

The predefined attributes listed below allow the application management software to
identify, retrieve, install, and invoke the MIDlet.

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

42 Mobile Information Device Profile (JSR-37) May 5, 2000

The version number has the format Major.Minor[.Micro] (X.X[.X]), where the .Micro
portion is MAY be omitted. (If the .Micro portion is not omitted, then it defaults to 0). In
addition, each portion of the version number is allowed a maximum of 2 decimal digits (i.e.,
0-99).

TABLE 8-1 MIDlet Attributes

Attribute Name Attribute Description

MIDlet-Name The name of the MIDlet suite that identifies the MIDlets to the
user.

MIDlet-Version The version number of the MIDlet suite. The format is
major.minor.micro as described in the JDK Product Versioning
Specification1. It can be used by the application management
software for install and upgrade uses, as well as communication
with the user.

1. The Java™ Product Versioning Specification:
http://java.sun.com/products/jdk/1.2/docs/guide/versioning/spec/VersioningSpecification.html

MIDlet-Vendor The organization that provides the MIDlet suite.

MIDlet-Description The description of the MIDlet suite.

MIDlet-Info-URL A URL for information further describing the MIDlet suite.

MIDlet-<n> The name, icon, and class of the nth MIDlet in the JAR file
separated by a comma. The lowest value of <n> MUST be 1 and
consecutive ordinals MUST be used.
1. Name is used to identify this MIDlet to the user.
2. Icon is the name of an image (PNG) within the JAR for the

icon of the nth MIDlet.
3. Class is the name of the class implementing the MIDlet

interface for the nth MIDlet. The class MUST have a public no-
args constructor.

MIDlet-Jar-URL The URL from which the JAR file can be loaded.

MIDlet-Jar-Size The number of bytes in the JAR file.

MIDlet-Data-Size The minimum number of bytes of persistent data required by the
MIDlet. The device may provide additional storage according to its
own policy. The default is zero.

MicroEdition-Profile The J2ME profile required, using the same format and value as the
System property microedition.profiles (for example
“MIDP-1.0”).

MicroEdition-Configuration The J2ME Configuration required using the same format and value
as the System property microedition.configuration (for
example “CLDC-1.0”).

http://java.sun.com/products/jdk/1.2/docs/guide/versioning/spec/VersioningSpecification.html

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

Chapter 8 Applications 43

For example, 1.0.0 can be used to specify the first version of a MIDlet suite. For each portion
of the version number, leading zeros are not significant. For example, 08 is equivalent to 8.
Also, 1.0 is equivalent to 1.0.0. However, 1.1 is equivalent to 1.1.0, and not 1.0.1.

A missing MIDlet-Version tag is assumed to be 0.0.0, which means that any non-zero
version number is considered as a newer version of the MIDlet suite.

8.4.1 JAR Manifest
The manifest provides information about the contents of the JAR file. JAR file formats and
specifications are available at http://java.sun.com/products/jdk/1.2/docs/guide/jar/index.html.
Refer to the JDK JAR and manifest documentation for the syntax and related details.
Manifest attributes that start with “MIDlet-” and do not duplicate those in the application
descriptor are passed to the MIDlet when requested.

The manifest MUST contain the following attributes:

n MIDlet-Name

n MIDlet-Version

n MIDlet-Vendor

n MIDlet-<n> for each MIDlet

n MicroEdition-Profile

n MicroEdition-Configuration

The manifest MAY contain the following:

n MIDlet-Description

n MIDlet-Info-URL

n MIDlet-Data-Size

For example, a manifest for a hypothetical suite of card games would look like the following
example:

MIDlet-Name: CardGames
MIDlet-Version: 1.1.9
MIDlet-Vendor: CardsRUS
MIDlet-1: Solitaire, /Solitare.png, com.cardsrus.org.Solitare
MIDlet-2: JacksWild, /JacksWild.png, com.cardsrus.org.JacksWild

http://java.sun.com/products/jdk/1.2/docs/guide/jar/index.html

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

44 Mobile Information Device Profile (JSR-37) May 5, 2000

8.4.2 MIDlet Classes
All Java classes needed by the MIDlet are be placed in the JAR file using the standard
structure, based on mapping the package names to directory and file names. Each period is
converted to a forward slash (/), another forward slash is prepended, and the .class
extension is appended. For example, a class com.sun.microedition.Test would be
placed in the JAR file with the name /com/sun/microedition/Test.class.

8.5 Application Descriptor
The application descriptor is used by the application management software to manage the
MIDlet and is used by the MIDlet itself for configuration specific attributes. Each JAR file
may be accompanied by an application descriptor. The descriptor allows the application
management software on the device to verify that the MIDlet is suited to the device before
loading the full JAR file of the MIDlet suite. It also allows configuration-specific attributes
(parameters) to be supplied to the MIDlet(s) without modifying the JAR file.

To allow the application management software to recognize a file as an application
descriptor, a file extension and MIME type are defined.

n The file extension of an application descriptor file MUST be jad.

n The MIME type of an application descriptor file MUST be text/vnd.sun.j2me.app-
descriptor.

Note – The extension and MIME type MUST be submitted to and approved by the Internet
Assigned Numbers Authority (IANA).

A predefined set of attributes (Table 8-1) is specified to allow the application management
software to identify, retrieve, and install the MIDlet(s). All attributes appearing in the
descriptor file are made available to the MIDlet(s). The developer may use attributes not
beginning with “MIDlet-” for application-specific purposes. All “MIDlet-” attributes are
provided to the MIDlet(s). Attribute names are case-sensitive and MUST match exactly. The
MIDlet retrieves attributes by name by calling the MIDlet.getAppProperty method.1

1. See “public final java.lang.String getAppProperty (java.lang.String key)” on page 116.

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

Chapter 8 Applications 45

The application descriptor MUST contain the following attributes:

n MIDlet-Name

n MIDlet-Version

n MIDlet-Vendor

n MIDlet-Jar-URL

n MIDlet-Jar-Size

The application descriptor MAY contain:

n MIDlet-Description

n MIDlet-Info-URL

n MIDlet-Data-Size

n MIDlet specific attributes that do not begin with “MIDlet-”

The mandatory attributes MIDlet-Name, MIDlet-Version, and MIDlet-Vendor MUST be
duplicated in the descriptor and manifest files. If they are not identical, then the JAR MUST
NOT be installed. While other attributes are not required to be duplicated, their values MAY
differ even though both the manifest and descriptor files contain the same attribute. In this
case, the value from the descriptor file will override the value from the manifest file.

Generally speaking the format of the application descriptor is a sequence of lines consisting
of an attribute name followed by a colon, the value of the attribute, and a carriage return.
White space is ignored before and after the value. The order of the attributes is arbitrary.

The application descriptor MAY be encoded for transport or storage and MUST be decoded
to Unicode before parsing, using the rules below. For example, an ISO8859-1 encoded file
would need to be read through the equivalent of java.io.InputStreamReader with the
appropriate encoding. Descriptors retrieved via HTTP, if that is supported, should use the
Content-Encoding attribute to decode the stream to Unicode.

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

46 Mobile Information Device Profile (JSR-37) May 5, 2000

BNF for Parsing Application Descriptors

For example, an application descriptor for a hypothetical suite of card games would look
look like the following example:

8.6 Application Lifecycle
Each MIDlet MUST implement the MIDlet interface. These interfaces allow for the orderly
starting, stopping, and cleanup of the MIDlet. Interfaces in the API allow the MIDlet to
request the arguments from the application descriptor and to communicate with the
application management software. A MIDlet suite MUST NOT have a public static
void main() method. If it exists, it MUST be ignored by the application management
software. The application management software provides the initial class needed by the
CLDC to start a MIDlet.

appldesc: *attrline
attrline: attrname ":" WSP attrvalue WSP newline

attrname: 1*<any Unicode char except CTLs or separators>
attrvalue: *valuechar | valuechar *(valuechar | WSP) valuechar
valuechar: <any valid Unicode character, excluding CTLS and WSP>

newline: CR LF | LF
CR = <Unicode carriage return (0x000D)>
LF = <Unicode linefeed (0x000a)>

WSP: 1*(SP | HT)
SP = <Unicode space (0x0020)>
HT = <Unicode horizontal-tab (0x0009)>
CTL = <Unicode characters 0x0000 - 0x001F and 0x007F>
separators = "(" | ")" | "<" | ">" | "@"

| "," | ";" | ":" | "'" | <">
| "/" | "[" | "]" | "?" | "="
| "{" | "}" | SP | HT

MIDlet-Name: CardGames
MIDlet-Version: 1.1.9
MIDlet-Vendor: CardsRUS
MIDlet-Jar-URL: http://www.cardsrus.com/games/cardgames.jar
MIDlet-Jar-Size: 7378
MIDlet-Data-Size: 256

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

Chapter 8 Applications 47

When a MIDlet suite is installed on a device, its classes, resource files, arguments, and
persistent storage are kept on the device and ready for use. The MIDlet(s) are available to the
user via the device’s application management software.

When the MIDlet is run, an instance of the MIDlet’s primary class is created using its public
no-argument constructor, and the methods of the MIDlet interface are called to sequence the
MIDlet through its various states. The MIDlet can either request changes in state or notify
the application management software of state changes via the MIDlet interface. When the
MIDlet is finished or terminated by the application management software, it is destroyed,
and the resources it used can be reclaimed, including any objects it created and its classes.
The MIDlet MUST NOT call System.exit, which will throw a SecurityException when
called by a MIDlet. For a complete description of the interfaces and state changes, see
“javax.microedition.midlet” on page 109.

The normal states of Java classes are not affected by these interfaces as they are loaded.
Referring to any class will cause it to be loaded, and the normal static initialization will
occur.

TABLE 8-2 Classes in the javax.microedition.midlet Package

Class in javax.microedition.midlet Description

MIDlet Extended by an MIDlet to allow the application
management software to start, stop, and destroy it.

MIDletStateChangeException Thrown when the application cannot make the change
requested.

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

48 Mobile Information Device Profile (JSR-37) May 5, 2000

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

49

CHAPTER 9

User Interface

9.1 Overview
The main criteria for the MIDP have been drafted with mobile information devices in mind
(i.e., high-end mobile phones and pagers). These devices differ from desktop systems in
many ways, especially how the user interacts with them. The following UI-related
requirements are important when designing the user interface API:

n The devices and applications should be useful to users who are not necessarily experts in
using computers.

n The devices and applications should be useful in situations where the user cannot pay full
attention to the application. For example, many phone-type devices MUST be usable with
one hand.

n The form factors and UI concepts of the device differ between devices, especially from
desktop systems. For example, the display sizes are smaller, and the input devices do not
always include pointing devices.

n The applications run on MIDs should have UIs that are compatible to the native
applications so that the user finds them easy to use.

Given the capabilities of devices that will implement the MIDP (see Chapter 2,
“Requirements and Scope”) and the above requirements, the MIDPEG decided not to simply
subset the existing Java UI, which is the Abstract Windowing Toolkit (AWT). Reasons for
this decision include:

n Although AWT was designed for desktop computers and optimized to these devices, it
also suffers from assumptions based on this heritage.

n When a user interacts with AWT, event objects are created dynamically. These objects are
short-lived and exist only until each associated event is processed by the system. At this
point, the event object becomes garbage and must be reclaimed by the system’s garbage
collector. The limited CPU and memory subsystems of a MID typically cannot handle this
behavior.

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

50 Mobile Information Device Profile (JSR-37) May 5, 2000

n AWT has a rich but desktop-based, feature set. This feature set includes support for
features not found on MIDs. For example, AWT has extensive support for window
management (e.g., overlapping windows, window resize, etc.). MIDs have small displays
which are not large enough to display multiple overlapping windows. The limited display
size also makes resizing a window impractical. As such, the windowing and layout
manager support within AWT is not required for MIDs.

n AWT assumes certain user interaction models. The component set of AWT was designed
to work with a pointer device (e.g., a mouse or pen input). As mentioned earlier, this
assumption is valid for only a small subset of MIDs since many of these devices have
only a keypad for user input.

9.2 Structure of the MIDP UI API
The MIDP UI is logically composed of two APIs: the high-level and the low-level.

The high-level API is designed for business applications whose client parts run on MIDs. For
these applications, portability across devices is important. To achieve this portability, the
high-level API employs a high level of abstraction and provides very little control over look
and feel. This abstraction is further manifested in the following ways:

n The actual drawing to the MID’s display is performed by the implementation.
Applications do not define the visual appearance (e.g., shape, color, font, etc.) of the
components.

n Navigation, scrolling, and other primitive interaction is encapsulated by the
implementation, and the application is not aware of these interactions.

n Applications cannot access concrete input devices like specific individual keys.

In other words, when using the high-level API, it is assumed that the underlying
implementation will do the necessary adaptation to the device’s hardware and native UI
style.

The low-level API, on the other hand, provides very little abstraction. This API is designed
for applications that need precise placement and control of graphic elements, as well as
access to low-level input events. Some applications also need to access special, device-
specific features. A typical example of such an application would be a game.

Using the low-level API, an application can:

n Have full control of what is drawn on the display.

n Listen for primitive events like key presses and releases.

n Access concrete keys and other input devices.

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

Chapter 9 User Interface 51

Applications that program to the low-level API are not guaranteed to be portable, since the
low-level API provides means to access details that are specific to a particular device. If the
application does not use these features, the applications will be portable, and it is
recommended that the applications stick to the platform-independent part of the low-level
API whenever possible. This means that the applications should not directly assume any
other keys than defined in class Canvas, and should not depend on any specific screen size.
Rather, the application game-event mechanism should be used instead of referring to
concrete keys, and the application should inquire on the size of the display and adjust
accordingly.

9.2.1 Class Hierarchy
The central abstraction of the MIDP’s UI is a screen. A screen is an object that encapsulates
device-specific graphics rendering user input. Only one screen may be visible at a time, and
the user can only traverse through the items on that screen. The screen takes care of all
events that occur as the user navigates in the screen, with only higher-level events being
passed on to the application.

The rationale behind the screen-based design is based on the different display and keypad
solutions found in MIDP devices. These differences imply that the component layout,
scrolling, and focus traversal will be implemented differently on various devices. If an
application had to be aware of these issues, portability would be compromised. Simple
screens also organize the user interface into manageable pieces, resulting in user interfaces
that are easy to use and learn.

There are three categories of screens:

n Screens that encapsulate a complex user interface component (e.g., classes List or
TextBox). The structure of these screens is predefined, and the application cannot add
other components to these screens.

n Generic screens (i.e., class Form) that the application can populate with text, images, and
simple sets of related UI components.

n Screens that are used in context of the low-level API (i.e., subclasses of class Canvas).

Each screen, except the low-level Canvas, can attach a Ticker.

The class Display acts as the display manager that is instantiated for each active MIDlet and
provides methods to retrieve information about the device’s display capabilities. A Screen is
made visible by calling the setCurrent() method of Display.

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

52 Mobile Information Device Profile (JSR-37) May 5, 2000

9.2.2 Class Overview
It is anticipated that most applications will utilize screens with predefined structures like
List, TextBox, and Alert. These classes are used in the following ways:

n List is used when the user should select from a predefined set of choices.

n TextBox is used when asking textual input.

n Alert is used to display temporary messages containing text and images.

A special class Form is defined for cases where screens with a predefined structure are not
sufficient. For example, an application may have two TextFields, or a TextField and a
simple ChoiceGroup. Although this class (Form) allows creation of arbitrary combinations
of components, developers should keep the limited display size in mind and create only
simple Forms.

Form is designed to contain a small number of closely related UI elements. These elements
are the subclasses of Item: ImageItem, StringItem, TextField, ChoiceGroup, and
Gauge. The classes ImageItem and StringItem are convenience classes that make certain
operations with Form and Alert easier. If the components do not all fit on the screen, the
implementation may either make the form scrollable or implement some components so that
they can either popup in a new screen or expand when the user edits the element.

9.2.3 Interplay with Application Manager
The user interface, like any other resource in the API, is to be controlled according to the
principle of MIDP application management. The UI expects the following conditions from
the application management software:

n getDisplay() is callable from startApp() until destroyApp() is returned.

n The Display object is the same until destroyApp() is called.

n The Displayable object set by setCurrent() is not changed by the application manager.

The application manager assumes that the application behaves as follows with respect to the
MIDLet events:

n startApp - The application may call setCurrent() for the first screen. The
application manager makes Displayable really visible when startApp() returns. Note
that startApp() can be called several times if pauseApp() is called in between. This
means that initialization should not take place, and the application should not accidentally
switch to another screen with setCurrent().

n pauseApp - The application may pause its threads. Also, if starting with another screen
when the application is re-activated, the new screen should be set with setCurrent().

n destroyApp - The application may delete created objects.

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

Chapter 9 User Interface 53

9.3 Event Handling
User interaction causes events, and the implementation notifies the application of the events
by making corresponding callbacks. There are three kinds of UI events:

n Abstract commands that are part of the high-level API

n Low-level events that represent single key presses and releases

n Call events caused by callSerially() of class Display

All UI and Timer events are serialized so that callbacks are never executed in parallel.
Otherwise, the UI events are called as soon as possible after the previous callback returns.
The implementation also guarantees that the call event is not made before all events have
been served that were pending at the time callSerially() was called.

9.3.1 Abstract Commands
Since MIDP UI is highly abstract, it does not dictate usage of abstract buttons or menus.
Also, low-level user interactions such as traversal or scrolling are not visible to the
application. MIDP applications define Commands, and the implementation may manifest
these via either abstract buttons, menus, or whatever mechanisms are appropriate for that
device.

Commands are installed to a Displayable (Canvas or Screen) with a method addCommand
of class Displayable.

The native style of the device may assume that certain types of commands are placed on
standard places. For example, the “go-back” operation may always be mapped to the right
abstract button. The Command class allows the application to communicate such a semantic
meaning to the implementation so that these standard mappings can be effected.

The Command objects have three constructor parameters:

n Label: Shown to the user as a hint.

n CommandType: The meaning of the command. One often used hint would be BACK,
which causes the application to go back to a previous state. Most phone designs have a
standard policy on which abstract button is used for this operation. The commandType
hint allows the implementation to take advantage of that policy.

n Priority: Provided to the implementation for better mapping to device capabilities.

There is also an implicit command that is executed when the user presses GO/Select or a
similar button. This button does not have a label, and its meaning should always be obvious
to the user. For example, if the user is presented with a set of mutually exclusive options,
pressing GO/Select will obviously select one of those options.

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

54 Mobile Information Device Profile (JSR-37) May 5, 2000

While pressing the select button does not usually cause command notification to the
application, List of type IMPLICIT is an exception. Then notification with an implicit
command, SelectCommand, is notified.

9.3.2 High-Level API for Events
The handling of events in the high-level API is based on a listener model. Screens and
Canvases may have listeners for commands (see “Abstract Commands” on page 53). An
object willing to be a listener should implement an interface CommandListener that has one
method:

The application gets these events if the Screen or Canvas has attached Commands and if
there is a registered listener. A unicast-version of the listener model is adopted, so the
Screen or Canvas can have one listener at a time.

A menu is a list of operations from which the user selects commands. The selection in many
devices is done with a fixed OK or select button, not necessarily with a abstract button. Even
if the selection is done with a abstract button, the application does not need to install a
Command for the selection. Still, the selection from a menu causes the attached
CommandListener to be notified with Command parameter assigned to an implicit Command
(Choice.MenuCommand).

There is also a listener interface for state changes of the Items in a Form. The method

defined in interface ItemStateListener is called when value of interactive Gauge,
ChoiceGroup, or TextField changes.

void commandAction(Command c,Screen s);

void itemStateChanged(Item item);

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

Chapter 9 User Interface 55

9.3.3 Low-Level API for Events
Low-level graphics and events have the following methods to handle low-level key events:

The last call, keyRepeated, is not necessarily available in all devices. The applications can
check the availability of repeat actions by calling the following method of the Canvas:

The API requires that there be standard key codes for the ITU-T keypad (0–9, *, #).
Although an implementation may provide additional keys, applications relying on these keys
are not portable.

In addition, the class Canvas has methods for handling abstract game events. A device may
map these key events to suitable keys on the device. For example, a device with four-way
navigation and a select key in the middle could use those keys, but a simpler device may use
certain keys on the numeric keypad (e.g., 2, 4, 5, 6, 8). These game events allow
development of portable applications that use the low-level events. The API defines a set of
abstract key-events: UP, DOWN, LEFT, RIGHT, FIRE, GAME_A, GAME_B, GAME_C,
and GAME_D.

An application can map the key events to abstract key events by calling

If the logic of the application is based on the values returned by this method, the application
is portable and run regardless of the keypad design.

It is also possible to map abstract event to keys with

where gameAction is logical UP, DOWN, LEFT, RIGHT, FIRE, etc.

public void keyPressed(int keyCode);
public void keyReleased(int keyCode);
public void keyRepeated(int keyCode);

public static boolean hasRepeatEvents();

public static int getGameAction(int keyCode);

public static int getKeyCode(int gameAction);

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

56 Mobile Information Device Profile (JSR-37) May 5, 2000

It is assumed that the mapping between keys and abstract events does not change during the
execution of the game.

The following is an example of an application that retrieves and stores concrete key
identifiers during its initialization phase. The application then uses these stored values during
execution.

Another possibility would be to interpret the keys at runtime:

The low-level API also has support for pointer events, but since the following input
mechanisms may not be present in all devices, the following callback methods may never be
called in some devices:

class TetrisCanvas extends Canvas {
int leftKey, rightKey, downKey, rotateKey;

 void init () {
leftKey = getKeyCode(LEFT);
rightKey = getKeyCode(RIGHT);
downKey = getKeyCode(DOWN);
rotateKey = getKeyCode(FIRE);

}

public void keyPressed(int keyCode) {
if (keyCode == leftKey) {

moveBlockLeft();
} else if (keyCode = rightKey) {

...
}

}
}

public void keyPressed(int keyCode) {
int action = getGameAction(keyCode);

if (action == LEFT) {
moveBlockLeft();

} else if (action == RIGHT) {
...

}
}

public void pointerPressed(int x, int y);
public void pointerReleased(int x, int y);
public void pointerDragged(int x, int y)

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

Chapter 9 User Interface 57

The application may check whether the pointer is available by calling the following methods
class Canvas:

9.3.4 Interplay of High-Level Commands and Low-Level
API
The class Canvas, which is used for low-level events and drawing, is a subclass of
Displayable, and applications can attach Commands to it. This is useful for jumping to an
options setup Screen in the middle of a game. Another example could be a map-based
navigation application where keys are used for moving in the map but commands are used
for higher-level actions.

Some devices may not have the means to interact with command when Canvas and the low-
level event mechanism are in use. In that case, the implementation may provide a means to
switch to a command mode and back with some hot key. In this case, the running Canvas
will receive messages showNotify() and hideNotify().

9.4 Graphics and Text in Low-Level API

9.4.1 The Redrawing Scheme
Repainting is done automatically for all Screens, but not for Canvas; therefore, developers
utilizing the low-level API must understand its repainting scheme.

In the low-level API, repainting of Canvas is done asynchronously so that several repaint
requests may be implemented within a single call as an optimization. This means that the
application requests the repainting by calling the method repaint() of class Canvas. The
actual drawing is done in the method paint() -- which is provided by the subclass Canvas
-- and does not necessarily happen synchronously to repaint(). It may happen later, and
several repaint requests may cause one single call to paint(). The application can flush the
repaint requests by calling serviceRepaints().

public static boolean hasPointerEvents();
public static boolean hasPointerMotionEvents();

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

58 Mobile Information Device Profile (JSR-37) May 5, 2000

As an example, assume that an application moves a box of width wid and height ht from
coordinates (x1,y1) to coordinates (x2,y2), where x2>x1 and y2>y1:

The last call causes the repaint thread to be scheduled. The repaint thread finds the two
requests from the event queue and repaints the region that is a union of the repaint area:

In this imaginary part of an implementation, the call canvas.paint() causes the
application-defined paint() method to be called.

9.4.2 Drawing Model
The only drawing operation provided is pixel replacement. The destination pixel value is
replaced by the current pixel value specified in the graphics object being used for rendering.
No facility for combining pixel values, such as raster-ops or alpha blending, is provided.

A 24-bit color model is provided with 8 bits each for the red, green, and blue components of
a color. Not all devices support 24-bit color, so they will map colors requested by the
application into colors available on the device. Facilities are provided in the Display class
for obtaining device characteristics, such as whether color is available and how many distinct
gray levels are available. This enables applications to adapt their behavior to a device
without compromising device independence.

Graphics may be rendered either directly to the display or to an off-screen image buffer. The
destination of rendered graphics depends on the origin of the graphics object. A graphics
object for rendering to the display is passed to the Canvas object's paint() method. This is

// move coordinates of box
box.x = x2;
box.y = y2;

// ensure old region repainted (with background)
canvas.repaint(x1,y1, wid, ht);

// make new region repainted
canvas.repaint(x2,y2, wid, ht);

// make everything really repainted
canvas.serviceRepaints();

graphics.clipRect(x1,y1, (x2-x1+wid), (y2-y1+ht));
canvas.paint(graphics);

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

Chapter 9 User Interface 59

the only way to obtain a graphics object whose destination is the display. Furthermore,
applications may draw by using this graphics object only for the duration of the paint()
method.

A graphics object for rendering to an off-screen image buffer may be obtained by calling the
getGraphics() method on the desired image. These graphics objects may be held
indefinitely by the application, and requests may be issued on these graphics objects at any
time.

9.4.3 Coordinate System
The origin (0,0) of the available drawing area and images is in the upper-left corner of the
display. The numeric values of the x-coordinates monotonically increase from left to right,
and the numeric values of the y-coordinates monotonically increase from top to bottom.
Applications may assume that horizontal and vertical distances in the coordinate system
represent equal distances on the actual device display. If the shape of the pixels of the device
is significantly different from square, the implementation of the UI will do the required
coordinate transformation. A facility is provided for translating the origin of the coordinate
system. All coordinates are specified as integers.

The coordinate system represents locations between pixels, not the pixels themselves.
Therefore, the first pixel in the upper left corner of the display lies in the square bounded by
coordinates (0,0), (1,0), (0,1), (1,1).

An application may inquire about the available drawing area by calling the following
methods of Canvas:

9.4.4 Font Support
An application may request one of the font attributes specified below. However, the
underlying implementation may use a subset of what is specified. So it is up to the
implementation to return a font that most closely resembles the requested font.

Each font in the system is implemented individually. A programmer will call the static
getFont() method instead of instantiating new Font objects. This paradigm eliminates the
garbage creation normally associated with the use of fonts.

public static final int getWidth();
public static final int getHeight();

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

60 Mobile Information Device Profile (JSR-37) May 5, 2000

The Font class provides calls that access font metrics. The following attributes may be used
to request a font (from the Font class):

n Size: SMALL, MEDIUM, LARGE.

n Face: PROPORTIONAL, MONOSPACE, SYSTEM.

n Style: PLAIN, BOLD, ITALIC, UNDERLINED.

9.4.5 Drawing Text and Images
By default, the drawing of text is based on anchor points instead of the standard notion of
baseline. Anchor points are used to minimize the amount of computation required when
placing text. For example, in order to center a piece of text, an application needs to call
stringWidth() or charWidth() to get the width and then perform a combination of
subtraction and division to compute the proper location.

The method to draw text is defined as follows:

This method draws text in current foreground and background colors, using the current font
with its anchor point at (x,y). The definition of the anchor point should be one of the
horizontal constants (LEFT, HCENTER, RIGHT), logically combined (OR-ed) with one of
the vertical constants (TOP, BOTTOM). Vertical centering of the text is not included in the
API since it is hard to specify, not considered useful, and burdensome to implement. The
default anchor point is 0, which signifies that the upper-left vertex of the text’s bounding box
is used.

public void drawString(String text, int x, int y, int anchor);

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

Chapter 9 User Interface 61

The actual position of the bounding box of the text relative to the (x,y) location is
determined by the anchor point. These reference points occur at named locations along the
outer edge of the bounding box. Thus, the following calls have identical results:

For text drawing, character and line spacing are included as part of the values returned in the
Font.stringWidth() and Font.getHeight() calls. For example, given the following
code:

code fragments (1) and (2) should behave identically. This relies on Font.stringWidth()
to include the character spacing. Similarly, reasonable vertical spacing should be achieved
simply by adding the font height to the Y-position of subsequent lines. For example:

drawString(str, x, y, TOP|LEFT);
drawString(str, x + f.stringWidth(str)/2, y, TOP|HCENTER);
drawString(str, x + f.stringWidth(str), y, TOP|RIGHT);
drawString(str, x, y + f.getBaselinePosition(), BASELINE|LEFT);
drawString(str, x + f.stringWidth(str)/2,

y + f.getBaselinePosition(), BASELINE|HCENTER);

drawString(str, x + f.stringWidth(str),
y + f.getBaselinePosition(), BASELINE|RIGHT);

drawString(str, x, y + f.fontHeight(), BOTTOM|LEFT);
drawString(str, x + f.stringWidth(str)/2,

y + f.fontHeight(),BOTTOM|HCENTER);
drawString(str, x + f.stringWidth(str), y +
 f.fontHeight(), BOTTOM|RIGHT);

// (1)
drawString(string1+string2, x, y, TOP|LEFT);

// (2)
drawString(string1, x, y, TOP|LEFT);
f.getFont();
drawString(string2, x + f.stringWidth(string1), y,

TOP|LEFT, string2);

drawString(string1 x, y, TOP|LEFT);
drawString(string2, x, y + getFont().fontHeight(),
 TOP|LEFT);

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

62 Mobile Information Device Profile (JSR-37) May 5, 2000

should draw string1 and string2 on separate lines with line spacing embedded in the font
design. The font is assumed to include reasonable line spacing.

The stringWidth() of the string and the fontHeight() of the font in which it is drawn
define the size of the bounding box of a piece of text. As described above, this box includes
line and character spacing. The implementation is required to put this space below and to
right of the pixels actually belonging to the characters drawn. Applications that position
graphics closely with respect to text (for example, to paint a rectangle around a string of text)
may assume that there is space below and to the right of a string and that there is no space
above and to the left of the string.

9.5 A Note on Concurrency
The UI API has been designed to be thread-safe. The methods may be called from callbacks,
TimerTasks, or threads created by the application. Also, the implementation generally does
not hold any locks on objects visible to the application. This means that the application
synchronizes its own behavior by locking any object. There is one exception to the rule:
serviceRepaints() of class Canvas. This method immediately calls the method paint(),
but possibly in the context of different threads. If paint() tries to synchronize on any object
that was locked by the application when serviceRepaints() was called, the application
will deadlock. The application programmer should not hold any locks when
serviceRepaints() is called. Also, locking an object used by paint() to synchronize is
always an error.

The UI API includes also a mechanism similar to other UI toolkits for synchronization with
events. With the method callSerially() of class Display, the application can execute an
operation serially with events. CallSerially() can be used for the same effect as service
repaints. The following code illustrates this implementation:

class MyCanvas extends Canvas {
void doStuff)() {

//<code fragment 1>
serviceRepaints();

//<code fragment 2>
}

}

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

Chapter 9 User Interface 63

The following code is an alternative way of implementing the same functionality:

class MyClass extends Canvas {
void doStuff() {

//<code fragment 1>
callSerially(this);

}

public void call() {
// called only after all pending repaints served

//<<code fragment 2>;
}

}

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

64 Mobile Information Device Profile (JSR-37) May 5, 2000

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

65

APPENDIX A

Implementation Notes

A.1 Overview
This chapter addresses some possible implementation issues of the MIDP.

A.2 Implementation
This section discusses concepts that are not technically part of the MIDP specification but
are fundamental issues for implementers of the MIDP.

A.2.1 Application Management
Throughout this document, frequent reference is made to an abstract entity called the
application management software. In the context of this document, this term describes the
software that controls how MIDlets are installed, upgraded, and de-installed from the MID.
A more appropriate name for this entity might be MIDlet management software. This section
describes some of the functionality of the MIDlet management software.

Note – The intent of this section is to show an example of possible functionality, not to
mandate or specify this functionality.

To describe the functionality of the MIDlet management software, the different classes of
MIDlets must be defined.

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

66 Mobile Information Device Profile (JSR-37) May 5, 2000

A.2.1.1 Classes of MIDlets

Broadly speaking, there are at least two possible classes of MIDlets. These classes are
differentiated by how the MIDlet is retrieved and installed. These classes, along with some of
their associated characteristics, are shown in Table A-1.

The first class of MIDlets is the permanent class. One use case for this MIDlet class would
be the user of a MID browsing a selection of available MIDlets (e.g., games, etc.). After
selecting a MIDlet, the MIDlet management software retrieves and permanently “installs” the
MIDlet (i.e., writes it to persistent storage). The user may run this MIDlet repeatedly without
retrieving the MIDlet again.

The other class of MIDlets is the system class, which is a special case of the permanent class.
A system-class MIDlet is created by the manufacturer of the MID and performs device-
specific functionality. System-class MIDlets may have access to non-public functionality of
the device. So, in a sense, system-class MIDlets operate in a more privileged mode than
other MIDlet classes. System-class MIDlets may have special constraints placed on their
retrieval and installation.

MIDs may or may not support all of the classes of MIDlets described in this section. Other
than recognizing the limitations of the target device (in terms of memory, etc.), a developer
targeting the MIDP need not be aware of MIDlet-class distinctions. See Section A.3,
“Developer Issues” for more information about the perspective of a MIDP developer.

TABLE A-1 Possible Classes of MIDlets

MIDlet Class Characteristics

Permanent Resides, at least in part, in non-volatile memory.
Performs many functions.
May be run repeatedly without downloading again.

System Resides, at least in part, in non-volatile memory.
May be small or large.
Performs device-specific functionality.

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

Appendix A Implementation Notes 67

A.2.1.2 MIDlet Management Software Functionality

For any of the MIDlet classes discussed in Section A.2.1.1, “Classes of MIDlets,” there are
an implied set of operations that the MIDlet management software must be able to perform.
These operations are listed in Table A-2.1

Before a MIDlet can be launched, it must be retrieved from some source, called the MIDlet-
source. A MID may have multiple mediums from which to retrieve MIDlets. For example, a
MID may support retrieval via a serial cable, an IRDA port, or a wireless network. In this
case, the MIDlet management software must support a medium-identification step in which
the retrieval medium can be selected. After selecting the retrieval medium, the MIDlet
management software can initiate the negotiation step. In this step, the MID and the MIDlet-
source exchange information about the MIDlet and the MID. This information can include
the MID’s capability (e.g., available volatile memory), the size of the MIDlet,2 cost, etc.
Once the MID and the MIDlet-source have agreed that the MIDlet should be installed on the
device, the retrieval step begins. In this step, the MID reads the MIDlet “into” the device.

Once the MIDlet has been retrieved, the installation process may begin. An implementation
of the MIDP may need to verify that the retrieved MIDlet does not violate the MID’s security
policies. For example, a MID might enforce some sort of “code signing” mechanism to
validate that the retrieved MIDlet is from a trusted source. The next step in installation is the
transformation from the public representation of the MIDlet into some device-specific,
internal representation.3 This transformation may be as simple as writing the public
representation to persistent storage, or it may actually entail preparing the MIDlet to execute
directly from non-volatile memory.

TABLE A-2 Typical MIDlet Management Software Operations

Operation Description

Retrieval Retrieves the MIDlet from some source. Possible steps include
medium-identification, negotiation, and retrieval.

Installation Installs the MIDlet on the MID. Possible steps include verification
and transformation.

Launching Invokes the MIDlet. Possible steps include inspection and
invocation.

Version Management Allows installed MIDlets to be upgraded to newer versions. Possible
steps include inspection and version management.

Removal Removes a previously installed MIDlet. Possible steps include
inspection and deletion.

1. While this chapter refers to operations on MIDlets, these operations are, in fact, operations on JAR files as described in
Chapter 8, “Applications.”

2. See description of the MIDlet-descriptor in Chapter 8, “Applications.”

3. See the Connected, Limited Device Configuration (JSR-30), Sun Microsystems, Inc., for a definition of public
representation.

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

68 Mobile Information Device Profile (JSR-37) May 5, 2000

After installation, the MIDlet can now be launched. Launching a MIDlet means that the user
is presented with a selection of installed MIDlets that are gathered by the MID performing
the inspection step. The user may then select one of the MIDlets for the MID to run (or
invoke). Invocation is the point at which the MIDlet enters the KVM. From this point, the
APIs described in Chapter 8, “Applications,” are used to control the MIDlet.

At some point after installation, a new version of a MIDlet may become available. To
upgrade to this new version, the MIDlet management software must keep track of what
MIDlets have been installed (identification) and their “version number” (version
management). Using this information, the older version of the MIDlet can be upgraded to the
newer version.

A related concept is MIDlet removal. This differs only slightly from the previous step in that
after performing inspection, the MIDlet management software deletes the installed “image”
of the MIDlet, and possibly its related resources. This may include records it has written to
persistent storage via the APIs defined in Chapter 7, “Persistent Storage.”

A.2.1.3 Installation, Upgrade, and Removal

The application management software handles the device-specific functions for installation,
removal, and running of MIDlets. The application management software is responsible for
the integrity and security of MIDlets on the device. It also presents the application model for
the device to the user and handles errors that occur during the life cycle of a MIDlet.

The application management software installs or upgrades a MIDlet by examining the
application descriptor and the corresponding JAR file.

When the user requests the installation of an MIDlet suite via its application descriptor or by
presenting the JAR file, the application management software checks if it is one of the
currently installed MIDlets. JAR files are uniquely identified by the MIDlet-name and
MIDlet-vendor attributes from the manifest. If these values match, then the MIDlet suite is
the same as one of the installed MIDlet suites. If so, and the MIDlet-Version of the requested
version is newer than the installed version, the application management software may
confirm with the user for approval before downloading and installing the newer version of
the MIDlet suite.

The application management software should ensure that if the MIDlet suite update fails for
any reason, the older version is left intact on the MIDP device. When the update is
successful, the older version of the MIDlet suite should be removed. As part of the updating
process, the persistent storage of the MIDlet suite should be preserved for use by the updated
application.

When a MIDlet suite is removed, all components, persistent storage, and resources consumed
by the MIDlet suite SHOULD be removed from the device.

The MIDP implementation will not be responsible for upgrading the format of the data in the
RMS permanent storage. If an updated MIDlet uses a different data format than the version
it is replacing, it will be the responsibility of the MIDlet to upgrade the data.

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

Appendix A Implementation Notes 69

Note – There is no secure unique identifier for a MIDlet suite that is fully reliable and
cannot be altered. The device’s application management software may take additional actions
to confirm the integrity of MIDlet suite to be installed.

A.3 Developer Issues
This section explores, from the perspective of an application developer, some of the issues
related to the development of a MIDlet.

Note – This section will be completed after the MIDP Public Review.

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

70 Mobile Information Device Profile (JSR-37) May 5, 2000

71

Package

java.lang
Description
MID Profile Language Classes included from Java 2 Standard Edition. In addition to the java.lang classes
specified in the Connected Limited Device Configuration, the Mobile Information Device Profile includes the
following class from Java 2 Standard Edition.

n java.lang.IllegalStateException.java
IllegalStateExceptions are thrown when illegal transistions are requested, such as scheduling a Tim-
erTask or in the containment of user interface components.

Class Summary

Classes

IllegalStateException Signals that a method has been invoked at an illegal or inappropriate time.

72 Mobile Information Device Profile (JSR-37) May 5, 2000

java.lang

IllegalStateException
Syntax
public class IllegalStateException

java.lang.IllegalStateException

Description
Signals that a method has been invoked at an illegal or inappropriate time. In other words, the Java environment
or Java application is not in an appropriate state for the requested operation.

Since: JDK1.1

Constructors

IllegalStateException()

public IllegalStateException ()

Constructs an IllegalStateException with no detail message. A detail message is a String that describes this
particular exception.

IllegalStateException(String)

public IllegalStateException (java.lang.String s)

Constructs an IllegalStateException with the specified detail message. A detail message is a String that
describes this particular exception.

Parameters:
s - the String that contains a detailed message

Member Summary

Constructors
public IllegalStateException ()
public IllegalStateException (java.lang.String s)

73

Package

java.util
Description
MID Profile Utility Classes included from Java 2 Standard Edition. In addition to the java.util classes
specified in the Connected Limited Device Configuration the Mobile Information Device Profile includes the
following classes from Java 2 Standard Edition.

n java.util.Timer
n java.util.TimerTask

Timers provide facility for an application to schedule task for future execution in a background thread. Timer-
Tasks may be scheduled using Timers for one-time execution, or for repeated execution at regular intervals.

Class Summary

Classes

Timer A facility for threads to schedule tasks for future execution in a background thread.

TimerTask A task that can be scheduled for one-time or repeated execution by a Timer.

74 Mobile Information Device Profile (JSR-37) May 5, 2000

75

java.util

Timer
Syntax
public class Timer

java.lang.Object
|
+--java.util.Timer

Description
A facility for threads to schedule tasks for future execution in a background thread. Tasks may be scheduled for
one-time execution, or for repeated execution at regular intervals.

Corresponding to each Timer object is a single background thread that is used to execute all of the timer's
tasks, sequentially. Timer tasks should complete quickly. If a timer task takes excessive time to complete, it
"hogs" the timer's task execution thread. This can, in turn, delay the execution of subsequent tasks, which may
"bunch up" and execute in rapid succession when (and if) the offending task finally completes.

After the last live reference to a Timer object goes away and all outstanding tasks have completed execution,
the timer's task execution thread terminates gracefully (and becomes subject to garbage collection). However,
this can take arbitrarily long to occur. By default, the task execution thread does not run as a daemon thread, so
it is capable of keeping an application from terminating. If a caller wants to terminate a timer's task execution
thread rapidly, the caller should invoke the timer's cancel method.

If the timer's task execution thread terminates unexpectedly, for example, because its stop method is invoked,
any further attempt to schedule a task on the timer will result in an IllegalStateException, as if the
timer's cancel method had been invoked.

This class is thread-safe: multiple threads can share a single Timer object without the need for external syn-
chronization.

This class does not offer real-time guarantees: it schedules tasks using the Object.wait(long) method.

Timers funtion only within a single VM and are cancelled when the VM exits. When the VM is started no tim-
ers exist, they are created only by application request.

Since: 1.3

See Also: TimerTask, Object.wait(long)

Member Summary

Constructors
Timer()

Methods
void cancel()
void schedule(TimerTask, Date)
void schedule(TimerTask, Date, long)
void schedule(TimerTask, long)
void schedule(TimerTask, long, long)
void scheduleAtFixedRate(TimerTask, Date, long)

76 Mobile Information Device Profile (JSR-37) May 5, 2000

Constructors

Timer()

public Timer ()

Creates a new timer. The associated thread does not run as a daemon thread, which may prevent an applica-
tion from terminating.

See Also: Thread, cancel()

Methods

cancel()

public void cancel ()

Terminates this timer, discarding any currently scheduled tasks. Does not interfere with a currently execut-
ing task (if it exists). Once a timer has been terminated, its execution thread terminates gracefully, and no
more tasks may be scheduled on it.

Note that calling this method from within the run method of a timer task that was invoked by this timer
absolutely guarantees that the ongoing task execution is the last task execution that will ever be performed
by this timer.

This method may be called repeatedly; the second and subsequent calls have no effect.

schedule(TimerTask, Date)

public void schedule (TimerTask task, Date time)

Schedules the specified task for execution at the specified time. If the time is in the past, the task is sched-
uled for immediate execution.

Parameters:
task - task to be scheduled.

void scheduleAtFixedRate(TimerTask, long, long)

Inherited Member Summary

Methods inherited from class Object
equals(Object), getClass(), hashCode(), notify(), notifyAll(), toString(), wait(),
wait(long), wait(long, int)

Member Summary

May 5, 2000 Mobile Information Device Profile (JSR-37) 77

time - time at which task is to be executed.

Throws: IllegalArgumentException - if time.getTime() is negative.

IllegalStateException - if task was already scheduled or cancelled, timer was cancelled, or
timer thread terminated.

schedule(TimerTask, Date, long)

public void schedule (TimerTask task, Date firstTime, long period)

Schedules the specified task for repeated fixed-delay execution, beginning at the specified time. Subsequent
executions take place at approximately regular intervals, separated by the specified period.

In fixed-delay execution, each execution is scheduled relative to the actual execution time of the previous
execution. If an execution is delayed for any reason (such as garbage collection or other background activ-
ity), subsequent executions will be delayed as well. In the long run, the frequency of execution will gener-
ally be slightly lower than the reciprocal of the specified period (assuming the system clock underlying
Object.wait(long) is accurate).

Fixed-delay execution is appropriate for recurring activities that require "smoothness." In other words, it is
appropriate for activities where it is more important to keep the frequency accurate in the short run than in
the long run. This includes most animation tasks, such as blinking a cursor at regular intervals. It also
includes tasks wherein regular activity is performed in response to human input, such as automatically
repeating a character as long as a key is held down.

Parameters:
task - task to be scheduled.

firstTime - First time at which task is to be executed.

period - time in milliseconds between successive task executions.

Throws: IllegalArgumentException - if time.getTime() is negative.

IllegalStateException - if task was already scheduled or cancelled, timer was cancelled, or
timer thread terminated.

schedule(TimerTask, long)

public void schedule (TimerTask task, long delay)

Schedules the specified task for execution after the specified delay.

Parameters:
task - task to be scheduled.

delay - delay in milliseconds before task is to be executed.

Throws: IllegalArgumentException - if delay is negative, or delay +
System.currentTimeMillis() is negative.

IllegalStateException - if task was already scheduled or cancelled, or timer was cancelled.

schedule(TimerTask, long, long)

public void schedule (TimerTask task, long delay, long period)

78 Mobile Information Device Profile (JSR-37) May 5, 2000

Schedules the specified task for repeated fixed-delay execution, beginning after the specified delay. Subse-
quent executions take place at approximately regular intervals separated by the specified period.

In fixed-delay execution, each execution is scheduled relative to the actual execution time of the previous
execution. If an execution is delayed for any reason (such as garbage collection or other background activ-
ity), subsequent executions will be delayed as well. In the long run, the frequency of execution will gener-
ally be slightly lower than the reciprocal of the specified period (assuming the system clock underlying
Object.wait(long) is accurate).

Fixed-delay execution is appropriate for recurring activities that require "smoothness." In other words, it is
appropriate for activities where it is more important to keep the frequency accurate in the short run than in
the long run. This includes most animation tasks, such as blinking a cursor at regular intervals. It also
includes tasks wherein regular activity is performed in response to human input, such as automatically
repeating a character as long as a key is held down.

Parameters:
task - task to be scheduled.

delay - delay in milliseconds before task is to be executed.

period - time in milliseconds between successive task executions.

Throws: IllegalArgumentException - if delay is negative, or delay +
System.currentTimeMillis() is negative.

IllegalStateException - if task was already scheduled or cancelled, timer was cancelled, or
timer thread terminated.

scheduleAtFixedRate(TimerTask, Date, long)

public void scheduleAtFixedRate (TimerTask task, Date firstTime, long period)

Schedules the specified task for repeated fixed-rate execution, beginning at the specified time. Subsequent
executions take place at approximately regular intervals, separated by the specified period.

In fixed-rate execution, each execution is scheduled relative to the scheduled execution time of the initial
execution. If an execution is delayed for any reason (such as garbage collection or other background activ-
ity), two or more executions will occur in rapid succession to "catch up." In the long run, the frequency of
execution will be exactly the reciprocal of the specified period (assuming the system clock underlying
Object.wait(long) is accurate).

Fixed-rate execution is appropriate for recurring activities that are sensitive to absolute time, such as ring-
ing a chime every hour on the hour, or running scheduled maintenance every day at a particular time. It is
also appropriate for for recurring activities where the total time to perform a fixed number of executions is
important, such as a countdown timer that ticks once every second for ten seconds. Finally, fixed-rate exe-
cution is appropriate for scheduling multiple repeating timer tasks that must remain synchronized with
respect to one another.

Parameters:
task - task to be scheduled.

firstTime - First time at which task is to be executed.

period - time in milliseconds between successive task executions.

Throws: IllegalArgumentException - if time.getTime() is negative.

IllegalStateException - if task was already scheduled or cancelled, timer was cancelled, or
timer thread terminated.

May 5, 2000 Mobile Information Device Profile (JSR-37) 79

scheduleAtFixedRate(TimerTask, long, long)

public void scheduleAtFixedRate (TimerTask task, long delay, long period)

Schedules the specified task for repeated fixed-rate execution, beginning after the specified delay. Subse-
quent executions take place at approximately regular intervals, separated by the specified period.

In fixed-rate execution, each execution is scheduled relative to the scheduled execution time of the initial
execution. If an execution is delayed for any reason (such as garbage collection or other background activ-
ity), two or more executions will occur in rapid succession to "catch up." In the long run, the frequency of
execution will be exactly the reciprocal of the specified period (assuming the system clock underlying
Object.wait(long) is accurate).

Fixed-rate execution is appropriate for recurring activities that are sensitive to absolute time, such as ring-
ing a chime every hour on the hour, or running scheduled maintenance every day at a particular time. It is
also appropriate for for recurring activities where the total time to perform a fixed number of executions is
important, such as a countdown timer that ticks once every second for ten seconds. Finally, fixed-rate exe-
cution is appropriate for scheduling multiple repeating timer tasks that must remain synchronized with
respect to one another.

Parameters:
task - task to be scheduled.

delay - delay in milliseconds before task is to be executed.

period - time in milliseconds between successive task executions.

Throws: IllegalArgumentException - if delay is negative, or delay +
System.currentTimeMillis() is negative.

IllegalStateException - if task was already scheduled or cancelled, timer was cancelled, or
timer thread terminated.

80 Mobile Information Device Profile (JSR-37) May 5, 2000

81

java.util

TimerTask
Syntax
public abstract class TimerTask implements java.lang.Runnable

java.lang.Object

|
+--java.util.TimerTask

All Implemented Interfaces: Runnable

Description
A task that can be scheduled for one-time or repeated execution by a Timer.

Since: 1.3

See Also: Timer

Constructors

TimerTask()

protected TimerTask ()

Creates a new timer task.

Member Summary

Constructors
TimerTask()

Methods
boolean cancel()

void run()
long scheduledExecutionTime()

Inherited Member Summary

Methods inherited from class Object
equals(Object), getClass(), hashCode(), notify(), notifyAll(), toString(), wait(),
wait(long), wait(long, int)

82 Mobile Information Device Profile (JSR-37) May 5, 2000

Methods

cancel()

public boolean cancel ()

Cancels this timer task. If the task has been scheduled for one-time execution and has not yet run, or has not
yet been scheduled, it will never run. If the task has been scheduled for repeated execution, it will never run
again. (If the task is running when this call occurs, the task will run to completion, but will never run again.)

Note that calling this method from within the run method of a repeating timer task absolutely guarantees
that the timer task will not run again.

This method may be called repeatedly; the second and subsequent calls have no effect.

Returns: true if this task is scheduled for one-time execution and has not yet run, or this task is scheduled
for repeated execution. Returns false if the task was scheduled for one-time execution and has already
run, or if the task was never scheduled, or if the task was already cancelled. (Loosely speaking, this
method returns true if it prevents one or more scheduled executions from taking place.)

run()

public abstract void run ()

The action to be performed by this timer task.

Specified By: Runnable.run() in interface Runnable

scheduledExecutionTime()

public long scheduledExecutionTime ()

Returns the scheduled execution time of the most recent actual execution of this task. (If this method is
invoked while task execution is in progress, the return value is the scheduled execution time of the ongoing
task execution.)

This method is typically invoked from within a task's run method, to determine whether the current execu-
tion of the task is sufficiently timely to warrant performing the scheduled activity:

public void run() {
if (System.currentTimeMillis() - scheduledExecutionTime() >=

MAX_TARDINESS)
return; // Too late; skip this execution.

// Perform the task
}

This method is typically not used in conjunction with fixed-delay execution repeating tasks, as their sched-
uled execution times are allowed to drift over time, and so are not terribly significant.

Returns: the time at which the most recent execution of this task was scheduled to occur, in the format
returned by Date.getTime(). The return value is undefined if the task has yet to commence its first
execution.

See Also: Date.getTime()

83

Package

javax.microedition.rms
Description
The Mobile Information Device Profile provides a mechanism for MIDlets to persistently store data and later
retrieve it. This persistent storage mechanism is modeled after a simple record oriented database and is called
the Record Management System.

Example:

The example uses the Record Management System to store and retrieve high scores for a game. In the example,
high scores are stored in separate records, and sorted when necessary using a RecordEnumeration.

84 Mobile Information Device Profile (JSR-37) May 5, 2000

import javax.microedition.rms.*;
import java.io.DataOutputStream;
import java.io.ByteArrayOutputStream;
import java.io.IOException;
import java.io.ByteArrayInputStream;
import java.io.DataInputStream;
import java.io.EOFException;
/**
* A class used for storing and showing game scores.
*/

public class RMSGameScores
implements RecordFilter, RecordComparator

{
/*
* The RecordStore used for storing the game scores.
*/

private RecordStore recordStore = null;
/*
* The player name to use when filtering.
*/

public static String playerNameFilter = null;
/*
* Part of the RecordFilter interface.
*/

public boolean matches(byte[] candidate)
throws IllegalArgumentException

{
// If no filter set, nothing can match it.
if (this.playerNameFilter == null) {

return false;
}
ByteArrayInputStream bais = new ByteArrayInputStream(candidate);
DataInputStream inputStream = new DataInputStream(bais);
String name = null;
try {

int score = inputStream.readInt();
name = inputStream.readUTF();

}
catch (EOFException eofe) {

System.out.println(eofe);
eofe.printStackTrace();

}
catch (IOException eofe) {

System.out.println(eofe);
eofe.printStackTrace();

}
return (this.playerNameFilter.equals(name));

}
/*
* Part of the RecordComparator interface.
*/

public int compare(byte[] rec1, byte[] rec2)
{

// Construct DataInputStreams for extracting the scores from
// the records.
ByteArrayInputStream bais1 = new ByteArrayInputStream(rec1);
DataInputStream inputStream1 = new DataInputStream(bais1);
ByteArrayInputStream bais2 = new ByteArrayInputStream(rec2);
DataInputStream inputStream2 = new DataInputStream(bais2);
int score1 = 0;
int score2 = 0;
try {

// Extract the scores.
score1 = inputStream1.readInt();
score2 = inputStream2.readInt();

}
catch (EOFException eofe) {

System.out.println(eofe);

May 5, 2000 Mobile Information Device Profile (JSR-37) 85

eofe.printStackTrace();
}
catch (IOException eofe) {

System.out.println(eofe);
eofe.printStackTrace();

}
// Sort by score
if (score1 < score2) {

return RecordComparator.PRECEDES;
}
else if (score1 > score2) {

return RecordComparator.FOLLOWS;
}
else {

return RecordComparator.EQUIVALENT;
}

}
/**
* The constuctor opens the underlying record store,
* creating it if necessary.
*/

public RMSGameScores()
{

//
// Create a new record store for this example
//
try {

recordStore = RecordStore.openRecordStore("scores", true);
}
catch (RecordStoreException rse) {

System.out.println(rse);
rse.printStackTrace();

}
}
/**
* Add a new score to the storage.
*
* @param score the score to store.
* @param playerName the name of the play achieving this score.
*/

public void addScore(int score, String playerName)
{

//
// Each score is stored in a separate record, formatted with
// the score, followed by the player name.
//
ByteArrayOutputStream baos = new ByteArrayOutputStream();
DataOutputStream outputStream = new DataOutputStream(baos);
try {

// Push the score into a byte array.
outputStream.writeInt(score);
// Then push the player name.
outputStream.writeUTF(playerName);

}
catch (IOException ioe) {

System.out.println(ioe);
ioe.printStackTrace();

}
// Extract the byte array
byte[] b = baos.toByteArray();
// Add it to the record store
try {

recordStore.addRecord(b, 0, b.length);
}
catch (RecordStoreException rse) {

System.out.println(rse);
rse.printStackTrace();

}

86 Mobile Information Device Profile (JSR-37) May 5, 2000

}
/**
* A helper method for the printScores methods.
*/

private void printScoresHelper(RecordEnumeration re)
{

try {
while(re.hasNextElement()) {

int id = re.nextRecordIndex();
ByteArrayInputStream bais = new ByteArrayInputStream(recordStore.getRecord(id));
DataInputStream inputStream = new DataInputStream(bais);
try {

int score = inputStream.readInt();
String playerName = inputStream.readUTF();
System.out.println(playerName + " = " + score);

}
catch (EOFException eofe) {

System.out.println(eofe);
eofe.printStackTrace();

}
}

}
catch (RecordStoreException rse) {

System.out.println(rse);
rse.printStackTrace();

}
catch (IOException ioe) {

System.out.println(ioe);
ioe.printStackTrace();

}
}
/**
* This method prints all of the scores sorted by game score.
*/

public void printScores()
{

try {
// Enumerate the records using the comparator implemented
// above to sort by game score.
RecordEnumeration re = recordStore.enumerateRecords(null, this,

true);
printScoresHelper(re);

}
catch (RecordStoreException rse) {

System.out.println(rse);
rse.printStackTrace();

}
}
/**
* This method prints all of the scores for a given player,
* sorted by game score.
*/

public void printScores(String playerName)
{

try {
// Enumerate the records using the comparator and filter
// implemented above to sort by game score.
RecordEnumeration re = recordStore.enumerateRecords(this, this,

true);
printScoresHelper(re);

}
catch (RecordStoreException rse) {

System.out.println(rse);
rse.printStackTrace();

}
}
public static void main(String[] args)
{

May 5, 2000 Mobile Information Device Profile (JSR-37) 87

RMSGameScores rmsgs = new RMSGameScores();
rmsgs.addScore(100, "Alice");
rmsgs.addScore(120, "Bill");
rmsgs.addScore(80, "Candice");
rmsgs.addScore(40, "Dean");
rmsgs.addScore(200, "Ethel");
rmsgs.addScore(110, "Farnsworth");
rmsgs.addScore(220, "Farnsworth");
System.out.println("All scores");
rmsgs.printScores();
System.out.println("Farnsworth's scores");
RMSGameScores.playerNameFilter = "Farnsworth";
rmsgs.printScores("Farnsworth");

}
}

Class Summary

Interfaces

RecordComparator An interface defining a comparator which compares two records (in an implementa-
tion-defined manner) to see if they match or what their relative sort order is.

RecordEnumeration A class representing a bidirectional record store Record enumerator.

RecordFilter An interface defining a filter which examines a record to see if it matches (based on an
application-defined criteria).

RecordListener A listener interface for receiving Record Changed/Added/Deleted events from a
record store.

Classes

InvalidRecordIDExcep-
tion

Thrown to indicate an operation could not be completed because the record ID was
invalid.

RecordStore A class representing a record store.

RecordStoreException Thrown to indicate a general exception occurred in a record store operation.

RecordStoreFullExcep-
tion

Thrown to indicate an operation could not be completed because the record store sys-
tem storage is full.

RecordStoreNotFoun-
dException

Thrown to indicate an operation could not be completed because the record store could
not be found.

RecordStoreNotOpenEx-
ception

Thrown to indicate that an operation was attempted on a closed record store.

88 Mobile Information Device Profile (JSR-37) May 5, 2000

javax.microedition.rms

InvalidRecordIDException
Syntax
public class InvalidRecordIDException extends RecordStoreException

RecordStoreException

|
+--javax.microedition.rms.InvalidRecordIDException

Description
Thrown to indicate an operation could not be completed because the record ID was invalid.

Constructors

InvalidRecordIDException()

public InvalidRecordIDException ()

Constructs a new InvalidRecordIDException with no detail message.

InvalidRecordIDException(String)

public InvalidRecordIDException (java.lang.String message)

Constructs a new InvalidRecordIDException with the specified detail message.

Parameters:
message - the detail message.

Member Summary

Constructors
public InvalidRecordIDException ()
public InvalidRecordIDException (java.lang.String message)

May 5, 2000 Mobile Information Device Profile (JSR-37) 89

javax.microedition.rms

RecordComparator
Syntax
public interface RecordComparator

Description
An interface defining a comparator which compares two records (in an implementation-defined manner) to see
if they match or what their relative sort order is. The application implements this interface to compare two can-
didate records. The return value must indicate the ordering of the two records. The compare method is called by
RecordEnumeration to sort and return records in an application specified order. For example:

RecordComparator c = new AddressRecordComparator(); //
class implements RecordComparator

if (c.compare(recordStore.getRecord(rec1), recordStore.getRecord(rec2)) == RecordCompara
tor.PRECEDES)
return rec1;

Fields

EQUIVALENT

public static final int EQUIVALENT

EQUIVALENT means that in terms of search or sort order, the two records are the same. This does not nec-
essarily mean that the two records are identical.

FOLLOWS

public static final int FOLLOWS

FOLLOWS means that the left (first parameter) record follows the right (second parameter) record in terms
of search or sort order.

PRECEDES

Member Summary

Fields
int public static final int EQUIVALENT
int public static final int FOLLOWS
int public static final int PRECEDES

Methods
int public int compare (byte[] rec1, byte[] rec2)

90 Mobile Information Device Profile (JSR-37) May 5, 2000

public static final int PRECEDES

PRECEDES means that the left (first parameter) record precedes the right (second parameter) record in
terms of search or sort order.

Methods

compare(byte[], byte[])

public int compare (byte[] rec1, byte[] rec2)

Returns RecordComparator.PRECEDES if rec1 precedes rec2 in sort order, or RecordCompara-
tor.FOLLOWS if rec1 follows rec2 in sort order, or RecordComparator.EQUIVALENT if rec1 and
rec2 are equivalent in terms of sort order.

Parameters:
rec1 - The first record to use for comparison. Within this method, the application must treat this
parameter as read-only.

rec2 - The second record to use for comparison. Within this method, the application must treat this
parameter as read-only.

Returns: RecordComparator.PRECEDES if rec1 precedes rec2 in sort order, or
RecordComparator.FOLLOWS if rec1 follows rec2 in sort order, or
RecordComparator.EQUIVALENT if rec1 and rec2 are equivalent in terms of sort order.

May 5, 2000 Mobile Information Device Profile (JSR-37) 91

javax.microedition.rms

RecordEnumeration
Syntax
public interface RecordEnumeration

Description
A class representing a bidirectional record store Record enumerator. The RecordEnumeration logically main-
tains a sequence of the recordId's of the records in a record store. The enumerator will iterate over all (or a sub-
set, if an optional record filter has been supplied) of the records in an order determined by an optional record
comparator.

By using an optional RecordFilter, a subset of the records can be chosen that match the supplied filter.
This can be used for providing search capabilities.

By using an optional RecordComparator, the enumerator can index through the records in an order deter-
mined by the comparator. This can be used for providing sorting capabilities.

If, while indexing through the enumeration, some records are deleted from the record store, the recordId's
returned by the enumeration may no longer represent valid records. To avoid this problem, the RecordEnumer-
ation can optionally become a listener of the RecordStore and react to record additions and deletions by recreat-
ing its internal index. Use special care when using this option however, in that every record addition, change
and deletion will cause the index to be rebuilt, which may have serious performance impacts.

The first call to nextRecord() returns the record data from the first record in the sequence. Subsequent calls
to nextRecord() return the next consecutive record's data. To return the record data from the previous con-
secutive from any given point in the enumeration, call previousRecord(). On the other hand, if after cre-
ation, the first call is to previousRecord(), the record data of the last element of the enumeration will be
returned. Each subsequent call to previousRecord() will step backwards through the sequence.

Final note, to do record store searches, create a RecordEnumeration with no RecordComparator, and an appro-
priate RecordFilter with the desired search criterion.

Member Summary

Methods
void public void destroy ()

boolean public boolean hasNextElement ()
boolean public boolean hasPreviousElement ()
boolean public boolean isKeptUpdated ()

void public void keepUpdated (boolean keepUpdated)
byte[] public byte[] nextRecord ()

int public int nextRecordIndex ()
int public int numRecords ()

byte[] public byte[] previousRecord ()
int public int previousRecordIndex ()
void public void rebuild ()
void public void reset ()

92 Mobile Information Device Profile (JSR-37) May 5, 2000

Methods

destroy()

public void destroy ()

Frees internal resources used by this RecordEnumeration. MIDlets should call this method when they are
done using a RecordEnumeration. If a MIDlet tries to use a RecordEnumeration after this method has been
called, it will throw a java.util.IllegalStateException.

hasNextElement()

public boolean hasNextElement ()

Returns true if more elements exist in the next direction.

Returns: true if more elements exist in the next direction.

hasPreviousElement()

public boolean hasPreviousElement ()

Returns true if more elements exist in the previous direction.

Returns: true if more elements exist in the previous direction.

isKeptUpdated()

public boolean isKeptUpdated ()

Returns true if the enumeration keeps its enumeration current with any changes in the records.

Returns: true if the enumeration keeps its enumeration current with any changes in the records.

keepUpdated(boolean)

public void keepUpdated (boolean keepUpdated)

Used to set whether the enumeration will be keep its internal index up to date with the record store record
additions/deletions/changes. Note that this should be used carefully due to the potential performance prob-
lems associated with maintaining the enumeration with every change.

Parameters:
keepUpdated - If true, the enumerator will keep its enumeration current with any changes in the
records of the record store. Use with caution as there are possible performance consequences. If false
the enumeration will not be kept current and may return recordIds for records that have been deleted or
miss records that are added later. It may also return records out of order that have been modified after
the enumeration was built.

See Also: public void rebuild ()

nextRecord()

public byte[] nextRecord ()

May 5, 2000 Mobile Information Device Profile (JSR-37) 93

Returns a copy of the next record in this enumeration, where next is defined by the comparator and/or filter
supplied in the constructor of this enumerator. The byte array returned is a copy of the record. Any changes
made to this array will NOT be reflected in the record store. After calling this method, the enumeration is
advanced to the next available record.

Returns: the next record in this enumeration.

Throws: InvalidRecordIDException - when no more records are available.

RecordStoreNotOpenException - if the record store is not open.

RecordStoreException - if a general record store exception occurs.

nextRecordIndex()

public int nextRecordIndex ()

Returns the recordId of the next record in this enumeration, where next is defined by the comparator and/or
filter supplied in the constructor of this enumerator. After calling this method, the enumeration is advanced
to the next available record.

Returns: the recordId of the next record in this enumeration.

Throws: InvalidRecordIDException - when no more records are available.

numRecords()

public int numRecords ()

Returns the number of records available in this enumeration's set. That is, the number of records that have
matched the filter criterion. Note that this forces the RecordEnumeration to fully build the enumeration by
applying the filter to all records, which may take a non-trivial amount of time if there are a lot of records in
the record store.

Returns: the number of records available in this enumeration's set. That is, the number of records that
have matched the filter criterion.

previousRecord()

public byte[] previousRecord ()

Returns a copy of the previous record in this enumeration, where previous is defined by the comparator
and/or filter supplied in the constructor of this enumerator. The byte array returned is a copy of the record.
Any changes made to this array will NOT be reflected in the record store. After calling this method, the
enumeration is advanced to the next (previous) available record.

Returns: the previous record in this enumeration.

Throws: InvalidRecordIDException - when no more records are available.

RecordStoreNotOpenException - if the record store is not open.

RecordStoreException - if a general record store exception occurs.

previousRecordIndex()

public int previousRecordIndex ()

94 Mobile Information Device Profile (JSR-37) May 5, 2000

Returns the recordId of the previous record in this enumeration, where previous is defined by the compara-
tor and/or filter supplied in the constructor of this enumerator. After calling this method, the enumeration is
advanced to the next (previous) available record.

Returns: the recordId of the previous record in this enumeration.

Throws: InvalidRecordIDException - when no more records are available.

rebuild()

public void rebuild ()

Request that the enumeration be updated to reflect the current record set. Useful for when a MIDlet makes
a number of changes to the record store, and then wants an existing RecordEnumeration to enumerate the
new changes.

See Also: public void keepUpdated (boolean keepUpdated)

reset()

public void reset ()

Returns the index point of the enumeration to the beginning.

May 5, 2000 Mobile Information Device Profile (JSR-37) 95

javax.microedition.rms

RecordFilter
Syntax
public interface RecordFilter

Description
An interface defining a filter which examines a record to see if it matches (based on an application-defined cri-
teria). The application implements the match() method to select records to be returned by the RecordEnumera-
tion. Returns true if the candidate record is selected by the RecordFilter. This interface is used in the record
store for searching or subsetting records. For example:

RecordFilter f = new DateRecordFilter(); // class implements RecordFilter
if (f.matches(recordStore.getRecord(theRecordID)) == true)
DoSomethingUseful(theRecordID);

Methods

matches(byte[])

public boolean matches (byte[] candidate)

Returns true if the candidate matches the implemented criterion.

Parameters:
candidate - The record to consider. Within this method, the application must treat this parameter as
read-only.

Returns: true if the candidate matches the implemented criterion.

Member Summary

Methods
boolean public boolean matches (byte[] candidate)

96 Mobile Information Device Profile (JSR-37) May 5, 2000

javax.microedition.rms

RecordListener
Syntax
public interface RecordListener

Description
A listener interface for receiving Record Changed/Added/Deleted events from a record store.

Methods

recordAdded(RecordStore, int)

public void recordAdded (RecordStore recordStore, int recordId)

Called when a record has been added to a record store.

Parameters:
recordStore - the RecordStore in which the record is stored.

recordId - the recordId of the record that has been added.

recordChanged(RecordStore, int)

public void recordChanged (RecordStore recordStore, int recordId)

Called after a record in a record store has been changed. If the implementation of this method retrieves the
record, it will receive the changed version.

Parameters:
recordStore - the RecordStore in which the record is stored.

recordId - the recordId of the record that has been changed.

recordDeleted(RecordStore, int)

public void recordDeleted (RecordStore recordStore, int recordId)

Member Summary

Methods
void public void recordAdded (RecordStore recordStore,

int recordId)
void public void recordChanged (RecordStore recordStore,

int recordId)
void public void recordDeleted (RecordStore recordStore,

int recordId)

May 5, 2000 Mobile Information Device Profile (JSR-37) 97

Called after a record has been deleted from a record store. If the implementation of this method tries to
retrieve the record from the record store, an InvalidRecordIDException will be thrown.

Parameters:
recordStore - the RecordStore in which the record was stored.

recordId - the recordId of the record that has been deleted.

98 Mobile Information Device Profile (JSR-37) May 5, 2000

javax.microedition.rms

RecordStore
Syntax
public class RecordStore

javax.microedition.rms.RecordStore

Description
A class representing a record store. A record store consists of a collection of records which will remain persis-
tent across multiple invocations of the MIDlet. The platform is responsible for making its best effort to maintain
the integrity of the MIDlet's record stores throughout the normal use of the platform, including reboots, battery
changes, etc.

Record stores are created in platform-dependent locations, which are not exposed to the MIDlets. The naming
space for record stores is controlled at the MIDlet suite granularity. MIDlets within a MIDlet suite are allowed
to create multiple record stores, as long as they are each given different names. When a MIDlet suite is removed
from a platform itsall record stores associated with its MIDlets will also be removed. These APIs only allow the
manipulation of the MIDlet suite's own record stores, and does not provide any mechanism for record sharing
between MIDlets in different MIDlet suites. MIDlets within a MIDlet suite can access each other's record stores
directly.

Record store names are case sensitive and may consist of any combination of up to 32 unicode characters.
Record store names must be unique within the scope of a given MIDlet suite. In other words, a MIDlets within
a MIDlet suite are is not allowed to create more than one record store with the same name, however a MIDlet in
different one MIDlet suites are is allowed to each have a record store with the same name as a MIDlet in another
MIDlet suite. In that case, the record stores are still distinct and separate.

No locking operations are provided in this API. Record store implementations ensure that all individual record
store operations are atomic, synchronous, and serialized, so no corruption will occur with multiple accesses.
However, if a MIDlet uses multiple threads to access a record store, it is the MIDlet's responsibility to coordi-
nate this access or unintended consequences may result. Similarly, if a platform performs transparent synchro-
nization of a record store, it is the platform's responsibility to enforce exclusive access to the record store
between the MIDlet and synchronization engine.

Records are uniquely identified within a given record store by their recordId, which is an integer value. This
recordId is used as the primary key for the records. The first record created in a record store will have recordId
equal to one (1). Each subsequent record added to a RecordStore will be assigned a recordId one greater than
the record added before it. That is, if two records are added to a record store, and the first has a recordId of 'n',
the next will have a recordId of 'n + 1'. MIDlets can create other indices by using the RecordEnumeration
class.

This record store uses long integers for time/date stamps, in the format used by System.currentTimeMillis().
The record store is time stamped with the last time it was modified. The record store also maintains a version,
which is an integer that is incremented for each operation that modifies the contents of the RecordStore. These
are useful for synchronization engines as well as other things.

May 5, 2000 Mobile Information Device Profile (JSR-37) 99

Methods

addRecord(byte[], int, int)

public int addRecord (byte[] data, int offset, int numBytes)

Adds a new record to the record store. The recordId for this new record is returned. This is a blocking
atomic operation. The record is written to persistent storage before the method returns.

Parameters:
data - The data to be stored in this record. If the record is to have zero-length data (no data), this
parameter may be null.

offset - The index into the data buffer of the first relevant byte for this record.

numBytes - The number of bytes of the data buffer to use for this record (may be zero).

Returns: the recordId for the new record.

Throws: RecordStoreNotOpenException - if the record store is not open.

RecordStoreException - if a different record store-related exception occurred.

RecordStoreFullException - if the operation cannot be completed because the record store has
no more room.

Member Summary

Methods
int public int addRecord (byte[] data, int offset, int numBytes)
void public void addRecordListener (RecordListener listener)
void public void closeRecordStore ()
void public void deleteRecord (int recordId)
void public static void deleteRecordStore (java.lang.String

recordStoreName)
RecordEnumeration public RecordEnumeration enumerateRecords (RecordFilter fil-

ter, RecordComparator comparator, boolean keepUpdated)
long public long getLastModified ()

String public java.lang.String getName ()
int public int getNextRecordID ()
int public int getNumRecords ()

byte[] public byte[] getRecord (int recordId)
int public int getRecord (int recordId, byte[] buffer,

int offset)
int public int getRecordSize (int recordId)
int public int getSize ()
int public int getSizeAvailable ()
int public int getVersion ()

String[] public static java.lang.String[] listRecordStores ()
RecordStore public static RecordStore openRecordStore (java.lang.String

recordStoreName, boolean createIfNecessary)
void public void removeRecordListener (RecordListener listener)
void public void setRecord (int recordId, byte[] newData,

int offset, int numBytes)

100 Mobile Information Device Profile (JSR-37) May 5, 2000

addRecordListener(RecordListener)

public void addRecordListener (RecordListener listener)

Adds the specified RecordListener. If the specified listener is already registered, it will not be added a sec-
ond time. When a record store is closed, all listeners are removed.

Parameters:
listener - the RecordChangedListener.

closeRecordStore()

public void closeRecordStore ()

This method is called when the MIDlet requests to have the record store closed. Note that the record store
will not actually be closed until closeRecordStore() is called as many times as openRecordStore() was
called. In other words, the MIDlet needs to make a balanced number of close calls as open calls before the
record store is closed.

When the record store is closed, all listeners are removed. If the MIDlet attempts to perform operations on
the RecordStore object after it has been closed, the methods will throw a RecordStoreNotOpenException.

Throws: RecordStoreNotOpenException - if the record store is not open.

RecordStoreException - if a different record store-related exception occurred.

deleteRecord(int)

public void deleteRecord (int recordId)

The record is deleted from the record store. The recordId for this record is NOT reused.

Parameters:
recordId - The ID of the record to delete.

Throws: RecordStoreNotOpenException - if the record store is not open.

InvalidRecordIDException - if the recordId is invalid.

RecordStoreException - if a general record store exception occurs.

deleteRecordStore(String)

public static void deleteRecordStore (java.lang.String recordStoreName)

Deletes the named record store. MIDlet suites are only allowed to operate on their own record stores,
including deletions. If the record store is currently open by a MIDlet when this method is called, or if the
named record store does not exist, a RecordStoreException will be thrown.

Parameters:
recordStoreName - The MIDlet suite unique record store to delete.

Throws: RecordStoreException - if a record store-related exception occurred.

RecordStoreNotFoundException - if the record store could not be found.

enumerateRecords(RecordFilter, RecordComparator, boolean)

May 5, 2000 Mobile Information Device Profile (JSR-37) 101

public RecordEnumeration enumerateRecords (RecordFilter filter,
RecordComparator comparator, boolean keepUpdated)

Returns an enumeration for traversing a set of records in the record store in an optionally specified order.

The filter, if non-null, will be used to determine what subset of the record store records will be used.

The comparator, if non-null, will be used to determine the order in which the records are returned.

If both the filter and comparator are null, the enumeration will traverse all records in the record store in an
undefined order. This is the most efficient way to traverse all of the records in a record store.

Parameters:
filter - if non-null, will be used to determine what subset of the record store records will be used.

comparator - if non-null, will be used to determine the order in which the records are returned.

keepUpdated - If true, the enumerator will update it's internal index whenever records in the record
store are added, deleted, or modified. Use with caution as there are possible performance
consequences. If false the enumeration will not be kept current and may return recordIds for records
that have been deleted or miss records that are added later. It may also return records out of order that
have been modified after the enumeration was built.

Returns: an enumeration for traversing a set of records in the record store in an optionally specified
order.

Throws: RecordStoreNotOpenException - if the record store is not open.

See Also: public void rebuild ()

getLastModified()

public long getLastModified ()

Returns the last time the record store was modified, in the format used by System.currentTimeMillis().

Returns: the last time the record store was modified, in the format used by System.currentTimeMillis().

Throws: RecordStoreNotOpenException - if the record store is not open.

getName()

public java.lang.String getName ()

Returns the name of this RecordStore.

Returns: the name of this RecordStore.

Throws: RecordStoreNotOpenException - if the record store is not open.

getNextRecordID()

public int getNextRecordID ()

Returns the recordId of the next record to be added to the record store. This can be useful for setting up
pseudo-relational relationships. That is, if you have two or more record stores whose records need to refer
to one another, you can predetermine the recordIds of the records that will be created in one record store,
before populating the fields and allocating the record in another record store. Note that the recordId
returned is only valid while the record store remains open and until a call to addRecord().

102 Mobile Information Device Profile (JSR-37) May 5, 2000

Returns: the recordId of the next record to be added to the record store.

Throws: RecordStoreNotOpenException - if the record store is not open.

RecordStoreException - if a different record store-related exception occurred.

getNumRecords()

public int getNumRecords ()

Returns the number of records currently in the record store.

Returns: the number of records currently in the record store.

Throws: RecordStoreNotOpenException - if the record store is not open.

getRecord(int)

public byte[] getRecord (int recordId)

Returns a copy of the data stored in the given record.

Parameters:
recordId - The ID of the record to use in this operation.

Returns: the data stored in the given record. Note that if the record has no data, this method will return
null.

Throws: RecordStoreNotOpenException - if the record store is not open.

InvalidRecordIDException - if the recordId is invalid.

RecordStoreException - if a general record store exception occurs.

getRecord(int, byte[], int)

public int getRecord (int recordId, byte[] buffer, int offset)

Returns the data stored in the given record.

Parameters:
recordId - The ID of the record to use in this operation.

buffer - The byte array in which to copy the data.

offset - The index into the buffer in which to start copying.

Returns: the number of bytes copied into the buffer, starting at index offset.

Throws: RecordStoreNotOpenException - if the record store is not open.

InvalidRecordIDException - if the recordId is invalid.

RecordStoreException - if a general record store exception occurs.

ArrayIndexOutOfBoundsException - if the record is larger than the buffer supplied.

getRecordSize(int)

public int getRecordSize (int recordId)

May 5, 2000 Mobile Information Device Profile (JSR-37) 103

Returns the size (in bytes) of the MIDlet data available in the given record.

Parameters:
recordId - The ID of the record to use in this operation.

Returns: the size (in bytes) of the MIDlet data available in the given record.

Throws: RecordStoreNotOpenException - if the record store is not open.

InvalidRecordIDException - if the recordId is invalid.

RecordStoreException - if a general record store exception occurs.

getSize()

public int getSize ()

Returns the amount of space, in bytes, that the record store occupies. The size returned includes any over-
head associated with the implementation, such as the data structures used to hold the state of the record
store, etc.

Returns: the size of the record store in bytes.

Throws: RecordStoreNotOpenException - if the record store is not open.

getSizeAvailable()

public int getSizeAvailable ()

Returns the amount of additional room (in bytes) available for this record store to grow. Note that this is not
necessarily the amount of extra MIDlet-level data which can be stored, as implementations may store addi-
tional data structures with each record to support integration with native applications, synchronization, etc.

Returns: the amount of additional room (in bytes) available for this record store to grow.

Throws: RecordStoreNotOpenException - if the record store is not open.

getVersion()

public int getVersion ()

Each time a record store is modified (record added, modified, deleted), it's version is incremented. This can
be used by MIDlets to quickly tell if anything has been modified.

Returns: the current record store version.

Throws: RecordStoreNotOpenException - if the record store is not open.

listRecordStores()

public static java.lang.String[] listRecordStores ()

Returns an array of the names of record stores owned by the MIDlet suite. Note that if the MIDlet suite does
not have any record stores, this function will return NULL.

Returns: an array of the names of record stores owned by the MIDlet suite. Note that if the MIDlet suite
does not have any record stores, this function will return NULL.

104 Mobile Information Device Profile (JSR-37) May 5, 2000

openRecordStore(String, boolean)

public static RecordStore openRecordStore (java.lang.String recordStoreName,
boolean createIfNecessary)

Open (and possibly create) a record store associated with the given MIDlet suite. If this method is called by
a MIDlet when the record store is already open by a MIDlet in the MIDlet suite, this method returns a refer-
ence to the same RecordStore object.

Parameters:
recordStoreName - The MIDlet suite unique name, not to exceed 32 characters, of the record
store.

createIfNecessary - If true, the record store will be created if necessary.

Returns: The RecordStore object for the record store.

Throws: RecordStoreException - if a record store-related exception occurred.

RecordStoreNotFoundException - if the record store could not be found.

RecordStoreFullException - if the operation cannot be completed because the record store is
full.

removeRecordListener(RecordListener)

public void removeRecordListener (RecordListener listener)

Removes the specified RecordListener. If the specified listener is not registered, this method does nothing.

Parameters:
listener - the RecordChangedListener.

setRecord(int, byte[], int, int)

public void setRecord (int recordId, byte[] newData, int offset, int numBytes)

Sets the data in the given record to that passed in. After this method returns, a call to getRecordSize()
will return numBytes, a call to getRecordData() will return the data supplied here.

Parameters:
recordId - The ID of the record to use in this operation.

newData - The new data to store in the record.

offset - The index into the data buffer of the first relevant byte for this record.

numBytes - The number of bytes of the data buffer to use for this record.

Throws: RecordStoreNotOpenException - if the record store is not open.

InvalidRecordIDException - if the recordId is invalid.

RecordStoreException - if a general record store exception occurs.

RecordStoreFullException - if the operation cannot be completed because the record store has
no more room.

May 5, 2000 Mobile Information Device Profile (JSR-37) 105

javax.microedition.rms

RecordStoreException
Syntax
public class RecordStoreException

javax.microedition.rms.RecordStoreException

Direct Known Subclasses: InvalidRecordIDException, RecordStoreFullException,
RecordStoreNotFoundException, RecordStoreNotOpenException

Description
Thrown to indicate a general exception occurred in a record store operation.

Constructors

RecordStoreException()

public RecordStoreException ()

Constructs a new RecordStoreException with no detail message.

RecordStoreException(String)

public RecordStoreException (java.lang.String message)

Constructs a new RecordStoreException with the specified detail message.

Parameters:
message - the detail message.

Member Summary

Constructors
public RecordStoreException ()
public RecordStoreException (java.lang.String message)

106 Mobile Information Device Profile (JSR-37) May 5, 2000

javax.microedition.rms

RecordStoreFullException
Syntax
public class RecordStoreFullException extends RecordStoreException

RecordStoreException

|
+--javax.microedition.rms.RecordStoreFullException

Description
Thrown to indicate an operation could not be completed because the record store system storage is full.

Constructors

RecordStoreFullException()

public RecordStoreFullException ()

Constructs a new RecordStoreFullException with no detail message.

RecordStoreFullException(String)

public RecordStoreFullException (java.lang.String message)

Constructs a new RecordStoreFullException with the specified detail message.

Parameters:
message - the detail message.

Member Summary

Constructors
public RecordStoreFullException ()
public RecordStoreFullException (java.lang.String message)

May 5, 2000 Mobile Information Device Profile (JSR-37) 107

javax.microedition.rms

RecordStoreNotFoundException
Syntax
public class RecordStoreNotFoundException extends RecordStoreException

RecordStoreException

|
+--javax.microedition.rms.RecordStoreNotFoundException

Description
Thrown to indicate an operation could not be completed because the record store could not be found.

Constructors

RecordStoreNotFoundException()

public RecordStoreNotFoundException ()

Constructs a new RecordStoreNotFoundException with no detail message.

RecordStoreNotFoundException(String)

public RecordStoreNotFoundException (java.lang.String message)

Constructs a new RecordStoreNotFoundException with the specified detail message.

Parameters:
message - the detail message.

Member Summary

Constructors
public RecordStoreNotFoundException ()
public RecordStoreNotFoundException (java.lang.String mes-
sage)

108 Mobile Information Device Profile (JSR-37) May 5, 2000

javax.microedition.rms

RecordStoreNotOpenException
Syntax
public class RecordStoreNotOpenException extends RecordStoreException

RecordStoreException

|
+--javax.microedition.rms.RecordStoreNotOpenException

Description
Thrown to indicate that an operation was attempted on a closed record store.

Constructors

RecordStoreNotOpenException()

public RecordStoreNotOpenException ()

Constructs a new RecordStoreNotOpenException with no detail message.

RecordStoreNotOpenException(String)

public RecordStoreNotOpenException (java.lang.String message)

Constructs a new RecordStoreNotOpenException with the specified detail message.

Parameters:
message - the detail message.

Member Summary

Constructors
public RecordStoreNotOpenException ()
public RecordStoreNotOpenException (java.lang.String message)

109

Package

javax.microedition.midlet
Description
The MIDlet package defines Mobile Information Device Profile applications and the interactions between the
application and the environment in which the application runs. An application of the Mobile Information
Device Profile is a MIDlet.

The MIDlet lifecycle defines the protocol between a MIDlet and its environment through the following:

A simple well-defined state machine

A concise definition of the MIDlet's states

APIs to signal changes between the states

MIDlet Lifecycle Definitions
The following definitions are used in the MIDlet lifecycle:

application management software - a part of the device's software operating environment that manages
MIDlets. It directs the MIDlet through state changes.

MIDlet - a MIDP application on the device. The MIDlet can signal the application management software
about whether is it wants to run or has completed. A MIDlet has no knowledge of other MIDlets through the
MIDlet API.

MIDlet States - the states a MIDlet can have are defined by the transitions allowable through the MIDlet
interface. More specific application states are known only to the application.

MIDlet States
The MIDlet state machine is designed to ensure that the behavior of an application is consistent and as close as
possible to what device manufactures and users expect, specifically:

The perceived startup latency of an application should be very short.

It should be possible to put an application into a state where it is not active.

It should be possible to destroy an application at any time.

110 Mobile Information Device Profile (JSR-37) May 5, 2000

The valid states for MIDlets are:

State Name Description

Paused The MIDlet is initialized and is quiescent. It should not be hold-
ing or using any shared resources. This state is entered:

After the MIDlet has been created using new. The public no-
argument constructor for the MIDlet is called and returns with-
out throwing an exception. The application typically does little or
no initialization in this step. If an exception occurs, the applica-
tion immediately enters the Destroyed state and is discarded.

From the Active state after the MIDlet.pauseApp() method
returns successfully.

From the Active state when the MIDlet.notifyPaused()
method returns successfully to the MIDlet.

Active The MIDlet is functioning normally. This state is entered:

From the Paused after the MIDlet.startApp() method
returns successfully.

Destroyed The MIDlet has released all of its resources and terminated.
This state is entered:

When the MIDlet.destroyApp() method returns success-
fully. The destroyApp() method shall release all resources
held and perform any necessary clean up so it may be garbage
collected.

When the MIDlet.notifyDestroyed() method returns
successfully to the application. The MIDlet must have per-
formed the equivalent of the MIDlet.destroyApp() method
before calling MIDlet.notifyDestroyed().

Note: This state is only entered once.

May 5, 2000 Mobile Information Device Profile (JSR-37) 111

The states and transitions for a MIDlet are:

MIDlet Lifecycle Model
A typical sequence of MIDlet execution is:

Application Management Software MIDlet
The application management software creates a new
instance of a MIDlet.

The default (no argument)
constructor for the
MIDlet is called; it is in
the Paused state.

The application management software has decided
that it is an appropriate time for the MIDlet to run,
so it calls the MIDlet.startApp method for it to
enter the Active state.

The MIDlet acquires
any resources it needs and
begins to perform its ser-
vice.

The application management software no longer
needs the application be active, so it signals it to stop
performing its service by calling the MIDlet.pau-
seApp method.

The MIDlet stops per-
forming its service and
might choose to release
some resources it cur-
rently holds.

112 Mobile Information Device Profile (JSR-37) May 5, 2000

MIDlet Interface
pauseApp - the MIDlet should release any temporary resources and become passive

startApp - the MIDlet should acquire any resources it needs and resume

destroyApp - the MIDlet should save any state and release all resources

notifyDestroyed - the MIDlet notifies the application management software that it has cleaned up and is
done

notifyPaused - the MIDlet notifies the application management software that it has paused

resumeRequest - the MIDlet asks application management software to be started again

getAppProperty - gets a named property from the MIDlet

Application Implementation Notes
The application should take measures to avoid race conditions in the execution of the MIDlet methods. Each
method may need to synchronize itself with the other methods avoid concurrency problems during state
changes.

Example MIDlet Application
The example uses the MIDlet lifecycle to do a simple measurement of the speed of the Java Virtual Machine.

The application management software has determined
that the MIDlet is no longer needed, or perhaps
needs to make room for a higher priority application
in memory, so it signals the MIDlet that it is a can-
didate to be destroyed by calling the
MIDlet.destroyApp method.

If it has been designed to
do so, the MIDlet saves
state or user preferences
and performs clean up.

May 5, 2000 Mobile Information Device Profile (JSR-37) 113

import javax.microedition.midlet.*;
/**
* An example MIDlet runs a simple timing test
* When it is started by the application management software it will
* create a separate thread to do the test.
* When it finishes it will notify the application management software
* it is done.
* Refer to the startApp, pauseApp, and destroyApp
* methods so see how it handles each requested transition.
*/

public class MethodTimes extends MIDlet implements Runnable {
// The state for the timing thread.
Thread thread;
/**
* Start creates the thread to do the timing.
* It should return immediately to keep the dispatcher
* from hanging.
*/

public void startApp() {
thread = new Thread(this);
thread.start();

}
/**
* Pause signals the thread to stop by clearing the thread field.
* If stopped before done with the iterations it will
* be restarted from scratch later.
*/

public void pauseApp() {
thread = null;

}
/**
* Destroy must cleanup everything. The thread is signaled
* to stop and no result is produced.
*/

public void destroyApp(boolean unconditional) {
thread = null;

}
/**

* Run the timing test, measure how long it takes to
* call a empty method 1000 times.
* Terminate early if the current thread is no longer
* the thread from the
*/

public void run() {
Thread curr = Thread.currentThread(); // Remember which thread is current
long start = System.currentTimeMillis();
for (int i = 0; i < 1000000 && thread != curr; i++) {

empty();
}
long end = System.currentTimeMillis();
// Check if timing was aborted, if so just exit
// The rest of the application has already quiesced.
if (thread != curr) {

return;
}
long millis = end - start;
// Reporting the elapsed time is outside the scope of this example.
// All done cleanup and quit
destroyApp(true);
notifyDestroyed();

}
/**
* An Empty method.
*/

void empty() {
}

}

114 Mobile Information Device Profile (JSR-37) May 5, 2000

Class Summary

Classes

MIDlet A MIDLet is a MID Profile application.

MIDletStateChangeEx-
ception

Signals that a requested MIDlet state change failed.

May 5, 2000 Mobile Information Device Profile (JSR-37) 115

javax.microedition.midlet

MIDlet
Syntax
public abstract class MIDlet

javax.microedition.midlet.MIDlet

Description
A MIDLet is a MID Profile application. The application must extend this class to allow the application man-
agement software to control the MIDlet and to be able to retrieve properties from the application descriptor and
notify and request state changes. The methods of this class allow the application management software to cre-
ate, start, pause, and destroy a MIDlet. A MIDlet is a set of classes designed to be run and controlled by the
application management software via this interface. The states allow the application management software to
manage the activities of multiple MIDlets within a runtime environment. It can select which MIDlets are
active at a given time by starting and pausing them individually. The application management software main-
tains the state of the MIDlet and invokes methods on the MIDlet to change states. The MIDlet implements
these methods to update its internal activities and resource usage as directed by the application management
software. The MIDlet can initiate some state changes itself and notifies the application management software
of those state changes by invoking the appropriate methods.

Note: The methods on this interface signal state changes. The state change is not considered complete until the
state change method has returned. It is intended that these methods return quickly.

Constructors

MIDlet()

protected MIDlet ()

Protected constructor for subclasses.

Member Summary

Constructors
protected MIDlet ()

Methods
void protected abstract void destroyApp (boolean unconditional)

String public final java.lang.String getAppProperty
(java.lang.String key)

void public final void notifyDestroyed ()
void public final void notifyPaused ()
void protected abstract void pauseApp ()
void public final void resumeRequest ()
void protected abstract void startApp ()

116 Mobile Information Device Profile (JSR-37) May 5, 2000

Methods

destroyApp(boolean)

protected abstract void destroyApp (boolean unconditional)

Signals the MIDlet to terminate and enter the Destroyed state. In the destroyed state the MIDlet must
release all resources and save any persistent state. This method may be called from the Paused or Active
states.

MIDlets should perform any operations required before being terminated, such as releasing resources or
saving preferences or state.

NOTE: The MIDlet can request that it not enter the Destroyed state by throwing an MIDletState-
ChangeException. This is only a valid response if the unconditional flag is set to false. If it is
true the MIDlet is assumed to be in the Destroyed state regardless of how this method terminates. If it is
not an unconditional request, the MIDlet can signify that it wishes to stay in its current state by throwing
the MIDletStateChangeException. This request may be honored and the destroy() method
called again at a later time.

Parameters:
unconditional - If true when this method is called, the MIDlet must cleanup and release all
resources. If false the MIDlet may throw MIDletStateChangeException to indicate it does
not want to be destroyed at this time.

Throws: <code>MIDletStateChangeException</code> - is thrown if the MIDlet wishes to
continue to execute (Not enter the Destroyed state). This exception is ignored if unconditional is
equal to true.

MIDletStateChangeException

getAppProperty(String)

public final java.lang.String getAppProperty (java.lang.String key)

Provides a MIDlet with a mechanism to retrieve named properties from the application management soft-
ware. The properties are retrieved from the combination of the application descriptor file and the manfiest.
If an attributes in the descriptor has the same name as an attribute in the manifest the value from the
descriptor is used and the value from the manifest is ignored.

Parameters:
key - the name of the property

Returns: A string with the value of the property. null is returned if no value is available for the key.

notifyDestroyed()

public final void notifyDestroyed ()

Used by an MIDlet to notify the application management software that it has entered into the Destroyed
state. The application management software will not call the MIDlet's destroyApp method, and all
resources held by the MIDlet will be considered eligible for reclamation. The MIDlet must have per-
formed the same operations (clean up, releasing of resources etc.) it would have if the
MIDlet.destroyApp() had been called.

May 5, 2000 Mobile Information Device Profile (JSR-37) 117

notifyPaused()

public final void notifyPaused ()

Notifies the application management software that the MIDlet does not want to be active and has entered
the Paused state. Invoking this method will have no effect if the MIDlet is destroyed, or if it has not yet
been started.

It may be invoked by the MIDlet when it is in the Active state.

If a MIDlet calls notifyPaused(), in the future its startApp() method may be called make it
active again, or its destroyApp() method may be called to request it to destroy itself.

pauseApp()

protected abstract void pauseApp ()

Signals the MIDlet to stop and enter the Paused state. In the Paused state the MIDlet must release
shared resources and become quiescent. This method will only be called called when the MIDlet is in the
Active state.

resumeRequest()

public final void resumeRequest ()

Provides a MIDlet with a mechanism to indicate that it is interested in entering the Active state. Calls to
this method can be used by the application management software to determine which applications to move
to the Active state.

When the application management software decides to activate this application it will call the startApp
method.

The application is generally in the Paused state when this is called. Even in the paused state the application
may handle asynchronous events such as timers or callbacks.

startApp()

protected abstract void startApp ()

Signals the MIDlet to start and enter the Active state. In the Active state the MIDlet may hold resources.
The method will only be called when the MIDlet is in the Paused state.

Two kinds of failures can prevent the service from starting, transient and non-transient. For transient fail-
ures the MIDletStateChangeException exception should be thrown. For non-transient failures the
notifyDestroyed method should be called.

Throws: <code>MIDletStateChangeException</code> - is thrown if the MIDlet cannot
start now but might be able to start at a later time.

MIDletStateChangeException

118 Mobile Information Device Profile (JSR-37) May 5, 2000

javax.microedition.midlet

MIDletStateChangeException
Syntax
public class MIDletStateChangeException

javax.microedition.midlet.MIDletStateChangeException

Description
Signals that a requested MIDlet state change failed. This exception is thrown by the MIDlet in response to
state change calls into the application via the MIDlet interface

See Also: MIDlet

Constructors

MIDletStateChangeException()

public MIDletStateChangeException ()

Constructs an exception with no specified detail message.

MIDletStateChangeException(String)

public MIDletStateChangeException (java.lang.String s)

Constructs an exception with the specified detail message.

Parameters:
s - the detail message

Member Summary

Constructors
public MIDletStateChangeException ()
public MIDletStateChangeException (java.lang.String s)

119

Package

javax.microedition.io
Description
MID Profile includes networking support based on the GenericConnection framework from the Con-
nected Limited Device Configuration.

In addition to the javax.microedition.io classes specified in the Connected Limited Device Configura-
tion the Mobile Information Device Profile includes the following interface for HTTP protocol access over the
network.

n javax.microedition.io.HttpConnection

Class Summary

Interfaces

HttpConnection This interface defines the necessary methods and constants for an HTTP connection.

120 Mobile Information Device Profile (JSR-37) May 5, 2000

121

javax.microedition.io

HttpConnection
Syntax
public interface HttpConnection extends javax.microedition.io.ContentConnection

All Superinterfaces: Connection, ContentConnection, InputConnection, OutputCon-
nection, StreamConnection

Description
This interface defines the necessary methods and constants for an HTTP connection.

HTTP is a request-response protocol in which the parameters of request must be set before the request is sent.
The connection exists in one of two states:

n Setup, in which the connection has not been made to the server.
n Connected, in which the connection has been made, request parameters have been sent and the response is

expected.
The following methods may be invoked only in the Setup state:

n setRequestMethod
n setRequestProperty

The transition from Setup to Connected is caused by any method that requires data to be sent to or received
from the server.

The following methods cause the transition to the Connected state

n openInputStream
n openOutputStream
n getLength
n getType
n getEncoding
n getHeaderField
n getResponseCode
n getResponseMessage
n getHeaderFieldInt
n getHeaderFieldDate
n getErrorStream

The following methods may be invoked at any time.

n close
n getRequestMethod
n getRequestProperty
n getURL
n getProtocol
n getHost
n getFile
n getRef
n getPort
n getQuery

Example using StreamConnection

Simple read of a url using StreamConnection. No HTTP specific behavior is needed or used.

122 Mobile Information Device Profile (JSR-37) May 5, 2000

Connector.open is used to open url and a StreamConnection is returned. From the StreamConnection the Input-
Stream is opened. It is used to read every character until end of file (-1). If an exception is thrown the connec-
tion and stream are closed.

void getViaStringConnection(String url) throws IOException {
StreamConnection c = null;
InputStream s = null;
try {

c = (StreamConnection)Connector.open(url);
s = c.openInputStream();
int ch;
while ((ch = s.read()) != -1) {

...
}

} finally {
if (s != null)

s.close();
if (c != null)

c.close();
}

}

Example using ContentConnection

Simple read of a url using ContentConnection. No HTTP specific behavior is needed or used.

Connector.open is used to open url and a ContentConnection is returned. The ContentConnection may be able
to provide the length. If the length is available, it is used to read the data in bulk. From the StreamConnection
the InputStream is opened. It is used to read every character until end of file (-1). If an exception is thrown the
connection and stream are closed.

void getViaContentConnection(String url) throws IOException {
ContentConnection c = null;
InputStream is = null;
try {

c = (ContentConnection)Connector.open(url);
int len = (int)c.getLength();
if (len > 0) {

is = c.openInputStream();
byte[] data = new byte[len];
int actual = is.read(data);
...

} else {
int ch;
while ((ch = is.read()) != -1) {

...
}

}
} finally {

if (is != null)
is.close();

if (c != null)
c.close();

}
}

Example using HttpConnection

Read the HTTP headers and the data using HttpConnection.

Connector.open is used to open url and a HttpConnection is returned. The HTTP headers are read and pro-
cessed. If the length is available, it is used to read the data in bulk. From the StreamConnection the InputStream
is opened. It is used to read every character until end of file (-1). If an exception is thrown the connection and
stream are closed.

May 5, 2000 Mobile Information Device Profile (JSR-37) 123

void getViaHttpConnection(String url) throws IOException {
HttpConnection c = null;
InputStream is = null;
try {

c = (HttpConnection)Connector.open(url);

// Getting the InputStream will open the connection
// and read the HTTP headers. They are stored until
// requested.
is = c.openInputStream();

// Get the ContentType
String type = c.getType();

// Get the length and process the data
int len = (int)c.getLength();
if (len > 0) {

byte[] data = new byte[len];
int actual = is.read(data);
...

} else {
int ch;
while ((ch = is.read()) != -1) {

...
}

}
} finally {

if (is != null)
is.close();

if (c != null)
c.close();

}
}

Example using POST with HttpConnection

Post a request with some headers and content to the server and process the headers and content.

Connector.open is used to open url and a HttpConnection is returned. The request method is set to POST and
request headers set. A simple command is written and flushed. The HTTP headers are read and processed. If the
length is available, it is used to read the data in bulk. From the StreamConnection the InputStream is opened. It
is used to read every character until end of file (-1). If an exception is thrown the connection and stream is
closed.

124 Mobile Information Device Profile (JSR-37) May 5, 2000

void postViaHttpConnection(String url) throws IOException {
HttpConnection c = null;
InputStream is = null;
OutputStream os = null;
try {

c = (HttpConnection)Connector.open(url);
// Set the request method and headers
c.setRequestMethod(c.POST);
c.setRequestProperty("If-Modified-Since",

"29 Oct 1999 19:43:31 GMT");
c.setRequestProperty("User-Agent",

"Profile/MIDP-1.0 Configuration/CLDC-1.0");
c.setRequestProperty("Content-Language", "en-US");
// Getting the output stream may flush the headers
os = c.openOutputStream();
os.write("LIST games\n".getBytes());
os.flush(); // Optional, openInputStream will flush
// Opening the InputStream will open the connection
// and read the HTTP headers. They are stored until
// requested.
is = c.openInputStream();
// Get the ContentType
String type = c.getType();
processType(type);
// Get the length and process the data
int len = (int)c.getLength();
if (len > 0) {

byte[] data = new byte[len];
int actual = is.read(data);
process(data);

} else {
int ch;
while ((ch = is.read()) != -1) {

process((byte)ch);
}

}
} finally {

if (is != null)
is.close();

if (os != null)
os.close();

if (c != null)
c.close();

}
}

Simplifed Stream Methods on Connector

Please note the following: The Connector class defines the following convenience methods for retrieving an
input or output stream directly for a specified URL:

n InputStream openDataInputStream(String url)
n DataInputStream openDataInputStream(String url)
n OutputStream openOutputStream(String url)
n DataOutputStream openDataOutputStream(String url)

Please be aware that using these methods implies certain restrictions. You will not get a reference to the actual
connection, but rather just references to the input or output stream of the connection. Not having a reference to
the connection means that you will not be able to manipulate or query the connection directly. This in turn
means that you will not be able to call any of the following methods:

n getRequestMethod()
n setRequestMethod()
n getRequestProperty()
n setRequestProperty()

May 5, 2000 Mobile Information Device Profile (JSR-37) 125

n getLength()
n getType()
n getEncoding()
n getHeaderField()
n getResponseCode()
n getResponseMessage()
n etc.

Member Summary

Fields
String GET
String HEAD

int HTTP_ACCEPTED
int HTTP_BAD_GATEWAY
int HTTP_BAD_METHOD
int HTTP_BAD_REQUEST
int HTTP_CLIENT_TIMEOUT
int HTTP_CONFLICT
int HTTP_CREATED
int HTTP_ENTITY_TOO_LARGE
int HTTP_EXPECT_FAILED
int HTTP_FORBIDDEN
int HTTP_GATEWAY_TIMEOUT
int HTTP_GONE
int HTTP_INTERNAL_ERROR
int HTTP_LENGTH_REQUIRED
int HTTP_MOVED_PERM
int HTTP_MOVED_TEMP
int HTTP_MULT_CHOICE
int HTTP_NO_CONTENT
int HTTP_NOT_ACCEPTABLE
int HTTP_NOT_AUTHORITATIVE
int HTTP_NOT_FOUND
int HTTP_NOT_IMPLEMENTED
int HTTP_NOT_MODIFIED
int HTTP_OK
int HTTP_PARTIAL
int HTTP_PAYMENT_REQUIRED
int HTTP_PRECON_FAILED
int HTTP_PROXY_AUTH
int HTTP_REQ_TOO_LONG
int HTTP_RESET
int HTTP_SEE_OTHER
int HTTP_TEMP_REDIRECT
int HTTP_UNAUTHORIZED
int HTTP_UNAVAILABLE
int HTTP_UNSUPPORTED_RANGE
int HTTP_UNSUPPORTED_TYPE
int HTTP_USE_PROXY
int HTTP_VERSION

String POST

126 Mobile Information Device Profile (JSR-37) May 5, 2000

Fields

GET

public static final String GET

HTTP Get method

Methods
long getDate()
long getExpiration()

String getFile()
String getHeaderField(int)
String getHeaderField(String)

long getHeaderFieldDate(String, long)
int getHeaderFieldInt(String, int)

String getHeaderFieldKey(int)
String getHost()

long getLastModified()
int getPort()

String getProtocol()
String getQuery()
String getRef()
String getRequestMethod()
String getRequestProperty(String)

int getResponseCode()
String getResponseMessage()
String getURL()

void setRequestMethod(String)
void setRequestProperty(String, String)

Inherited Member Summary

Methods inherited from interface ContentConnection
getEncoding(), getLength(), getType()

Methods inherited from interface InputConnection
openDataInputStream(), openInputStream()

Methods inherited from interface Connection
close()

Methods inherited from interface OutputConnection
openDataOutputStream(), openOutputStream()

Member Summary

May 5, 2000 Mobile Information Device Profile (JSR-37) 127

HEAD

public static final String HEAD

HTTP Head method

HTTP_ACCEPTED

public static final int HTTP_ACCEPTED

202: The request has been accepted for processing, but the processing has not been completed.

HTTP_BAD_GATEWAY

public static final int HTTP_BAD_GATEWAY

502: The server, while acting as a gateway or proxy, received an invalid response from the upstream server
it accessed in attempting to fulfill the request.

HTTP_BAD_METHOD

public static final int HTTP_BAD_METHOD

405: The method specified in the Request-Line is not allowed for the resource identified by the Request-
URI.

HTTP_BAD_REQUEST

public static final int HTTP_BAD_REQUEST

400: The request could not be understood by the server due to malformed syntax.

HTTP_CLIENT_TIMEOUT

public static final int HTTP_CLIENT_TIMEOUT

408: The client did not produce a request within the time that the server was prepared to wait. The client
MAY repeat the request without modifications at any later time.

HTTP_CONFLICT

public static final int HTTP_CONFLICT

409: The request could not be completed due to a conflict with the current state of the resource.

HTTP_CREATED

public static final int HTTP_CREATED

201: The request has been fulfilled and resulted in a new resource being created.

HTTP_ENTITY_TOO_LARGE

128 Mobile Information Device Profile (JSR-37) May 5, 2000

public static final int HTTP_ENTITY_TOO_LARGE

413: The server is refusing to process a request because the request entity is larger than the server is willing
or able to process.

HTTP_EXPECT_FAILED

public static final int HTTP_EXPECT_FAILED

417: The expectation given in an Expect request-header field could not be met by this server, or, if the
server is a proxy, the server has unambiguous evidence that the request could not be met by the next-hop
server.

HTTP_FORBIDDEN

public static final int HTTP_FORBIDDEN

403: The server understood the request, but is refusing to fulfill it. Authorization will not help and the
request SHOULD NOT be repeated.

HTTP_GATEWAY_TIMEOUT

public static final int HTTP_GATEWAY_TIMEOUT

504: The server, while acting as a gateway or proxy, did not receive a timely response from the upstream
server specified by the URI or some other auxiliary server it needed to access in attempting to complete the
request.

HTTP_GONE

public static final int HTTP_GONE

410: The requested resource is no longer available at the server and no forwarding address is known.

HTTP_INTERNAL_ERROR

public static final int HTTP_INTERNAL_ERROR

500: The server encountered an unexpected condition which prevented it from fulfilling the request.

HTTP_LENGTH_REQUIRED

public static final int HTTP_LENGTH_REQUIRED

411: The server refuses to accept the request without a defined Content- Length.

HTTP_MOVED_PERM

public static final int HTTP_MOVED_PERM

301: The requested resource has been assigned a new permanent URI and any future references to this
resource SHOULD use one of the returned URIs.

May 5, 2000 Mobile Information Device Profile (JSR-37) 129

HTTP_MOVED_TEMP

public static final int HTTP_MOVED_TEMP

302: The requested resource resides temporarily under a different URI.

HTTP_MULT_CHOICE

public static final int HTTP_MULT_CHOICE

300: The requested resource corresponds to any one of a set of representations, each with its own specific
location, and agent- driven negotiation information is being provided so that the user (or user agent) can
select a preferred representation and redirect its request to that location.

HTTP_NO_CONTENT

public static final int HTTP_NO_CONTENT

204: The server has fulfilled the request but does not need to return an entity-body, and might want to return
updated metainformation.

HTTP_NOT_ACCEPTABLE

public static final int HTTP_NOT_ACCEPTABLE

406: The resource identified by the request is only capable of generating response entities which have con-
tent characteristics not acceptable according to the accept headers sent in the request.

HTTP_NOT_AUTHORITATIVE

public static final int HTTP_NOT_AUTHORITATIVE

203: The returned metainformation in the entity-header is not the definitive set as available from the origin
server.

HTTP_NOT_FOUND

public static final int HTTP_NOT_FOUND

404: The server has not found anything matching the Request-URI. No indication is given of whether the
condition is temporary or permanent.

HTTP_NOT_IMPLEMENTED

public static final int HTTP_NOT_IMPLEMENTED

501: The server does not support the functionality required to fulfill the request.

HTTP_NOT_MODIFIED

public static final int HTTP_NOT_MODIFIED

130 Mobile Information Device Profile (JSR-37) May 5, 2000

304: If the client has performed a conditional GET request and access is allowed, but the document has not
been modified, the server SHOULD respond with this status code.

HTTP_OK

public static final int HTTP_OK

200: The request has succeeded.

HTTP_PARTIAL

public static final int HTTP_PARTIAL

206: The server has fulfilled the partial GET request for the resource.

HTTP_PAYMENT_REQUIRED

public static final int HTTP_PAYMENT_REQUIRED

402: This code is reserved for future use.

HTTP_PRECON_FAILED

public static final int HTTP_PRECON_FAILED

412: The precondition given in one or more of the request-header fields evaluated to false when it was
tested on the server.

HTTP_PROXY_AUTH

public static final int HTTP_PROXY_AUTH

407: This code is similar to 401 (Unauthorized), but indicates that the client must first authenticate itself
with the proxy.

HTTP_REQ_TOO_LONG

public static final int HTTP_REQ_TOO_LONG

414: The server is refusing to service the request because the Request-URI is longer than the server is will-
ing to interpret.

HTTP_RESET

public static final int HTTP_RESET

205: The server has fulfilled the request and the user agent SHOULD reset the document view which
caused the request to be sent.

HTTP_SEE_OTHER

public static final int HTTP_SEE_OTHER

May 5, 2000 Mobile Information Device Profile (JSR-37) 131

303: The response to the request can be found under a different URI and SHOULD be retrieved using a
GET method on that resource.

HTTP_TEMP_REDIRECT

public static final int HTTP_TEMP_REDIRECT

307: The requested resource resides temporarily under a different URI.

HTTP_UNAUTHORIZED

public static final int HTTP_UNAUTHORIZED

401: The request requires user authentication. The response MUST include a WWW-Authenticate header
field containing a challenge applicable to the requested resource.

HTTP_UNAVAILABLE

public static final int HTTP_UNAVAILABLE

503: The server is currently unable to handle the request due to a temporary overloading or maintenance of
the server.

HTTP_UNSUPPORTED_RANGE

public static final int HTTP_UNSUPPORTED_RANGE

416: A server SHOULD return a response with this status code if a request included a Range request-header
field , and none of the range-specifier values in this field overlap the current extent of the selected resource,
and the request did not include an If-Range request-header field.

HTTP_UNSUPPORTED_TYPE

public static final int HTTP_UNSUPPORTED_TYPE

415: The server is refusing to service the request because the entity of the request is in a format not sup-
ported by the requested resource for the requested method.

HTTP_USE_PROXY

public static final int HTTP_USE_PROXY

305: The requested resource MUST be accessed through the proxy given by the Location field.

HTTP_VERSION

public static final int HTTP_VERSION

505: The server does not support, or refuses to support, the HTTP protocol version that was used in the
request message.

132 Mobile Information Device Profile (JSR-37) May 5, 2000

POST

public static final String POST

HTTP Post method

Methods

getDate()

public long getDate ()

Returns the value of the date header field.

Returns: the sending date of the resource that the URL references, or 0 if not known. The value returned
is the number of milliseconds since January 1, 1970 GMT.

Throws: IOException - if an error occurred connecting to the server.

getExpiration()

public long getExpiration ()

Returns the value of the expires header field.

Returns: the expiration date of the resource that this URL references, or 0 if not known. The value is the
number of milliseconds since January 1, 1970 GMT.

Throws: IOException - if an error occurred connecting to the server.

getFile()

public String getFile ()

Returns the file portion of the URL of this HttpConnection.

Returns: the file portion of the URL of this HttpConnection. null is returned if there is no file.

getHeaderField(int)

public String getHeaderField (int n)

Gets a header field value by index.

Parameters:
n - the index of the header field

Returns: the value of the nth header field or null if the array index is out of range. An empty String is
returned if the field does not have a value.

Throws: IOException - if an error occurred connecting to the server.

getHeaderField(String)

May 5, 2000 Mobile Information Device Profile (JSR-37) 133

public String getHeaderField (String name)

Returns the value of the named header field.

Parameters:
name - of a header field.

Returns: the value of the named header field, or null if there is no such field in the header.

Throws: IOException - if an error occurred connecting to the server.

getHeaderFieldDate(String, long)

public long getHeaderFieldDate (String name, long def)

Returns the value of the named field parsed as date. The result is the number of milliseconds since January
1, 1970 GMT represented by the named field.

This form of getHeaderField exists because some connection types (e.g., http-ng) have pre-parsed
headers. Classes for that connection type can override this method and short-circuit the parsing.

Parameters:
name - the name of the header field.

def - a default value.

Returns: the value of the field, parsed as a date. The value of the def argument is returned if the field is
missing or malformed.

Throws: IOException - if an error occurred connecting to the server.

getHeaderFieldInt(String, int)

public int getHeaderFieldInt (String name, int def)

Returns the value of the named field parsed as a number.

This form of getHeaderField exists because some connection types (e.g., http-ng) have pre-parsed
headers. Classes for that connection type can override this method and short-circuit the parsing.

Parameters:
name - the name of the header field.

def - the default value.

Returns: the value of the named field, parsed as an integer. The def value is returned if the field is
missing or malformed.

Throws: IOException - if an error occurred connecting to the server.

getHeaderFieldKey(int)

public String getHeaderFieldKey (int n)

Gets a header field key by index.

Parameters:
n - the index of the header field

Returns: the key of the nth header field or null if the array index is out of range.

134 Mobile Information Device Profile (JSR-37) May 5, 2000

Throws: IOException - if an error occurred connecting to the server.

getHost()

public String getHost ()

Returns the host information of the URL of this HttpConnection. e.g. host name or IPv4 address

Returns: the host information of the URL of this HttpConnection. null is returned if there is no
host.

getLastModified()

public long getLastModified ()

Returns the value of the last-modified header field. The result is the number of milliseconds since
January 1, 1970 GMT.

Returns: the date the resource referenced by this HttpConnection was last modified, or 0 if not
known.

Throws: IOException - if an error occurred connecting to the server.

getPort()

public int getPort ()

Returns the network port number of the URL for this HttpConnection.

Returns: the network port number of the URL for this HttpConnection. The default HTTP port
number (80) is returned if there was no port number in the string passed to Connector.open.

getProtocol()

public String getProtocol ()

Returns the protocol name of the URL of this HttpConnection. e.g., http or https

Returns: the protocol of the URL of this HttpConnection.

getQuery()

public String getQuery ()

Returns the query portion of the URL of this HttpConnection. RFC2396 defines the query component
as the text after the last question-mark (?) character in the URL.

Returns: the query portion of the URL of this HttpConnection. null is returned if there is no value.

getRef()

public String getRef ()

Returns the ref portion of the URL of this HttpConnection. RFC2396 specifies the optional fragment
identifier as the the text after the crosshatch (#) character in the URL. This information may be used by the

May 5, 2000 Mobile Information Device Profile (JSR-37) 135

user agent as additional reference information after the resource is successfuly retrieved. The format and
interpretation of the fragment identifier is dependent on the media type[RFC2046] of the retrieved informa-
tion.

Returns: the ref portion of the URL of this HttpConnection. null is returned if there is no value.

getRequestMethod()

public String getRequestMethod ()

Get the current request method. e.g. HEAD, GET, POST The default value is GET.

Returns: the HTTP request method

getRequestProperty(String)

public String getRequestProperty (String key)

Returns the value of the named general request property for this connection.

Parameters:
key - the keyword by which the request is known (e.g., "accept").

Returns: the value of the named general request property for this connection.

getResponseCode()

public int getResponseCode ()

Returns the HTTP response status code. It parses responses like:

HTTP/1.0 200 OK
HTTP/1.0 401 Unauthorized

and extracts the ints 200 and 401 respectively. from the response (i.e., the response is not valid HTTP).

Returns: the HTTP Status-Code or -1 if no status code can be discerned.

Throws: IOException - if an error occurred connecting to the server.

getResponseMessage()

public String getResponseMessage ()

Gets the HTTP response message, if any, returned along with the response code from a server. From
responses like:

HTTP/1.0 200 OK
HTTP/1.0 404 Not Found

Extracts the Strings "OK" and "Not Found" respectively. Returns null if none could be discerned from the
responses (the result was not valid HTTP).

Returns: the HTTP response message, or null

Throws: IOException - if an error occurred connecting to the server.

getURL()

136 Mobile Information Device Profile (JSR-37) May 5, 2000

public String getURL ()

Return a string representation of the URL for this connection.

Returns: the string representation of the URL for this connection.

setRequestMethod(String)

public void setRequestMethod (String method)

Set the method for the URL request, one of:

• GET
• POST
• HEAD

are legal, subject to protocol restrictions. The default method is GET.

Parameters:
method - the HTTP method

Throws: IOException - if the method cannot be reset or if the requested method isn't valid for HTTP.

setRequestProperty(String, String)

public void setRequestProperty (String key, String value)

Sets the general request property. If a property with the key already exists, overwrite its value with the new
value.

NOTE: HTTP requires all request properties which can legally have multiple instances with the same key
to use a comma-seperated list syntax which enables multiple properties to be appended into a single prop-
erty.

Parameters:
key - the keyword by which the request is known (e.g., "accept").

value - the value associated with it.

Throws: IOException

137

Package

javax.microedition.lcdui
Description
The UI API provides a set of features for implementation of user interfaces for MIDP applications.

For more information see Chapter 9 of MIDP specification.

Screen-based approach
The central abstraction of the MIDP's UI is that of a screen. A screen is an object that encapsulates device-spe-
cific graphics rendering user input. Only one screen may be visible at the time, and the user can only traverse
through the items on that screen. The screen takes care of all events that occur as the user navigates in the
screen, with only higher-level events being passed on to the application.

The application can switch the screens by calling public void setCurrent (Displayable next) .

It is recommended that the screens are simple and contain as few UI components as reasonable.

Two-layer approach
The MIDP UI is logically composed of two APIs: the high-level API and the low-level API.

The high-level API is designed for business applications whose client parts run on MIDs. For these applications,
portability across devices is important. In order to achieve this portability, the high-level API employs a high
level of abstraction and provides very little control over look and feel. This abstraction is further manifested in
the following three ways:

The actual drawing to the MID's display is performed by the implementation. Applications do not define the
visual appearance (e.g. shape, color, font, etc.) of the components. Navigation, scrolling, and other primitive
interaction is encapsulated by the implementation, and the application is not aware of these interactions. Appli-
cations can not access concrete input devices like specific individual keys.

In other words, when using the high-level API, it is assumed that the underlying implementation will do the
necessary adaptation to device's hardware and native UI style.

The screens implementing the high-level API are the subclasses of Screen .

The low-level API, on the other hand, provides quite little abstraction. This API is designed for applications that
need precise placement and control of graphic elements and access to low-level input events. Some applications
also need to access special, device-specific features. A typical example of such an application would be a game.
Using the low-level API, an application can:

Have full control of what is drawn on the display. Listen for primitive events like key presses and releases.
Access concrete keys and other input devices

Classes Canvas and Graphics implement the low-level API.

Applications that program to the low-level API are not guaranteed to be portable, since the low-level API pro-
vides means to access details that are specific to a particular device. If the application does not use these fea-
tures, the applications will portable and it is recommended that the applications stick to the platform-
independent part of the low-level API when ever possible. This means that the applications should not directly
assume any other keys than defined in class Canvas, and should not blindly trust on any specific screen size.
Rather, the application game-event mechanism should be used instead of referring to concrete keys, and appli-
cation should ask and adjust to the size of the display.

138 Mobile Information Device Profile (JSR-37) May 5, 2000

Class Summary

Interfaces

Callable This interface is used by applications that want to get a method to be called in the same
thread as event are called.

Choice Choice defines an API for a user interface components implementing selection from
predefined number of choices.

CommandListener This interface is used by applications which need to receive high-level events from the
implementation.

ItemStateListener This interface is used by applications which need to receive events that indicate
changes in the internal state of the interactive items within a Form screen.

Classes

Alert An alert is a screen that shows data to the user and waits for a certain period of time
before proceeding to the next screen.

Canvas The Canvas class is a base class for writing applications that need to handle low-level
events and to issue graphics calls for drawing to the display.

ChoiceGroup A ChoiceGroup is a group of selectable elements intended to be placed within a
Form .

Command The Command class is a construct that encapsulates the semantic information of an
action.

DateField A DateField is an editable component for presenting date and time (calendar) informa-
tion that may be placed into a Form.

Display Display represents the manager of the display and input devices of the system.

Displayable A superclass of all Screens that can be put on the display.

Font The Font class represents Fonts and Font metrics.

Form A Form is a Screen that contains an arbitrary mixture of items: images, read-only text
fields, editable text fields, editable date fields, gauges, and choice groups.

Gauge The Gauge class implements a bar graph display of a value intended for use in a form.

Graphics Provides simple 2D geometric rendering capability.

Image The Image class is used to used to hold graphical image data.

ImageItem A class that provides layout control when Image objects are added to a Form or to an
Alert .

Item A superclass for interactive components that can be added to a Form and Alert .

List The List class is a Screen containing list of choices.

Screen The Screen class is an abstract superclass that provides its subclasses with an optional
title and an optional ticker-tape style display.

StringItem An item that can contain a string.

TextBox The TextBox class is a Screen that allows the user to enter and edit text.

TextField A TextField is an editable text component that may be placed into a Form .

Ticker Implements a "ticker-tape," a piece of text that runs continuously across the display.

May 5, 2000 Mobile Information Device Profile (JSR-37) 139

javax.microedition.lcdui

Alert
Syntax
public class Alert extends Screen

Displayable

|
+--Screen

|
+--javax.microedition.lcdui.Alert

Description
An alert is a screen that shows data to the user and waits for a certain period of time before proceeding to the
next screen. An alert is an ordinary screen that can contain text (Strings) and images, and which handles events
like other screens.

The application can set the alert time to be infinity with

setTimeout(Alert.FOREVER)

in which case the Alert is considered to be modal and the implementation provide a feature that allows the user
to "dismiss" the alert, whereupon the next screen is displayed as if the timeout had expired immediately.

If an application specifies an alert to be of a timed variety and gives it too much content such that it must scroll,
then it automatically becomes a modal alert.

Alerts do not accept application-defined commands.

The layout policy is such that the items - strings and images - are filled by default. This means that appended
items are placed on the same line with the previous item unless:

n the item does not fit on the line; then a new line is started
n the previous item was a string ending with a newline character
n the layout directives attached to the item specify non-default behaviour

The items contained within a container object (an instance of either Form or Alert) may be edited using append,
delete, insert, and set methods. An item may be placed within at most one container object. If the application
attempts to place an item into a container, and the item is already owned by this or another container, Illegal-
StateException is thrown. The application must remove the item from its container before inserting it into the
new container.

If the Alert is visible on the display when changes to its contents are requested by the application, the changes
take place automatically. That is, applications need not take any special action to refresh a Alert's display after
its contents have been modified.

Member Summary

Fields
int public static final int FOREVER

Constructors
public Alert (java.lang.String title)

Methods

140 Mobile Information Device Profile (JSR-37) May 5, 2000

Fields

FOREVER

public static final int FOREVER

FOREVER indicates that an Alert is kept alive until user dismisses it. It is a parameter in public void
setTimeout (int time) to indicate that the alert is modal and an "ok" or "done" command will be
associated with it.

Value -2 is assigned to FOREVER.

Constructors

Alert(String)

public Alert (java.lang.String title)

void public void addCommand (Command cmd)
int public int appendImage (Image img)
int public int appendItem (ImageItem item)
int public int appendItem (StringItem item)
int public int appendString (java.lang.String str)
void public void deleteItem (int itemNum)
int public int getDefaultTimeout ()
Item public Item getItemAt (int itemNum)
int public int getSize ()
int public int getTimeout ()
void public void insertItem (int itemNum, ImageItem item)
void public void insertItem (int itemNum, StringItem item)
void public void setItem (int itemNum, Item item)
void public void setListener (CommandListener l)
void public void setTimeout (int time)

Inherited Member Summary

Methods inherited from class Screen
public Ticker getTicker (), public java.lang.String getTitle (), public void setTicker
(Ticker ticker), public void setTitle (java.lang.String s)

Methods inherited from class Displayable
public boolean isShown (), public void removeCommand (Command cmd)

Member Summary

May 5, 2000 Mobile Information Device Profile (JSR-37) 141

Constructs a new, empty Alert object with the given title. If null is passed, the Alert will have no title. The
timeout value of this new alert is the same value that is returned by getDefaultTimeout().

Parameters:
title - the title string, or null

Methods

addCommand(Command)

public void addCommand (Command cmd)

Commands are not allowed on Alerts, so this method will always throw IllegalStateException whenever it
is called.

Overrides: public void addCommand (Command cmd) in class Displayable

Parameters:
cmd - the Command

Throws: IllegalStateException - always

appendImage(Image)

public int appendImage (Image img)

Adds an item consisting of one Image to the form. The effect visible to the application is identical to

appendItem(new ImageItem(null, img, ImageItem.LAYOUT_DEFAULT, null))

The image must be immutable, otherwise IllegalArgumentException is thrown. An immutable copy of a
mutable image can be created using public static Image createImage (Image image) .

Parameters:
img - the image to be added

Returns: the assigned number of the image

Throws: IllegalArgumentException - if img is mutable

NullPointerException - if img is null

See Also: Image

appendItem(ImageItem)

public int appendItem (ImageItem item)

Adds an ImageItem to the Alert. Images are laid out in the same manner as strings, unless the layout direc-
tives of ImageItem specify otherwise. For layout control of the images, see ImageItem .

Parameters:
item - the ImageItem to be added.

Returns: the number assigned to the new Item

Throws: IllegalStateException - if the item is already owned by a container

142 Mobile Information Device Profile (JSR-37) May 5, 2000

NullPointerException - if item is null

appendItem(StringItem)

public int appendItem (StringItem item)

Adds an StringItem to the Alert. Strings are filled so that current line is continued if possible. If the text
width is greater that the remaining horizontal space on the current line, the implementation inserts a new
line and appends the rest of the text. Whenever possible the implementation should avoid breaking words
into two lines. Instead, occurrences of white space (space or tab) should be used as potential places for
splitting the lines. Also, a newline character in the string causes starting of a new line.

Parameters:
item - the StringItem to be added.

Returns: the number assigned to the new Item

Throws: IllegalStateException - if the item is already owned by a container

NullPointerException - if item is null

appendString(String)

public int appendString (java.lang.String str)

Adds an item consisting of one String to the form. The effect visible to the application is identical to

appendItem(new StringItem(null, str))

Parameters:
str - the text

Returns: the assigned number of the Item

Throws: NullPointerException - if str is null

deleteItem(int)

public void deleteItem (int itemNum)

Deletes the Item referenced by itemNum. Item numbering starts at zero. It is legal to delete all items from a
Alert.

Parameters:
itemNum - the number of the item to be deleted

Throws: ArrayIndexOutOfBoundsException - if itemNum specifies an invalid item

getDefaultTimeout()

public int getDefaultTimeout ()

Get the default time the Alert is shown in milliseconds. That is a value that is most suitable for the specific
implementation.

Returns: default time-out value of the Alert

May 5, 2000 Mobile Information Device Profile (JSR-37) 143

getItemAt(int)

public Item getItemAt (int itemNum)

Gets the item at given position. The first position is zero.

Parameters:
itemNum - the index of item

Returns: the item at given position

Throws: ArrayIndexOutOfBoundsException - if itemNum is less than zero or greater than or
equal to size of the Alert.

getSize()

public int getSize ()

Gets the number of items in the Alert.

Returns: number of items

getTimeout()

public int getTimeout ()

Get the time the Alert is shown in milliseconds.

Returns: time-out value of the Alert

insertItem(int, ImageItem)

public void insertItem (int itemNum, ImageItem item)

Inserts an Image into the Alert just prior to the item specified. Item numbering starts at zero. In other
respects the semantics are identical to public int appendItem (ImageItem item) .

Parameters:
itemNum - the location at which the new item is to be inserted

item - the image item to be added

Throws: ArrayIndexOutOfBoundsException - if itemNum specifies an invalid item

IllegalStateException - if the item is already owned by a container

NullPointerException - if item is null

insertItem(int, StringItem)

public void insertItem (int itemNum, StringItem item)

Inserts a string into the Alert just prior to the item specified. Item numbering starts at zero. In other respects
the semantics are identical to public int appendItem (StringItem item) .

Parameters:
itemNum - the number of the item. Indexing of the items is zero-based.

item - the string item to be added

144 Mobile Information Device Profile (JSR-37) May 5, 2000

Throws: ArrayIndexOutOfBoundsException - if itemNum specifies an invalid item

IllegalStateException - if the item is already owned by a container

NullPointerException - if item is null

setItem(int, Item)

public void setItem (int itemNum, Item item)

Sets the item referenced by itemNum to the specified item, replacing the previous item. The previous item
is removed from the Alert. Item numbering starts at zero.

The result will be identical to

insertItem(n, item); deleteItem(n+1);

although the implementation may optimize the repainting and array element copying.

Parameters:
itemNum - the number of the item to be replaced

item - the new item

Throws: ArrayIndexOutOfBoundsException - if itemNum specifies an invalid item

IllegalStateException - if the item is already owned by a container

NullPointerException - if item is null

setListener(CommandListener)

public void setListener (CommandListener l)

Listeners are not allowed on Alerts, so this method will always throw IllegalStateException whenever it is
called.

Overrides: public void setListener (CommandListener l) in class Displayable

Parameters:
l - the Listener

Throws: IllegalStateException - always

setTimeout(int)

public void setTimeout (int time)

Set the time the Alert is shown in milliseconds. By default, i.e., if setTimeout is not called, the implementa-
tion uses the default time that is best mapping for particular device.

Parameters:
time - time in milliseconds. The Alert can be made modal by setting a special value public
static final int FOREVER .

See Also: public int getDefaultTimeout ()

May 5, 2000 Mobile Information Device Profile (JSR-37) 145

javax.microedition.lcdui

Callable
Syntax
public interface Callable

Description
This interface is used by applications that want to get a method to be called in the same thread as event are
called.

Methods

call()

public void call ()

Called once per each public void callSerially (Callable c) . The method should return
quickly.

Member Summary

Methods
void public void call ()

146 Mobile Information Device Profile (JSR-37) May 5, 2000

javax.microedition.lcdui

Canvas
Syntax
public abstract class Canvas extends Displayable

Displayable

|
+--javax.microedition.lcdui.Canvas

Description
The Canvas class is a base class for writing applications that need to handle low-level events and to issue graph-
ics calls for drawing to the display. Game applications will likely make heavy use of the Canvas class. From an
application development perspective, the Canvas class is interchangeable with standard Screen classes, so an
application may mix and match Canvas with high-level screens as needed. For example, a List screen may be
used to select the track for a racing game, and a Canvas subclass would implement the actual game.

The Canvas provides the developer with methods to handle game actions, key events, and pointer events (if sup-
ported by the device). Static methods are also provided to identify the device's capabilities and keyboard map-
ping. The key events are directly bound to concrete keys on the device and applications using them directly
might not be fully portable to different devices. Portable applications should rely on game actions: public
static final int UP , public static final int DOWN , public static final int
LEFT , public static final int RIGHT , public static final int FIRE , public
static final int GAME_A , public static final int GAME_B , public static final
int GAME_C . and public static final int GAME_D .

The canvas class requires applications to subclass it in order to use it. The paint() method is declared
abstract and so the application must provide an implementation in its subclass. Other event-reporting meth-
ods are not declared abstract, and their default implementations are empty (that is, they do nothing). This
allows the application to override only the methods that report events in which the application has interest.

This is in contrast to the Screen classes, which allow the application to define listeners and to register them
with instances of the Screen classes. This style is not used for the canvas class, because several new listener
interfaces would need to be created, one for each kind of event that might be delivered. An alternative would be
to have fewer listener interfaces, but this would require listeners to filter out events in which they had no inter-
est.

Key Events

Applications receive keystroke events in which the individual keys are named within a space of key codes.
Every key for which events are reported to MIDP applications is assigned a key code. The key code values are
unique for each hardware key unless two keys are obvious synonyms for each other. MIDP defines the follow-
ing key codes: public static final int KEY_NUM0 , public static final int
KEY_NUM1 , public static final int KEY_NUM2 , public static final int
KEY_NUM3 , public static final int KEY_NUM4 , public static final int
KEY_NUM5 , public static final int KEY_NUM6 , public static final int
KEY_NUM7 , public static final int KEY_NUM8 , public static final int
KEY_NUM9 , public static final int KEY_STAR , and public static final int
KEY_POUND . (These key codes correspond to keys on a ITU-T standard telephone keypad.) The values
defined for these key codes are all positive and the numberic values are equal to corresponding Unicode values,
so (char)keyCode will produce the unicode character that corresponds to the key.

May 5, 2000 Mobile Information Device Profile (JSR-37) 147

If the device include any other keys that have a unicode correspondence, the implementation should use the
code as Unicode system does. Keys with no corresponding Unicode character, the implementation must use
negative values. The actual values are implementation dependent, and applications that rely on these keycodes
are not portable. Zero is defined to be an invalid key code.

It is sometimes useful to find the name of a key in order to display a message about this key. In this case the
application may use the public java.lang.String getKeyName (int keycode) method to find
a key's name.

Game actions

There are unique mappings from key codes to game actions and vice versa. The application can translate key
codes to portable game actions with method public int getGameAction (int keyCode) , and the
key code corresponding to game action can be retrieved with public int getKeyCode (int
gameAction) . The implementation is not allowed to change the mapping of game actions and key codes
during execution of the application.

In some devices the game actions UP, DOWN, LEFT and RIGHT may be mapped to 4-way navigation arrow
keys. In this case, getGameAction(UP) would return a device-dependent code for the up-arrow key. Another
possible mapping would be on the number keys 2, 4, 6 and 8. In this case, getGameAction(UP) would return
KEY_NUM2. In both cases, an application interested on LEFT action, will receive a game action LEFT (the a
key code mapped to LEFT) when user presses the key that is a "natural left" on her device.

The constant sets for game actions and keycodes are meant for different purposes. A portable game must either
translate every key event to a game action with method public int getGameAction (int
keyCode) or inquire the preferred keys in its initialization phase with the public int getKeyCode
(int gameAction) method.

Commands

It is also possible for the user to issue Command when a canvas is current. Commands are mapped to keys and
menus in a device-specific fashion. For some devices the keys used for commands may overlap with the keys
that will deliver key code events to the canvas. If this is the case, the device will provide a means transparent to
the application that enables the user to select a mode that determines whether these keys will deliver commands
or key code events to the application. The set of key code events available to a canvas will not change depend-
ing upon the number of commands that are present on the canvas.

Event Delivery

The Canvas object defines several methods that are called by the implementation. These methods are primarily
for the purpose of delivering events to the application, and so they are referred to as event delivery methods. The
set of methods is:

n showNotify()
n hideNotify()
n keyPressed()
n keyRepeated()
n keyReleased()
n pointerPressed()
n pointerDragged()
n pointerReleased()
n paint()

These methods are all called serially. That is, the implementation will never call an event delivery method
before a prior call to any of the event delivery methods has returned. (But see the note below.) This property
enables applications to be assured that processing of a previous user event will have completed before the next
event is delivered.

148 Mobile Information Device Profile (JSR-37) May 5, 2000

Calls to the call() method of Callable objects passed to Display.callSerially() will also be serialized along with
calls to the event delivery methods. See public void callSerially (Callable c) for further
information.

Note: The serviceRepaints() method is an exception to this rule, as it blocks until paint() is called and returns.
This will occur even if the application is in the midst of one of the event delivery methods and it calls service-
Repaints().

The key-related, pointer-related, and paint() methods will only be called while the canvas is current, that is,
when it is actually displayed on the output device. These methods will be called on this Canvas object only after
a call to showNotify() and before a call to hideNotify(). After hideNotify() has been called, none of the key,
pointer, and paint methods will be called until after a subsequent call to showNotify() has returned. A call to a
call() method resulting from callSerially() may occur irrespective of calls to showNotify() and hideNotify().

Whenever the Canvas is made current (when showNotify() is called) and when it actually becomes visible on
the display, the paint() method will be called with a Graphics object whose clip region specifies the entire dis-
playable area of the Canvas. Applications must not rely on any contents being preserved from a previous occa-
sion when the Canvas was current.

Member Summary

Fields
int public static final int DOWN
int public static final int FIRE
int public static final int GAME_A
int public static final int GAME_B
int public static final int GAME_C
int public static final int GAME_D
int public static final int KEY_NUM0
int public static final int KEY_NUM1
int public static final int KEY_NUM2
int public static final int KEY_NUM3
int public static final int KEY_NUM4
int public static final int KEY_NUM5
int public static final int KEY_NUM6
int public static final int KEY_NUM7
int public static final int KEY_NUM8
int public static final int KEY_NUM9
int public static final int KEY_POUND
int public static final int KEY_STAR
int public static final int LEFT
int public static final int RIGHT
int public static final int UP

Constructors
protected Canvas ()

Methods
int public int getGameAction (int keyCode)
int public int getHeight ()
int public int getKeyCode (int gameAction)

String public java.lang.String getKeyName (int keycode)
int public int getWidth ()

boolean public boolean hasPointerEvents ()

May 5, 2000 Mobile Information Device Profile (JSR-37) 149

Fields

DOWN

public static final int DOWN

Constant for the DOWN game action.

Constant value 6 is set to DOWN.

FIRE

public static final int FIRE

Constant for the FIRE game action.

Constant value 8 is set to FIRE.

GAME_A

public static final int GAME_A

Constant for the general purpose "A" game action.

Constant value 9 is set to GAME_A.

boolean public boolean hasPointerMotionEvents ()
boolean public boolean hasRepeatEvents ()

void protected void hideNotify ()
void protected void keyPressed (int keyCode)
void protected void keyReleased (int keyCode)
void protected void keyRepeated (int keyCode)
void protected abstract void paint (Graphics g)
void protected void pointerDragged (int x, int y)
void protected void pointerPressed (int x, int y)
void protected void pointerReleased (int x, int y)
void public final void repaint ()
void public final void repaint (int x, int y, int width,

int height)
void public final void serviceRepaints ()
void protected void showNotify ()

Inherited Member Summary

Methods inherited from class Displayable
public void addCommand (Command cmd), public boolean isShown (), public void removeCom-
mand (Command cmd), public void setListener (CommandListener l)

Member Summary

150 Mobile Information Device Profile (JSR-37) May 5, 2000

GAME_B

public static final int GAME_B

Constant for the general purpose "B" game action.

Constant value 10 is set to GAME_B.

GAME_C

public static final int GAME_C

Constant for the general purpose "C" game action.

Constant value 12 is set to GAME_C.

GAME_D

public static final int GAME_D

Constant for the general purpose "D" game action.

Constant value 13 is set to GAME_D.

KEY_NUM0

public static final int KEY_NUM0

Keycode for ITU-T key 0.

Constant value 48 is set to KEY_NUM0.

KEY_NUM1

public static final int KEY_NUM1

Keycode for ITU-T key 1.

Constant value 49 is set to KEY_NUM1.

KEY_NUM2

public static final int KEY_NUM2

Keycode for ITU-T key 2.

Constant value 50 is set to KEY_NUM2.

KEY_NUM3

public static final int KEY_NUM3

Keycode for ITU-T key 3.

Constant value 51 is set to KEY_NUM3.

May 5, 2000 Mobile Information Device Profile (JSR-37) 151

KEY_NUM4

public static final int KEY_NUM4

Keycode for ITU-T key 4.

Constant value 52 is set to KEY_NUM4.

KEY_NUM5

public static final int KEY_NUM5

Keycode for ITU-T key 5.

Constant value 53 is set to KEY_NUM5.

KEY_NUM6

public static final int KEY_NUM6

Keycode for ITU-T key 6.

Constant value 54 is set to KEY_NUM6.

KEY_NUM7

public static final int KEY_NUM7

Keycode for ITU-T key 7.

Constant value 55 is set to KEY_NUM7.

KEY_NUM8

public static final int KEY_NUM8

Keycode for ITU-T key 8.

Constant value 56 is set to KEY_NUM8.

KEY_NUM9

public static final int KEY_NUM9

Keycode for ITU-T key 9.

Constant value 57 is set to KEY_NUM09.

KEY_POUND

public static final int KEY_POUND

Keycode for ITU-T key "pound" (#).

Constant value 35 is set to KEY_POUND.

152 Mobile Information Device Profile (JSR-37) May 5, 2000

KEY_STAR

public static final int KEY_STAR

Keycode for ITU-T key "star"(*).

Constant value 42 is set to KEY_STAR.

LEFT

public static final int LEFT

Constant for the LEFT game action.

Constant value 2 is set to LEFT.

RIGHT

public static final int RIGHT

Constant for the RIGHT game action.

Constant value 5 is set to RIGHT.

UP

public static final int UP

Constant for the UP game action.

Constant value 1 is set to UP.

Constructors

Canvas()

protected Canvas ()

Constructs a new Canvas object.

Methods

getGameAction(int)

public int getGameAction (int keyCode)

Gets the game action associated with the given key code of the device.

It is assumed that the mapping between concrete keys and abstract events does not change during the exe-
cution of the game.

May 5, 2000 Mobile Information Device Profile (JSR-37) 153

Pre-conditions: - keyCode refers to a key that is mapped as a game key on the device Post-conditions: -
The game action of the key is returned (or 0 if the key is not mapped to a game action or not present on the
device)

Parameters:
keyCode - The key code

Returns: The corresponding game action (UP, DOWN, LEFT, RIGHT, GAME_A, etc.) or 0 if the
keyCode does not represent any game action.

getHeight()

public int getHeight ()

Gets height of the displayable area in pixels. The value is unchanged during the execution of the application
and all Canvases will have the same value.

Returns: height of the displayable area

getKeyCode(int)

public int getKeyCode (int gameAction)

Gets the key code that corresponds to the specified game action on the device.

It is assumed that the mapping between concrete keys and abstract events does not change during the exe-
cution of the game.

Pre-conditions: gameAction is a defined game action (Canvas.UP, Canvas.DOWN, Canvas.FIRE, etc.)
Post-conditions: - The key code of the key that corresponds to the specified action is returned (or -1 if the
game action is invalid or not supported by the device)

Parameters:
gameAction - The game action to obtain the key code for. (one of UP, DOWN, LEFT, RIGHT,
GAME_A, GAME_B, GAME_C and GAME_D.)

Returns: The key code.

Throws: IllegalArgumentException - if the gameAction is not one of the defined game actions.

getKeyName(int)

public java.lang.String getKeyName (int keycode)

Gets an informative key string for a key. The string returned should resemble the text physically printed on
the key. For example, on a device with function keys F1 through F4, calling this method on the keycode for
the F1 key will return the string "F1". A typical use for this string will be to compose help text such as
"Press F1 to proceed."

There is no direct mapping from game actions to key names. To get the string name for a game action, the
application must call

getKeyName(getKeyCode(GAME_A))

Parameters:
keycode - the key code being requested

Returns: a string name for the key, or null if no name is available

154 Mobile Information Device Profile (JSR-37) May 5, 2000

getWidth()

public int getWidth ()

Gets width of the displayable area in pixels. The value is unchanged during the execution of the application
and all Canvases will have the same value.

Returns: width of the displayable area

hasPointerEvents()

public boolean hasPointerEvents ()

Checks if the platform supports pointer press and release events.

Returns: true if the device supports pointer events

hasPointerMotionEvents()

public boolean hasPointerMotionEvents ()

* Checks if the platform supports pointer motion events (pointer dragged). Applications may use this
method to determine if the platform is capable of supporting a game.

Returns: true if the device supports pointer motion events

hasRepeatEvents()

public boolean hasRepeatEvents ()

Checks if the platform can ganerate repeat events when key is kept down.

Returns: true if the device supports repeat events

hideNotify()

protected void hideNotify ()

The implementation calls showNotify() when this Canvas is shown. Canvas sub-classes may override this
method to perform tasks immediately after being hidden such as freeing resources, terminating threads or
timers, etc. Class Canvas has an empty implementation of this method, and the subclass has to redefine it if
it wants to listen this method.

keyPressed(int)

protected void keyPressed (int keyCode)

Called when a key is pressed. The key is one of the KEY_... codes defined in above.

The getGameAction() method can be called to determine what game action, if any, is mapped to the key.
Class Canvas has an empty implementation of this method, and the subclass has to redefine it if it wants to
listen this method.

Parameters:
keyCode - The key code of the key that was pressed.

May 5, 2000 Mobile Information Device Profile (JSR-37) 155

keyReleased(int)

protected void keyReleased (int keyCode)

Called when a key is released. The getGameAction() method can be called to determine what game action,
if any, is mapped to the key. Class Canvas has an empty implementation of this method, and the subclass
has to redefine it if it wants to listen this method.

Parameters:
keyCode - The key code of the key that was released

keyRepeated(int)

protected void keyRepeated (int keyCode)

Called when a key is repeated (held down). The getGameAction() method can be called to determine what
game action, if any, is mapped to the key. Class Canvas has an empty implementation of this method, and
the subclass has to redefine it if it wants to listen this method.

Parameters:
keyCode - The key code of the key that was repeated

See Also: public boolean hasRepeatEvents ()

paint(Graphics)

protected abstract void paint (Graphics g)

Renders the Canvas. The application must implement this method in order to paint any graphics.

The Graphics object's clip region defines the area of the screen that is considered to be invalid. A correctly-
written paint() routine must paint every pixel within this region. Applications must not assume that they
know the underlying source of the paint() call and use this assumption to paint only a subset of the pixels
within the clip region. The reason is that this particular paint() call may have resulted from multiple
repaint() requests, some of which may have been generated from outside the application. An application
that paints only what it thinks is necessary to be painted may display incorrectly if the screen contents had
been invalidated by, for example, an incoming telephone call.

Operations on this graphics object after the paint() call returns are undefined. The application is thus must
not to cache this Graphics object for later use or use by another thread. It must only be used within the
scope of this method.

The implementation may postpone visible effects of graphics operations until the end of the paint method.

The contents of the Canvas are never saved if the Canvas is made not current and then is made current
again. Thus, a paint() call with a clip region of the entire Canvas will always occur some time after
showNotify() is called, if the Canvas is actually on the display. (The Canvas may not be on the display if
this MIDlet is in the background.) Application whose repaint recomputation is expensive may create an off-
screen Image, paint into it, and then draw this image on the Canvas when paint() is called.

Pre-conditions: - The Graphics object's clip region includes at least one pixel within this Canvas - The
Graphics object's color is set to black - The Font is set to the default font that is obtained by calling pub-
lic static Font getDefaultFont () - The origin of the coordinate system is located at the
upper-left corner of the Canvas - The Canvas is current, i.e., showNotify() has been called and hideNotify()
has not yet been called. Post-conditions: - The Canvas has rendered itself - No references to the Graphics
object are maintained by the Canvas

156 Mobile Information Device Profile (JSR-37) May 5, 2000

Parameters:
g - the Graphics object to render the Canvas with.

pointerDragged(int, int)

protected void pointerDragged (int x, int y)

Called when the pointer is dragged. The public boolean hasPointerMotionEvents ()
method may be called to determine if the device supports pointer events. Class Canvas has an empty imple-
mentation of this method, and the subclass has to redefine it if it wants to listen this method.

Parameters:
x - The horizontal location where the pointer was dragged (relative to the Canvas)

y - The vertical location where the pointer was dragged (relative to the Canvas)

pointerPressed(int, int)

protected void pointerPressed (int x, int y)

Called when the pointer is pressed. The public boolean hasPointerEvents () method may be
called to determine if the device supports pointer events. Class Canvas has an empty implementation of this
method, and the subclass has to redefine it if it wants to listen this method.

Parameters:
x - The horizontal location where the pointer was pressed (relative to the Canvas)

y - The vertical location where the pointer was pressed (relative to the Canvas)

pointerReleased(int, int)

protected void pointerReleased (int x, int y)

Called when the pointer is released. The public boolean hasPointerEvents () method may
be called to determine if the device supports pointer events. Class Canvas has an empty implementation of
this method, and the subclass has to redefine it if it wants to listen this method.

Parameters:
x - The horizontal location where the pointer was released (relative to the Canvas)

y - The vertical location where the pointer was released (relative to the Canvas)

repaint()

public final void repaint ()

Requests a repaint for the entire Canvas. The effect is identical to

repaint(0, 0, getWidth(), getHeight());

repaint(int, int, int, int)

public final void repaint (int x, int y, int width, int height)

Requests a repaint for the specified region of the Screen. Calling this method may result in subsequent call
to paint(), where the passed Graphics object's clip region will include at least the specified region.

May 5, 2000 Mobile Information Device Profile (JSR-37) 157

If the canvas is not visible, or if width and height are zero or less, or if the rectangle does not specify a visi-
ble region of the display, this call has no effect.

The call to paint() occurs independently of the call to repaint(). That is, repaint() will not block waiting for
paint() to finish. The paint() method will either be called after the caller of repaint() returns to the imple-
mentation (if the caller is a callback) or on another thread entirely.

To synchronize with its paint() routine, applications can use either public void callSerially
(Callable c) or public final void serviceRepaints () , or they can code explicit syn-
chronization into their paint() routine.

The origin of the coordinate system is above and to the left of the pixel in the upper left corner of the dis-
playable area of the Canvas. The X-coordinate is positive right and the Y-coordinate is positive down-
wards.

Parameters:
x - the x coordinate of the rectangle to be repainted

y - the y coordinate of the rectangle to be repainted

width - the width of the rectangle to be repainted

height - the height of the rectangle to be repainted

See Also: public void callSerially (Callable c), public final void
serviceRepaints ()

serviceRepaints()

public final void serviceRepaints ()

Forces any pending repaint requests to be serviced immediately. This method blocks until the pending
requests have been serviced. If there are no pending repaints, or if this canvas is not currently on the dis-
play, this call does nothing and returns immediately.

WARNING: This method blocks until the call to the application's paint() method returns. The application
has no control over which thread calls paint(); it may vary from implementation to implementation. If the
caller of serviceRepaints() holds a lock that the paint() method acquires, this may result in deadlock. There-
fore, callers of serviceRepaints() must not hold any locks that might be acquired within the paint() method.
The public void callSerially (Callable c) method provides a facility where an applica-
tion can be called back after painting has completed, instead of issuing a blocking method call.

See Also: public void callSerially (Callable c)

showNotify()

protected void showNotify ()

The implementation calls showNotify() when this Canvas is shown. Canvas sub-classes may override this
method to perform tasks immediately before being shown such as initializing data, starting timers, etc.
Class Canvas has an empty implementation of this method, and the subclass has to redefine it if it wants to
listen this method.

158 Mobile Information Device Profile (JSR-37) May 5, 2000

javax.microedition.lcdui

Choice
Syntax
public interface Choice

All Known Implementing Classes: List, ChoiceGroup

Description
Choice defines an API for a user interface components implementing selection from predefined number of
choices. Such UI components are List and ChoiceGroup . The contents of the Choice are represented with
strings and optional images.

Each element of a Choice is composed of a static text string and an optional image. The application may provide
null for the image if the element does not have an image part. If the application provides an image, the imple-
mentation may choose to ignore the image if it exceeds the capacity of the device to display it. If the implemen-
tation displays the image, it will be displayed adjacent to the text string and the pair will be treated as a unit.

If an element is too long to be displayed on one line it wraps onto multiple lines to fit the width of the display.
When an element wraps to multiple lines, the second and subsequent lines show a clear indication to the user
that they are part of the same element and are not a new element. For example, the second and subsequent lines
may be shown indented.

There are three types of Choices: implicit-choice (valid only for List), exclusive-choice, and multiple-choice.

The exclusive-choice presents a series of elements and interacts with the user in object-action mode. That is,
when the user selects an element, that element is shown to be selected using a distinct visual representation.
Exactly one element must be selected at any given time. If at any time a situation would result where there are
elements in the exclusive-choice but none is selected, the implementation will choose an element and select it.
This situation can arise when an element is added to an empty Choice, or when the selected element is deleted
from the Choice. There is no way for the user to unselect an element within an Exclusive Choice.

The implicit choice is an exclusive choice where the focused element is implicitly selected when a command is
initiated.

A multiple-choice presents a series of elements and allows the user to select any number of elements in any
combination. As with exclusive-choice, the multiple-choice interacts with the user in object-operation mode.
The visual appearance of a multiple-choice will likely have a visual representation distinct from the exclusive-
choice that shows the selected state of each element as well as indicating to the user that multiple elements may
be selected.

When a Choice is present on the display the user can interact with it indefinitely (for instance, traversing from
element to element and possibly scrolling). These traversing and scrolling operations do not cause application-
visible events. The system notifies the application either when some application-defined Command is fired, or
when selection state of ChoiceGroup is changed. When command is fired a high-level event is delivered to
the listener of the Screen. The event delivery is done with public void commandAction (Command
c, Displayable d) . In the case of ChoiceGroup the public void itemStateChanged
(Item item) is called when the user changes the selection state of the ChoiceGroup. At this time the appli-
cation can query the Choice for information about the currently selected element(s).

May 5, 2000 Mobile Information Device Profile (JSR-37) 159

The implementation may have keyboard shortcuts for focusing and selecting the choice elements, but the use of
these shortcuts is not visible to the application program.

Fields

EXCLUSIVE

public static final int EXCLUSIVE

EXCLUSIVE is a choice having exactly one element selected at time.

Value 1 is assigned to EXCLUSIVE.

IMPLICIT

public static final int IMPLICIT

IMLICIT is a choice in which the currently focused item is selected when a Command is initiated. (Note:
IMPLICIT is not accepted by ChoiceGroup)

Value 3 is assigned to IMPLICIT.

MULTIPLE

public static final int MULTIPLE

Member Summary

Fields
int public static final int EXCLUSIVE
int public static final int IMPLICIT
int public static final int MULTIPLE

Methods
int public int appendElement (java.lang.String stringPart,

Image imagePart)
void public void deleteElement (int elementNum)
Image public Image getImage (int elementNum)
int public int getSelectedFlags (boolean[] selectedArray_return)
int public int getSelectedIndex ()
int public int getSize ()

String public java.lang.String getString (int elementNum)
void public void insertElement (int elementNum,

java.lang.String stringPart, Image imagePart)
boolean public boolean isSelected (int elementNum)

void public void setElement (int elementNum,
java.lang.String stringPart, Image imagePart)

void public void setSelectedFlags (boolean[] selectedArray)
void public void setSelectedIndex (int elementNum,

boolean selected)

160 Mobile Information Device Profile (JSR-37) May 5, 2000

MULTIPLE is a choice that can have arbitrary number of elements selected at a time.

Value 2 is assigned to MULTIPLE.

Methods

appendElement(String, Image)

public int appendElement (java.lang.String stringPart, Image imagePart)

Appends an element to the Choice. The added element will be the last element of the Choice. The size of
the Choice grows by one.

Parameters:
stringPart - the string part of the element to be added

imagePart - the image part of the element to be added, or null if there is no image part

Returns: the assigned number of the element

Throws: IllegalArgumentException - if the image is mutable

NullPointerException - if stringPart is null

deleteElement(int)

public void deleteElement (int elementNum)

Deletes the element referenced by elementNum. Elements are numbered starting at zero. The size of the
Choice shrinks by one. It is legal to delete all elements from a Choice.

Parameters:
elementNum - the number of the element to be deleted

Throws: ArrayIndexOutOfBoundsException - if elementNum is invalid

getImage(int)

public Image getImage (int elementNum)

Gets the Image part of the element referenced by elementNum. Elements are numbered starting at zero.

Parameters:
elementNum - the number of the element

Returns: the image part of the element, or null if there is no image

Throws: ArrayIndexOutOfBoundsException - if elementNum is invalid

See Also: public java.lang.String getString (int elementNum)

getSelectedFlags(boolean[])

public int getSelectedFlags (boolean[] selectedArray_return)

May 5, 2000 Mobile Information Device Profile (JSR-37) 161

Queries the state of a Choice and returns the state of all elements in the boolean array selectedArray_return.
NOTE: this is a result parameter. This call is valid for all types of Choices. For MULTIPLE, any number of
elements may be selected and set to true in the result array. For EXCLUSIVE and IMPLICIT exactly one
element will be selected (unless there are zero elements in the Choice).

Parameters:
selectedArray_return - array to contain the results. It must be at least as long as the size of the
Choice as returned by getSize(). If the array is longer, the extra elements are set to false.

Returns: the number of selected elements in the Choice

Throws: IllegalArgumentException - if selectedArray_return is shorter than the size of the
Choice.

getSelectedIndex()

public int getSelectedIndex ()

Returns the index number of an element in the Choice that is selected. For Choice types EXCLUSIVE and
IMPLICIT there is at most one element selected, so this method is useful for determining the user's choice.
Returns -1 if there are no elements in the Choice or no element has been selected.

For MULTIPLE, this always returns -1 because no single value can in general represent the state of such a
Choice.

To get the complete state of a MULTIPLE Choice, see public int getSelectedFlags (bool-
ean[] selectedArray_return) .

Returns: index of selected element

getSize()

public int getSize ()

Gets the number of elements present in the Choice.

Returns: number of elements in the Choice.

getString(int)

public java.lang.String getString (int elementNum)

Gets the String part of the element referenced by elementNum. Elements are numbered starting at zero.

Parameters:
elementNum - the number of the element

Returns: the string part of the element

Throws: ArrayIndexOutOfBoundsException - if elementNum is invalid

See Also: public Image getImage (int elementNum)

insertElement(int, String, Image)

public void insertElement (int elementNum, java.lang.String stringPart, Image imagePart)

162 Mobile Information Device Profile (JSR-37) May 5, 2000

Inserts an element into the Choice just before to the element specified. Elements are numbered starting at
zero. The size of the Choice grows by one.

Parameters:
elementNum - the number of the element

stringPart - the string part of the element to be inserted

imagePart - the image part of the element to be inserted, or null if there is no image part

Throws: ArrayIndexOutOfBoundsException - if elementNum is invalid

IllegalArgumentException - if the image is mutable

NullPointerException - if stringPart is null

isSelected(int)

public boolean isSelected (int elementNum)

Gets a boolean value indicating whether this element is selected.

Parameters:
elementNum - index to element of interest

Returns: selection status of an element

Throws: ArrayIndexOutOfBoundsException - if elementNum specifies an invalid element.

setElement(int, String, Image)

public void setElement (int elementNum, java.lang.String stringPart, Image imagePart)

Sets the element referenced by elementNum to the specified element, replacing the previous contents of the
element. Elements are numbered starting at zero.

Parameters:
elementNum - the number of the element

stringPart - the string part of the new element

imagePart - the image part of the element, or null if there is no image part

Throws: ArrayIndexOutOfBoundsException - if elementNum is invalid

IllegalArgumentException - if the image is mutable

NullPointerException - if stringPart is null

setSelectedFlags(boolean[])

public void setSelectedFlags (boolean[] selectedArray)

Attempts to set the selected state of every element in the Choice. The array must be at least as long as the
size of the Choice. If the array is longer, the additional values are ignored.

For Choice objects of type MULTIPLE, this sets the selected state of every element in the Choice. An arbi-
trary number of elements may be selected.

May 5, 2000 Mobile Information Device Profile (JSR-37) 163

For Choice objects of type EXCLUSIVE and IMPLICIT, exactly one array element must have the value
true. If no element is true, the first element in the Choice will be selected. If two or more elements are true,
the implementation will choose the first true element and select it.

Parameters:
selectedArray - an array in which the method collect the selection status

Throws: IllegalArgumentException - if selectedArray is shorter than the size of the Choice.

setSelectedIndex(int, boolean)

public void setSelectedIndex (int elementNum, boolean selected)

For MULTIPLE, this simply sets an individual element's selected state.

For EXCLUSIVE, this can be used only to select any element, that is, the selected parameter must
be true . When an element is selected, the previously selected element is deselected. If selected is
false , this call is ignored.

For IMPLICIT, this can be used only to select any element, that is, the selected parameter must be
true . When an element is selected, the previously selected element is deselected. If selected is
false , this call is ignored. The call to setSelectedIndex does not cause implicit activation of any Com-
mand.

Parameters:
elementNum - the number of the element. Indexing of the elements is zero-based.

selected - the new state of the element true=selected, false=not selected.

Throws: ArrayIndexOutOfBoundsException - if elementNum specifies an invalid element.

164 Mobile Information Device Profile (JSR-37) May 5, 2000

javax.microedition.lcdui

ChoiceGroup
Syntax
public class ChoiceGroup extends Item implements Choice

Item

|
+--javax.microedition.lcdui.ChoiceGroup

All Implemented Interfaces: Choice

Description
A ChoiceGroup is a group of selectable elements intended to be placed within a Form . The group may be cre-
ated with a mode that requires a single choice to be made or that allows multiple choices. The implementation is
responsible for providing the graphical representation of these modes and must provide visually different graph-
ics for different modes. For example, it might use "radio buttons" for the single choice mode and "check boxes"
for the multiple choice mode.

Note: most of the essential methods have been documented in Choice .

When a ChoiceGroup is present on the display the user can interact with it indefinitely (for instance, traversing
from element to element and possibly scrolling). These traversing and scrolling operations do not cause applica-
tion-visible events. The system notifies the application either when user does the select operation of some appli-
cation defined Command is fired. When this occurs a high-level event is delivered to the List's listener. The
event delivery is done with public void commandAction (Command c, Displayable d) . Also
public void itemStateChanged (Item item) is called when the user changes the selection state
of the ChoiceGroup. At this time the application can query the ChoiceGroup for information about the currently
selected element(s).

The implementation may have keyboard shortcuts for focusing and selecting the choice elements, but the use of
these shortcuts is not visible to the application program.

Member Summary

Constructors
public ChoiceGroup (java.lang.String label, int choiceType)
public ChoiceGroup (java.lang.String label, int choiceType,
java.lang.String[] stringElements, Image[] imageElements)

Methods
int public int appendElement (java.lang.String stringPart,

Image imagePart)
void public void deleteElement (int elementNum)
Image public Image getImage (int elementNum)
int public int getSelectedFlags (boolean[] selectedArray_return)
int public int getSelectedIndex ()
int public int getSize ()

String public java.lang.String getString (int elementNum)

May 5, 2000 Mobile Information Device Profile (JSR-37) 165

Constructors

ChoiceGroup(String, int)

public ChoiceGroup (java.lang.String label, int choiceType)

Creates a new, empty ChoiceGroup, specifying its title and its type. The type must be one of EXCLUSIVE
or MULTIPLE. The IMPLICIT choice type is not allowed within a ChoiceGroup.

Parameters:
label - the label {@see javax.microedition.lcdui.Item}

choiceType - either EXCLUSIVE or MULTIPLE

Throws: IllegalArgumentException - if choice type is not EXCLUSIVE or MULTIPLE

See Also: public static final int EXCLUSIVE, public static final int
MULTIPLE, public static final int IMPLICIT

ChoiceGroup(String, int, String[], Image[])

public ChoiceGroup (java.lang.String label, int choiceType,
java.lang.String[] stringElements, Image[] imageElements)

Creates a new ChoiceGroup, specifying its title, its type, and arrays of Strings and Images to be used as its
initial contents. The type must be one of EXCLUSIVE or MULTIPLE. The IMPLICIT choice type is not
allowed within a ChoiceGroup.

Parameters:
label - the label {@see javax.microedition.lcdui.Item}

void public void insertElement (int elementNum,
java.lang.String stringElement, Image imageElement)

boolean public boolean isSelected (int elementNum)
void public void setElement (int elementNum,

java.lang.String stringPart, Image imagePart)
void public void setSelectedFlags (boolean[] selectedArray)
void public void setSelectedIndex (int elementNum,

boolean selected)

Inherited Member Summary

Fields inherited from interface Choice
public static final int EXCLUSIVE, public static final int IMPLICIT, public static final
int MULTIPLE

Methods inherited from class Item
public java.lang.String getLabel (), public void setLabel (java.lang.String label)

Member Summary

166 Mobile Information Device Profile (JSR-37) May 5, 2000

choiceType - either EXCLUSIVE or MULTIPLE

stringElements - set of strings specifying the visible representation of the elements. Empty String
is marked with null and if no strings are given, whole list is empty (null).

imageElements - set of images specifying the visible representation of the elements. Empty image
is marked with null and if no images are given, whole list is empty (null).

Throws: IllegalArgumentException - if the length of stringElements is different from
imageElements and imageElements is non-null.

IllegalArgumentException - if any of the images are mutable. I.e., created with public
static Image createImage (int width, int height)

IllegalArgumentException - if choice type is not EXCLUSIVE or MULTIPLE

See Also: public static final int EXCLUSIVE, public static final int
MULTIPLE, public static final int IMPLICIT

Methods

appendElement(String, Image)

public int appendElement (java.lang.String stringPart, Image imagePart)

Implementation of public int appendElement (java.lang.String stringPart,
Image imagePart) .

Specified By: public int appendElement (java.lang.String stringPart,
Image imagePart) in interface Choice

Parameters:
stringPart - the string part of the element to be added

imagePart - the image part of the element to be added, or null if there is no image part

Returns: the assigned number of the element

Throws: IllegalArgumentException - if the image is mutable

NullPointerException - if stringPart is null

deleteElement(int)

public void deleteElement (int elementNum)

Implementation of public void deleteElement (int elementNum) .

Specified By: public void deleteElement (int elementNum) in interface Choice

Parameters:
elementNum - the number of the element to be deleted

Throws: ArrayIndexOutOfBoundsException - if elementNum is invalid

getImage(int)

May 5, 2000 Mobile Information Device Profile (JSR-37) 167

public Image getImage (int elementNum)

Implementation of public Image getImage (int elementNum) .

Specified By: public Image getImage (int elementNum) in interface Choice

Parameters:
elementNum - the number of the element

Returns: the image part of the element, or null if there is no image

Throws: ArrayIndexOutOfBoundsException - if elementNum is invalid

See Also: public java.lang.String getString (int elementNum)

getSelectedFlags(boolean[])

public int getSelectedFlags (boolean[] selectedArray_return)

Implementation of public int getSelectedFlags (boolean[]
selectedArray_return) .

Specified By: public int getSelectedFlags (boolean[] selectedArray_return)
in interface Choice

Parameters:
selectedArray_return - array to contain the results.

Returns: the number of selected elements in the ChoiceGroup

Throws: IllegalArgumentException - if selectedArray_return is shorter than the size of the
ChoiceGroup.

getSelectedIndex()

public int getSelectedIndex ()

Implementation of public int getSelectedIndex () .

Specified By: public int getSelectedIndex () in interface Choice

Returns: index of selected element

getSize()

public int getSize ()

Implementation of public java.lang.String getString (int elementNum) .

Specified By: public int getSize () in interface Choice

Returns: number of elements in the ChoiceGroup.

getString(int)

public java.lang.String getString (int elementNum)

Implementation of public java.lang.String getString (int elementNum) .

168 Mobile Information Device Profile (JSR-37) May 5, 2000

Specified By: public java.lang.String getString (int elementNum) in interface
Choice

Parameters:
elementNum - the number of the element

Returns: the string part of the element

Throws: ArrayIndexOutOfBoundsException - if elementNum is invalid

See Also: public Image getImage (int elementNum)

insertElement(int, String, Image)

public void insertElement (int elementNum, java.lang.String stringElement,
Image imageElement)

Implementation of public void insertElement (int elementNum,
java.lang.String stringPart, Image imagePart) .

Specified By: public void insertElement (int elementNum,
java.lang.String stringPart, Image imagePart) in interface Choice

Parameters:
elementNum - the number of the element

stringPart - the string part of the element to be inserted

imagePart - the image part of the element to be inserted, or null if there is no image part

Throws: ArrayIndexOutOfBoundsException - if elementNum is invalid

IllegalArgumentException - if the image is mutable

NullPointerException - if stringPart is null

isSelected(int)

public boolean isSelected (int elementNum)

Implementation of public boolean isSelected (int elementNum) .

Specified By: public boolean isSelected (int elementNum) in interface Choice

Parameters:
elementNum - index to element of interest

Returns: selection status of an element

Throws: ArrayIndexOutOfBoundsException - if elementNum specifies an invalid element.

setElement(int, String, Image)

public void setElement (int elementNum, java.lang.String stringPart, Image imagePart)

Implementation of public void setElement (int elementNum,
java.lang.String stringPart, Image imagePart) .

Specified By: public void setElement (int elementNum,
java.lang.String stringPart, Image imagePart) in interface Choice

May 5, 2000 Mobile Information Device Profile (JSR-37) 169

Parameters:
elementNum - the number of the element

stringPart - the string part of the new element

imagePart - the image part of the element, or null if there is no image part

Throws: ArrayIndexOutOfBoundsException - if elementNum is invalid

IllegalArgumentException - if the image is mutable

NullPointerException - if stringPart is null

setSelectedFlags(boolean[])

public void setSelectedFlags (boolean[] selectedArray)

Implementation of public void setSelectedFlags (boolean[] selectedArray) .

Specified By: public void setSelectedFlags (boolean[] selectedArray) in
interface Choice

Parameters:
selectedArray - an array in which the method collect the selection status

Throws: IllegalArgumentException - if selectedArray is shorter than the size of the
ChoiceGroup.

setSelectedIndex(int, boolean)

public void setSelectedIndex (int elementNum, boolean selected)

Implementation of public void setSelectedIndex (int elementNum,
boolean selected) .

Specified By: public void setSelectedIndex (int elementNum,
boolean selected) in interface Choice

Parameters:
elementNum - the number of the element. Indexing of the elements is zero-based.

selected - the new state of the element true=selected, false=not selected.

Throws: ArrayIndexOutOfBoundsException - if elementNum specifies an invalid element.

170 Mobile Information Device Profile (JSR-37) May 5, 2000

javax.microedition.lcdui

Command
Syntax
public class Command

javax.microedition.lcdui.Command

Description
The Command class is a construct that encapsulates the semantic information of an action. The behavior that the
command activates is not encapsulated in this object. This means that command contains only information
about "command" not the actual action that happens when command is activated. The action is defined in a
CommandListener associated with the Screen. Command objects are presented in the user interface and the
way they are presented may depend on the semantic information contained within the command.

Commands may be implemented in any user interface construct that has semantics for activating a single action.
This, for example, can be a soft button, item in a menu, or some other direct user interface construct. For exam-
ple, a speech interface may present these commands as voice tags.

The mapping to concrete user interface constructs may also depend on the total number of the commands. For
example, if an application asks for more abstract commands then can be mapped onto the available physical
buttons on a device, then the device may use an alternate human interface such as a menu. For example, the
abstract commands that cannot be mapped onto physical buttons are placed in a menu and the label "Menu" is
mapped onto one of the programmable buttons.

A command contains three pieces of information: a label, a type, and a priority. The label is used for the visual
representation of the command, whereas the type and the priority indicate the semantics of the command.

Label. Each command includes a label string. The label string is what the application requests to be shown to
the user to represent this command. For example, this string may appear next to a soft button on the device or as
an element in a menu. For command types other than SCREEN, this label may be overridden by a system-spe-
cific label that is more appropriate for this command on this device. The contents of the label string are other-
wise not interpreted by the implementation.

Type. The application uses the command type to specify the intent of this command. For example, if the appli-
cation specifies that the command is of type BACK, and if the device has a standard of placing the "back" oper-
ation on a certain soft-button, the implementation can follow the style of the device by using the semantic
information as a guide. The defined types are public static final int BACK , public static
final int CANCEL , public static final int HELP , public static final int OK ,
public static final int SCREEN , and public static final int STOP .

Priority. The second piece of semantic information is the priority of a command. The application uses the pri-
ority value to describe the importance of this command relative to other commands on the same screen. Priority
values are integers, where a lower number indicates greater importance. The actual values are chosen by the
application. A priority value of one might indicate the most important command, priority values of two, three,
four, and so on indicate commands of lesser importance.

The implementation first chooses the placement of a command based on the type of command and then places
similar commands based on a priority order. This could mean that the command with the highest priority is
placed so that user can trigger it directly and that commands with lower priority are placed on a menu. It is not

May 5, 2000 Mobile Information Device Profile (JSR-37) 171

an error for there to be commands on the same screen with the same priorities and types. If this occurs, the
implementation will choose the order in which they are presented.

The screen may be changed without any user action. This is possible because the applications may be multi-
threaded, the application manager may change the application for some reason, a native application make take
over (for example, due to an incoming phone call), or the timer of Alert has elapsed.

The application is always responsible for providing the means for the user to progress through different screens.
An application may set up a screen that has no commands. This is allowed by the API but is generally not use-
ful; if this occurs the user would have no means to move to another screen. Such program would simply consid-
ered to be in error. A typical device should provide a means for the user to direct the application manager to kill
the erroneous application.

Fields

BACK

public static final int BACK

A navigation command that returns the user to the logically previous screen. The jump to the previous
screen is not done automatically by the implementation but by the public void commandAction
(Command c, Displayable d) provided by the application. Note that the application defines the
actual action since the strictly previous screen may not be logically correct.

Value 2 is assigned to BACK.

See Also: public static final int CANCEL, public static final int STOP

CANCEL

public static final int CANCEL

Member Summary

Fields
int public static final int BACK
int public static final int CANCEL
int public static final int HELP
int public static final int OK
int public static final int SCREEN
int public static final int STOP

Constructors
public Command (java.lang.String label, int commandType,
int priority)

Methods
int public int getCommandType ()

String public java.lang.String getLabel ()
int public int getPriority ()

172 Mobile Information Device Profile (JSR-37) May 5, 2000

A command that is a standard negative answer to a dialog implemented by current screen. Nothing is can-
celled automatically by the implementation; cancellation is implemented by the public void com-
mandAction (Command c, Displayable d) provided by the application.

With this command type, the application hints to the implementation that the user wants to dismiss the cur-
rent screen without taking any action on anything that has been entered into the current screen, and usually
that the user wants to return to the prior screen. In many cases CANCEL is interchangeable with BACK,
but BACK is mainly used in a navigational sense, as in a browser-oriented applications.

Value 3 is assigned to CANCEL.

See Also: public static final int BACK, public static final int STOP

HELP

public static final int HELP

This command specifies a request for on-line help. No help information is shown automatically by the
implementation. The public void commandAction (Command c, Displayable d) pro-
vided by the application is responsible for showing the help information.

Value 5 is assigned to HELP.

OK

public static final int OK

A command that is a standard positive answer to a dialog implemented by current screen. Nothing is done
automatically by the implementation; any action taken is implemented by the public void comman-
dAction (Command c, Displayable d) provided by the application.

With this command type the application hints to the implementation that the user will use this command to
ask the application to confirm the data that has been entered in the current screen and to proceed to the next
logical screen.

CANCEL is often used together with OK.

Value 4 is assigned to OK.

See Also: public static final int CANCEL

SCREEN

public static final int SCREEN

Specifies an application-defined command that pertains to the current screen. Examples could be Menu and
Save.

Value 1 is assigned to SCREEN.

STOP

public static final int STOP

May 5, 2000 Mobile Information Device Profile (JSR-37) 173

A command that will stop some currently running process, operation, etc. Nothing is stopped automatically
by the implementation. The cessation must be performed by the public void commandAction
(Command c, Displayable d) provided by the application.

With this command type the application hints to the implementation that the user will use this command to
stop any currently running process visible to the user on the current screen. Examples of running processes
might include downloading or sending of data. Use of the STOP command does not necessarily imply a
switch to another screen.

Value 6 is assigned to STOP.

See Also: public static final int BACK, public static final int CANCEL

Constructors

Command(String, int, int)

public Command (java.lang.String label, int commandType, int priority)

Creates a new command object with the given label, type, and priority.

Parameters:
label - the label string

commandType - the command's type, one of public static final int BACK , public
static final int CANCEL , public static final int HELP , public static
final int OK , public static final int SCREEN , or public static final int
STOP

priority - the command's priority value

Throws: IllegalArgumentException - if the commandType is an invalid type

Methods

getCommandType()

public int getCommandType ()

Gets the type of the command.

Returns: type of the Command

getLabel()

public java.lang.String getLabel ()

Gets the label of the command.

Returns: label of the Command

174 Mobile Information Device Profile (JSR-37) May 5, 2000

getPriority()

public int getPriority ()

Gets the priority of the command.

Returns: priority of the Command

May 5, 2000 Mobile Information Device Profile (JSR-37) 175

javax.microedition.lcdui

CommandListener
Syntax
public interface CommandListener

Description
This interface is used by applications which need to receive high-level events from the implementation. An
application will provide an implementation of a Listener (typically by using a nested class or an inner class) and
will then provide an instance of it on a Screen in order to receive high-level events on that screen.

The specification does not require the platform to create several threads for the event delivery. Thus, if a Lis-
tener method does not return or the return is not delayed, the system may be blocked. So, there is the following
note to application developers:

n the Listener method should return immediately.

See Also: public void setListener (CommandListener l)

Methods

commandAction(Command, Displayable)

public void commandAction (Command c, Displayable d)

Indicates that a command event has occurred on Screen s.

Note for application developer: the method should return immediately.

Parameters:
c - a Command object identifying the command

d - the Displayable on which this event has occurred

Member Summary

Methods
void public void commandAction (Command c, Displayable d)

176 Mobile Information Device Profile (JSR-37) May 5, 2000

javax.microedition.lcdui

DateField
Syntax
public class DateField extends Item

Item

|
+--javax.microedition.lcdui.DateField

Description
A DateField is an editable component for presenting date and time (calendar) information that may be placed
into a Form. Value for this field can be initially set or left unset. If value is not set then the UI for the field shows
this clearly. The field value for "not initialized state" is not valid value and getDate() for this state returns
null.

Instance of a DateField can be configured to accept date or time information or both of them. This input mode
configuration is done by DATE, TIME or DATE_TIME static fields of this class. DATE input mode allows to
set only date information and TIME only time information (hours, minutes). DATE_TIME allows to set both
clock time and date values.

In TIME input mode the date components of Date object must be set to the "zero epoch" value of January 1,
1970.

Calendar calculations in this field are based on default locale and defined time zone. Because of the calculations
and different input modes date object may not contain same millisecond value when set to this field and get
back from this field.

Member Summary

Fields
int public static final int DATE
int public static final int DATE_TIME
int public static final int TIME

Constructors
public DateField (int mode)
public DateField (int mode, java.util.TimeZone timeZone)

Methods
Date public java.util.Date getDate ()
int public int getInputMode ()
void public void setDate (java.util.Date date)
void public void setInputMode (int mode)

Inherited Member Summary

Methods inherited from class Item

May 5, 2000 Mobile Information Device Profile (JSR-37) 177

Fields

DATE

public static final int DATE

Input mode for date information (day, month, year). With this mode this DateField presents and allows only
to modify date value. The time information of date object is ignored.

Value 1 is assigned to DATE.

DATE_TIME

public static final int DATE_TIME

Input mode for date (day, month, year) and time (minutes, hours) information. With this mode this Date-
Field presents and allows to modify both time and date information.

Value 3 is assigned to DATE_TIME.

TIME

public static final int TIME

Input mode for time information (hours and minutes). With this mode this DateField presents and allows
only to modify time. The date components should be set to the "zero epoch" value of January 1, 1970 and
should not be accessed.

Value 2 is assigned to TIME.

Constructors

DateField(int)

public DateField (int mode)

Creates a DateField object with the specified mode. This call is identical to DateField(mode, null) where
mode is the specified mode and the null value for timeZone specifies the default time zone of the system.

Parameters:
mode - the input mode, one of DATE, TIME or DATE_TIME

Throws: IllegalArgumentException - if the input mode's value is invalid

public java.lang.String getLabel (), public void setLabel (java.lang.String label)

Inherited Member Summary

178 Mobile Information Device Profile (JSR-37) May 5, 2000

DateField(int, TimeZone)

public DateField (int mode, java.util.TimeZone timeZone)

Creates a date field in which calendar calculations are based on specific TimeZone object and the default
calendaring system for the current locale. The value of the DateField is initially in the "uninitialized" state.
If timeZone is null, the system's default time zone is used.

Parameters:
mode - the input mode, one of DATE, TIME or DATE_TIME

timeZone - a specific time zone, or null for the default time zone

Throws: IllegalArgumentException - if the input mode's value is invalid

Methods

getDate()

public java.util.Date getDate ()

Returns date value of this field. Returned value is null if field value is not initialized. The date object is con-
structed according the rules of locale specific calendaring system and defined time zone. In TIME mode
field the date components are set to the "zero epoch" value of January 1, 1970. If a date object that presents
time beyond one day from this "zero epoch" then this field is in "not initialized" state and this method
returns null. In DATE mode field the time component of the calendar is set to zero when constructing the
date object.

Returns: date object representing time or date depending on input mode

getInputMode()

public int getInputMode ()

Gets input mode for this date field. Valid input modes are DATE, TIME and DATE_TIME.

Returns: input mode of this field

setDate(Date)

public void setDate (java.util.Date date)

Sets a new value for this field. Null can be passed to set the field state to "not initialized" state. The input
mode of this field defines what components of passed Date object is used.

In TIME input mode the date components must be set to the "zero epoch" value of January 1, 1970. If a date
object that presents time beyond one day then this field is in "not initialized" state. In DATE input mode the
date component of Date object is ignored and time component is used to precision of minutes.

In DATE input mode the time component of Date object is ignored.

In DATE_TIME input mode the date and time component of Date are used but only to precision of minutes.

Parameters:

May 5, 2000 Mobile Information Device Profile (JSR-37) 179

date - new value for this field

Throws: IllegalArgumentException - of the mode is not any of DATE, TIME or DATE_TIME.

setInputMode(int)

public void setInputMode (int mode)

Set input mode for this date field. Valid input modes are DATE, TIME and DATE_TIME.

Parameters:
mode - the input mode, must be one of DATE, TIME or DATE_TIME

Throws: IllegalArgumentException - if an invalid value is specified

180 Mobile Information Device Profile (JSR-37) May 5, 2000

javax.microedition.lcdui

Display
Syntax
public class Display

javax.microedition.lcdui.Display

Description
Display represents the manager of the display and input devices of the system. It includes methods for retrieving
properties of the device and for requesting that objects be displayed on the device. Other methods that deal with
device attributes are primarily used with Canvas objects and are thus defined there instead of here.

There is exactly one instance of Display per MIDlet and the application can get a reference to that instance by
calling the public static Display getDisplay (MIDlet m) method. The application may call
the getDisplay() method from the beginning of the startApp() call until the destroyApp() call returns. The Dis-
play object returned by all calls to getDisplay() will remain the same during this time.

A typical application will perform the following actions in response to calls to its MIDlet methods:

n startApp - the application is starting from the paused state. Initialization of objects needed while the appli-
cation is active should be done. The application may call public void setCurrent (Display-
able next) for the first screen if that has not already been done. Note that startApp() can be called
several times, if pauseApp() is called in between. This means that one-time initialization should not take
place here but instead should occur within the MIDlet's constructor.

n pauseApp - the application may pause its threads. Also, if it is desirable to start with another screen when
the application is re-activated, the new screen should be set with setCurrent().

n destroyApp - the application should free resources, terminate threads, etc. The behavior of method calls on
user interface objects after destroyApp() has returned is undefined.

The user interface objects that are shown on the display device are contained within a Displayable object.
At any time at most one Displayable object will be shown on the display device. This Displayable is referred to
as the current Displayable.

The Display class has a public void setCurrent (Displayable next) method for setting the
currently shown Displayable and a public Displayable getCurrent () method for retrieving the
current Displayable. The application has control over its current Displayable and may call setCurrent() at any
time. However, the application's current Displayable may not physically be drawn on the screen, nor will user
events (such as keystrokes) that occur necessarily be directed to the current Displayable. This may occur
because of the presence of other MIDlet applications running simultaneously on the same device.

An application is said to be in the foreground if its current Displayable is shown on the actual display device
and if user input device events will be delivered to it. If the application is not in the foreground, it lacks access
to both the display device and input devices and is said to be in the background. The policy for allocation of
these devices to different MIDlet applications is outside the scope of this specification and is under the control
of an external agent referred to as the application management software.

As mentioned above, the application still has a notion of its current Displayable even if it is in the background.
The current Displayable is significant, even for background applications, because the current Displayable is
always the one that will be shown when the application is next brought into the foreground. Calling setCurrent()
by an application in the background may be interpreted by the application management software as a hint that
the application is requesting to be placed into the foreground. This is true even if setCurrent() is called on the

May 5, 2000 Mobile Information Device Profile (JSR-37) 181

Displayable that is already current. An application calling setCurrent(null) may be interpreted by the application
management software as a hint that the application is requesting to be placed into the background. These
requests are only hints, and there is no requirement that the application management software comply with these
requests in a timely fashion if at all.

The application can determine whether a Displayable is really shown by calling public boolean isS-
hown () . In the case of Canvas, the protected void showNotify () and protected void
hideNotify () methods are called when the Canvas is made current and is no longer current, respectively.

The public Displayable getCurrent () method returns the current screen of the MIDlet applica-
tion, regardless of its foreground/background status. The value returned by getCurrent() is on a per-MIDlet
basis. If a MIDlet application's current screen is S and another MIDlet application residing within the same JAR
file is running in the foreground, the getCurrent() call will still return S.

It is possible for getCurrent() to return null. This may occur at startup time, before the MIDlet application has
called setCurrent() on its first screen. It may also occur if the system has switched to a system screen (see
below). The getCurrent() method will never return a reference to a Displayable object that was not passed in a
prior call to setCurrent() call by this MIDlet.

System Screens. Typically, the current screen of a MIDlet application is one that it as created and made current
using setCurrent(). However, under certain circumstances, the system may create a screen and make it current
instead. These screens are referred to as system screens. This may occur if the system needs to generate a menu
of commands or if the system requires the user to edit text on a separate screen instead of within a text field
inside a Form.

If the implementation makes a system screen current, and the previous Displayable was a Canvas, hideNotify()
is called just as if the application had called setCurrent() on one of its own Displayables. While the system
screen is current, the system maintains a notion of the previous Displayable that will be restored when the user
has finished with the system screen. When that previous Displayable is restored, and if it is a Canvas, showNo-
tify() will be called as just as if the application had called setCurrent() on it. If the system screen was used by
the user to select a command to be issued, the command is issued after showNotify() is called.

If the application calls setCurrent() while a system screen is active, it takes effect immediately. The effect as if
the system screen were cancelled (no command is issued, no updates to any text fields occur, etc.) The system's
notion of the previous Displayable is discarded, the newly requested Displayable is made current, and process-
ing proceeds without being affected by the presence of the system screen.

Methods

Member Summary

Methods
void public void callSerially (Callable c)

Displayable public Displayable getCurrent ()
Display public static Display getDisplay (MIDlet m)
boolean public boolean isColor ()

int public int numColors ()
void public void setCurrent (Alert alert,

Displayable nextDisplayable)
void public void setCurrent (Displayable next)

182 Mobile Information Device Profile (JSR-37) May 5, 2000

callSerially(Callable)

public void callSerially (Callable c)

Causes the Callable object c to have its call() method called later, serialized with the event stream. As noted
in Canvas , the methods that deliver event notifications to the current canvas are all called serially. The
call to c.call() will be serialized along with the event calls on the current canvas. The call() method will be
called exactly once for each call to callSerially(). Calls to call() will occur in the order in which they were
requested by calls to callSerially().

In addition, if there is a repaint pending at the time of a call to callSerially(), the current Canvas's paint()
method will be called and will return before the callable's call() method is called.

The callSerially() method may be called from any thread. The call to the call() method will occur indepen-
dently of the call to callSerially(). In particular, callSerially() will never block waiting for c.call() to return.

As with other callbacks, the call to c.call() must return quickly. If it is necessary to perform a long-running
operation, it may be initiated from within the call() method. The operation itself should be performed
within another thread, allowing call() to return.

The callSerially() facility may be used by applications to have themselves called back in a manner appro-
priate for running an animation that is properly synchronized with the repaint cycle. A typical application
will set up a frame to be displayed and then call repaint(). The application must then wait until the frame is
actually displayed - by the Canvas's paint call() - at which time the setup for the next frame may occur. The
example below shows callSerially() being used for this purpose.

class Animation extends Canvas implements Callable {

void paint(Graphics g) { ... } // paint the current frame

void startAnimation() { // set up initial frame
repaint();
callSerially(this);

}

void call() { // called after previous repaint is finished
if (/* there are more frames */) {

// update to the next frame
repaint();
callSerially(this);

}
}

}

Parameters:
c - instance of interface Callable that is called by the implementation

getCurrent()

public Displayable getCurrent ()

Gets the Displayable object currently shown on the screen.

Returns: Displayable object currently displayed on the screen. Return null, if the application has not a
control over the display, for example when the application is a background application or when the
display have temporarily taken over by the implementation. An example of the latter case would be
implementation of Command as a menu.

May 5, 2000 Mobile Information Device Profile (JSR-37) 183

getDisplay(MIDlet)

public static Display getDisplay (MIDlet m)

Gets the Display object that is unique to this MIDlet.

Parameters:
m - Midlet of the application

Returns: the display object that application can use for its user interface

Throws: NullPointerException - if m is null

isColor()

public boolean isColor ()

Gets information about color support of the device.

Returns: true if the display supports color, false otherwise

numColors()

public int numColors ()

Gets the number of colors (if isColor() is true) or graylevels (if isColor() is false) that can be represented on
the device.

Note that number of Colors for black and white display is 2.

Returns: number of colors

setCurrent(Alert, Displayable)

public void setCurrent (Alert alert, Displayable nextDisplayable)

Shows this alert for the amount of time specified by the value of the alert's timeout field. The alert takes
over the screen and keyboard for the time during which it is shown. When the time expires, the screen spec-
ified by nextDisplayable is shown.

This call returns immediately regardless of the Alert's timeout value. This is necessary because Alerts are
typically called from CommandListener callbacks and these callbacks must return immediately.

If the application calls public void setCurrent (Displayable next) while an alert is
shown, the Alert disappears and timer is cancelled. If the application calls public void setCurrent
(Displayable next) , while an alert is shown, the Alert disappers and timer is cancelled.

Parameters:
alert - the alert screen

nextDisplayable - the screen to which to advance after this alert is shown

Throws: InvalidStateException - of the MIDlet is in paused state

NullPointerException - if alert is null

See Also: Alert

184 Mobile Information Device Profile (JSR-37) May 5, 2000

setCurrent(Displayable)

public void setCurrent (Displayable next)

setCurrent() is called whenever application wants a different Displayable object to be shown as the
current screen. The change will not occur instantaneously. It is not guaranteed to happen before any more
events have been delivered, but it will occur in the near future, between event deliveries. The effect is
immediate in a sense that it may override the screens used by the implementation. For example, if the
implementation of Command is based on a separate screen containing menu-options, the menu screen is
overridden by the new screen.

The method setCurrent returns immediately.

The current screen may be null. This occurs after the application has been initialized but before the first
call to setCurrent(), and it may also occur if the application calls setCurrent(null). It is the responsibility of
the application to ensure that a Displayable is visible and can interact with the user.

If the current screen is null, the user has no access to display, any Commands or other interactable user
interface elements. Such application is considered to be in background and the application manager may
still let it continue running.

If the application sets the current screen to null, the application moves to background, and the application
management software may use it has a hint and take over the display. Similarly, if application is in back-
ground, setCurrent() to non-null Displayable hint the application management software that the application
wants to come to the foreground.

If the screen is Alert the previous screen is set back to current when the time-out of the Alert has expired.
If it is necessary to specify the screen to be shown after Alert disappears public void setCurrent
(Alert alert, Displayable nextDisplayable) must be used.

Parameters:
next - the screen to which to advance after this alert is shown.

May 5, 2000 Mobile Information Device Profile (JSR-37) 185

javax.microedition.lcdui

Displayable
Syntax
public abstract class Displayable

javax.microedition.lcdui.Displayable

Direct Known Subclasses: Canvas, Screen

Description
A superclass of all Screens that can be put on the display.

The application may change the visible comnent when a Displayable while it its shown to the user. In that case
the visible effect should take place no later than immediately after the callback returns back to the implementa-
tion.

Methods

addCommand(Command)

public void addCommand (Command cmd)

Adds a command to the Displayable. The implementation may choose to add the command to any of the
available softbuttons or place it in a menu. If the added command is already in the screen (tested by com-
paring the object references), the method has no effect. If the Displayable is physically visible, the visible
effect should take place no later than immediately after the callback or protected abstract void
startApp () returns back to the implemenation.

Parameters:
cmd - the command to be added.

See Also: Command

isShown()

public boolean isShown ()

Member Summary

Methods
void public void addCommand (Command cmd)

boolean public boolean isShown ()
void public void removeCommand (Command cmd)
void public void setListener (CommandListener l)

186 Mobile Information Device Profile (JSR-37) May 5, 2000

Checks if the Displayable is really shown. That is, returns a boolean value indicating whether it is the cur-
rent screen of the Display of this MIDlet, and the application manager is running this MIDlet in the fore-
ground.

Returns: true if the Displayable is currently shown

removeCommand(Command)

public void removeCommand (Command cmd)

Removes a command from the Displayable. If the command is not in the Displayable (tested by comparing
the object references), the method has no effect. If the Displayable is physically visible, the visible effect
should take place no later than immediately after the callback or protected abstract void star-
tApp () returns back to the implementation.

Parameters:
cmd - the command to be removed.

See Also: Command

setListener(CommandListener)

public void setListener (CommandListener l)

Sets a listener for Command to this Displayable, replacing any previous CommandListener. A null refer-
ence is allowed and has the effect of removing any existing listener.

Parameters:
l - the new listener, or null.

May 5, 2000 Mobile Information Device Profile (JSR-37) 187

javax.microedition.lcdui

Font
Syntax
public final class Font

javax.microedition.lcdui.Font

Description
The Font class represents Fonts and Font metrics. Fonts cannot be created by applications. Instead, applications
query for fonts based on font attributes and the system will attempt to provide a font that matches the requested
attributes as closely as possible.

A Font's attributes are style, size, and face. Values for attributes must be specified in terms of symbolic con-
stants. Values for the style attribute may be combined using the logical OR operator, whereas values for the
other attributes may not be combined. For example, the value

STYLE_BOLD | STYLE_ITALIC

may be used to specify a bold-italic font; however

SIZE_LARGE | SIZE_SMALL

is illegal.

The values of these constants are arranged so that zero is valid for each attribute and can be used to specify a
reasonable default font for the system. For clarity of programming, the following symbolic constants are pro-
vided and are defined to have values of zero:

n STYLE_PLAIN
n SIZE_MEDIUM
n FACE_SYSTEM

Values for other attributes are arranged to have disjoint bit patterns in order to raise errors if they are inadvert-
ently misused (for example, using FACE_PROPORTIONAL where a style is required). However, the values
for the different attributes are not intended to be combined with each other.

Member Summary

Fields
int public static final int FACE_MONOSPACE
int public static final int FACE_PROPORTIONAL
int public static final int FACE_SYSTEM
int public static final int SIZE_LARGE
int public static final int SIZE_MEDIUM
int public static final int SIZE_SMALL
int public static final int STYLE_BOLD
int public static final int STYLE_ITALIC
int public static final int STYLE_PLAIN
int public static final int STYLE_UNDERLINED

Methods
int public int charWidth (char ch)

188 Mobile Information Device Profile (JSR-37) May 5, 2000

Fields

FACE_MONOSPACE

public static final int FACE_MONOSPACE

The "monospace" font face.

Value 32 is assigned to FACE_MONOSPACE.

FACE_PROPORTIONAL

public static final int FACE_PROPORTIONAL

The "proportional" font face.

Value 64 is assigned to FACE_PROPORTIONAL.

FACE_SYSTEM

public static final int FACE_SYSTEM

The "system" font face.

Value 0 is assigned to FACE_SYSTEM.

SIZE_LARGE

public static final int SIZE_LARGE

The "large" system-dependent font size.

Value 16 is assigned to SIZE_LARGE.

SIZE_MEDIUM

int public int charWidth (char[] ch, int offset, int length)
int public int getBaselinePosition ()
Font public static Font getDefaultFont ()
int public int getFace ()
Font public static Font getFont (int face, int style, int size)
int public int getHeight ()
int public int getSize ()
int public int getStyle ()

boolean public boolean isBold ()
boolean public boolean isItalic ()
boolean public boolean isPlain ()

int public int stringWidth (java.lang.String str)
int public int substringWidth (java.lang.String str, int offset,

int len)

Member Summary

May 5, 2000 Mobile Information Device Profile (JSR-37) 189

public static final int SIZE_MEDIUM

The "medium" system-dependent font size.

Value 0 is assigned to STYLE_MEDIUM.

SIZE_SMALL

public static final int SIZE_SMALL

The "small" system-dependent font size.

Value 8 is assigned to STYLE_SMALL.

STYLE_BOLD

public static final int STYLE_BOLD

The bold style constant. This may be combined with the other style constants for mixed styles.

Value 1 is assigned to STYLE_BOLD.

STYLE_ITALIC

public static final int STYLE_ITALIC

The italicized style constant. This may be combined with the other style constants for mixed styles.

Value 2 is assigned to STYLE_ITALIC.

STYLE_PLAIN

public static final int STYLE_PLAIN

The plain style constant. This may be combined with the other style constants for mixed styles.

Value 0 is assigned to STYLE_PLAIN.

STYLE_UNDERLINED

public static final int STYLE_UNDERLINED

The underlined style constant. This may be combined with the other style constants for mixed styles.

Value 4 is assigned to STYLE_UNDERLINED.

Methods

charWidth(char)

public int charWidth (char ch)

190 Mobile Information Device Profile (JSR-37) May 5, 2000

Gets the advance width of the specified character in this Font. The advance width is the amount by which
the current point is moved from one character to the next in a line of text, and thus includes proper inter-
character spacing. This spacing occurs to the right of the character.

Parameters:
ch - the character to be measured

Returns: the total advance width

See Also: public int stringWidth (java.lang.String str)

charWidth(char[], int, int)

public int charWidth (char[] ch, int offset, int length)

Returns the advance width of the characters in ch, starting at the specified offset and for the specified num-
ber of characters (length). The advance width is the amount by which the current point is moved from one
character to the next in a line of text.

The offset and length parameters must specify a valid range of characters within the character array ch. The
offset parameter must be within the range [0..(ch.length-1)]. The length parameter must be a non-negative
integer such that (offset + length) specifies an index within the character array.

Parameters:
ch - The array of characters

offset - The index of the first character to measure

length - The number of characters to measure

Returns: the width of the character range

Throws: ArrayIndexOutOfBoundsException - if offset and length specify an invalid range

NullPointerException - if ch is null

See Also: public int stringWidth (java.lang.String str)

getBaselinePosition()

public int getBaselinePosition ()

Gets the distance in pixels from the top of the text to the text's baseline.

Returns: the distance in pixels from the top of the text to the text's baseline

getDefaultFont()

public static Font getDefaultFont ()

Gets the default font of the system.

getFace()

public int getFace ()

Gets the face of the font.

Returns: one of FACE_SYSTEM, FACE_PROPORTIONAL, FACE_MONOSPACE

May 5, 2000 Mobile Information Device Profile (JSR-37) 191

getFont(int, int, int)

public static Font getFont (int face, int style, int size)

Obtains an object representing a font having the specified face, style, and size. If a matching font does not
exist, the system will attempt to provide the closest match. This method always returns a valid font object,
even if it is not a close match to the request.

Parameters:
face - one of FACE_SYSTEM, FACE_MONOSPACE, or FACE_PROPORTIONAL

style - STYLE_PLAIN, or a combination of STYLE_BOLD, STYLE_ITALIC, and
STYLE_UNDERLINED

size - one of SIZE_SMALL, SIZE_MEDIUM, or SIZE_LARGE

Returns: instance the nearest font found

Throws: IllegalArgumentException - if face, style, or size are not legal values

getHeight()

public int getHeight ()

Gets the standard height of a line of text in this font. This value includes sufficient spacing to ensure that
lines of text painted this distance from anchor point to anchor point are spaced as intended by the font
designer and the device. This extra space (leading) occurs below the text.

Returns: standard height of a line of text in this font

getSize()

public int getSize ()

Gets the size of the font.

Returns: one of SIZE_SMALL, SIZE_MEDIUM, SIZE_LARGE

getStyle()

public int getStyle ()

Gets the style of the font. The value is an OR'ed combination of STYLE_BOLD, STYLE_ITALIC, and
STYLE_UNDERLINED; or the value is zero (STYLE_PLAIN).

Returns: stule of the current font

See Also: public boolean isPlain (), public boolean isBold (), public
boolean isItalic ()

isBold()

public boolean isBold ()

Returns true if the font is bold.

Returns: true if font is bold

192 Mobile Information Device Profile (JSR-37) May 5, 2000

See Also: public int getStyle ()

isItalic()

public boolean isItalic ()

Returns true if the font is italic.

Returns: true if font is italic

See Also: public int getStyle ()

isPlain()

public boolean isPlain ()

Returns true if the font is plain.

Returns: true if font is bold

See Also: public int getStyle ()

stringWidth(String)

public int stringWidth (java.lang.String str)

Gets the total advance width for showing the specified String in this Font. The advance width is the amount
by which the current point is moved from one character to the next in a line of text.

Parameters:
str - the String to be measured.

Returns: the total advance width

substringWidth(String, int, int)

public int substringWidth (java.lang.String str, int offset, int len)

Gets the total advance width for showing the specified substring in this Font. The advance width is the
amount by which the current point is moved from one character to the next in a line of text.

The offset and length parameters must specify a valid range of characters within str. The offset parameter
must be within the range [0..(str.length()-1)]. The length parameter must be a non-negative integer such that
(offset + length) specifies the index of the character within the string.

Parameters:
str - the String to be measured.

offset - zero-based index of first character in the substring

len - length of the substring.

Returns: the total advance width

Throws: ArrayIndexOutOfBoundsException - if offset and length specify an invalid range

NullPointerException - if str is null

May 5, 2000 Mobile Information Device Profile (JSR-37) 193

javax.microedition.lcdui

Form
Syntax
public class Form extends Screen

Displayable

|
+--Screen

|
+--javax.microedition.lcdui.Form

Description
A Form is a Screen that contains an arbitrary mixture of items: images, read-only text fields, editable text fields,
editable date fields, gauges, and choice groups. In general, any subclass of the Item class may be contained
within a form. The implementation handles layout, traversal, and scrolling. None of the components contained
within has any internal scrolling; the entire contents scrolls together. Note that this differs from the behavior of
other classes, the List for example, where only the interior scrolls.

The items contained within a container object (an instance of either Form or Alert) may be edited using append,
delete, insert, and set methods. An item may be placed within at most one container object. If the application
attempts to place an item into a container, and the item is already owned by this or another container, Illegal-
StateException is thrown. The application must remove the item from its container before inserting it into the
new container.

As with other screens, the layout policy in most devices is vertical. In forms this applies to items involving user
input. So, a new line is always started for focusable items like TextField, DateField, Gauge or ChoiceGroup.

Strings and images, which do not involve user interactions, behave differently; they are filled in horizontal
lines, unless newline is embedded in the string or layout directives of the ImageItem force a new line. Con-
tents will be wrapped (for text) or clipped (for images) to fit the width of the display, and scrolling will occur
vertically as necessary. There will be no horizontal scrolling.

If the Form is visible on the display when changes to its contents are requested by the application, the changes
take place immediately. That is, applications need not take any special action to refresh a Form's display after its
contents have been modified.

Notes for application developers:

n Although this class allows creation of arbitrary combination of components the application developers
should keep the small screen size in mind. Form is designed to contain a small number of closely related UI
elements.

n If the number of items does not fit on the screen, the implementation may choose to make it scrollable or to
fold some components so that a new screen is popping up when the element is edited.

Member Summary

Constructors
public Form (java.lang.String title)
public Form (java.lang.String title, Item[] items)

Methods

194 Mobile Information Device Profile (JSR-37) May 5, 2000

Constructors

Form(String)

public Form (java.lang.String title)

Creates a new, empty Form.

Parameters:
title - the Form's title, or null for no title

Form(String, Item[])

public Form (java.lang.String title, Item[] items)

Creates a new Form with the specified contents. This is identical to creating an empty form and then using
a set of appendItem methods.

Parameters:
title - the Form's title string

items - the array of Item to be added.

Throws: IllegalStateException - if one of the items is already owned by another container

int public int appendImage (Image img)
int public int appendItem (Item item)
int public int appendString (java.lang.String str)
void public void deleteItem (int itemNum)
Item public Item getItemAt (int itemNum)
int public int getSize ()
int public int insertItem (int itemNum, Item item)
void public void setItem (int itemNum, Item item)
void public void setItemStateListener (ItemStateListener iLis-

tener)

Inherited Member Summary

Methods inherited from class Screen
public Ticker getTicker (), public java.lang.String getTitle (), public void setTicker
(Ticker ticker), public void setTitle (java.lang.String s)

Methods inherited from class Displayable
public void addCommand (Command cmd), public boolean isShown (), public void removeCom-
mand (Command cmd), public void setListener (CommandListener l)

Member Summary

May 5, 2000 Mobile Information Device Profile (JSR-37) 195

Methods

appendImage(Image)

public int appendImage (Image img)

Adds an item consisting of one Image to the form. The effect visible to the application is identical to

appendItem(new ImageItem(null, img, ImageItem.LAYOUT_DEFAULT, null))

Parameters:
img - the image to be added

Returns: the assigned number of the Item.

Throws: IllegalArgumentException - if the image is mutable

NullPointerException - if img is null

appendItem(Item)

public int appendItem (Item item)

Adds an Item into the Form. Strings are filled so that current line is continued if possible. If the text width is
greater that the remaining horizontal space on the current line, the implementation inserts a new line and
appends the rest of the text. Whenever possible the implementation should avoid breaking words into two
lines. Instead, occurrences of white space (space or tab) should be used as potential places for splitting the
lines. Also, a newline character in the string causes starting of a new line.

Images are laid out in the same manner as strings, unless the layout directives of ImageItem specify oth-
erwise. Focusable items (TextField, ChoiceGroup, DateField, and Gauge) are placed on their own horizon-
tal lines.

Parameters:
item - the Item to be added.

Returns: the assigned number of the Item

Throws: IllegalStateException - if the item is already owned by a container

NullPointerException - if item is null

appendString(String)

public int appendString (java.lang.String str)

Adds an item consisting of one String to the form. The effect visible to the application is identical to

appendItem(new StringItem(null, str))

Parameters:
str - the String to be added

Returns: the assigned number of the Item

Throws: NullPointerException - if str is null

deleteItem(int)

196 Mobile Information Device Profile (JSR-37) May 5, 2000

public void deleteItem (int itemNum)

Deletes the Item referenced by itemNum. The size of the Form shrinks by one. It is legal to delete all items
from a Form.

Parameters:
itemNum - the number of the item. Indexing of the items is zero-based.

Throws: ArrayIndexOutOfBoundsException - if itemNum specifies an invalid item.

getItemAt(int)

public Item getItemAt (int itemNum)

Gets the item at given position. The first position is zero.

Parameters:
itemNum - the index of item

Returns: Item at the given position

Throws: ArrayIndexOutOfBoundsException - if itemNum is less than zero or greater than or
equal to size of the Form.

getSize()

public int getSize ()

Gets the number of items in the Form.

Returns: number of items.

insertItem(int, Item)

public int insertItem (int itemNum, Item item)

Inserts an item into the Form just prior to the item specified. The size of the Form grows by one.

The semantics are otherwise identical to public int appendItem (Item item) .

Parameters:
itemNum - the number of the item. Indexing of the items is zero-based.

item - the item to be added

Returns: the assigned number of the Item

Throws: ArrayIndexOutOfBoundsException - if itemNum specifies an invalid item

IllegalStateException - if the item is already owned by a container

NullPointerException - if item is null

setItem(int, Item)

public void setItem (int itemNum, Item item)

Sets the item referenced by itemNum to the specified item, replacing the previous item. The previous item
is removed from this Form.

May 5, 2000 Mobile Information Device Profile (JSR-37) 197

The end result is equal to

insertItem(n, item); deleteItem(n+1);

Parameters:
itemNum - the number of the item. Indexing of the items is zero-based.

item - the item to be replaced.

Throws: ArrayIndexOutOfBoundsException - if itemNum specifies an invalid item.

IllegalStateException - if the item is already owned by a container

setItemStateListener(ItemStateListener)

public void setItemStateListener (ItemStateListener iListener)

Sets the ItemStateListener for the Form, replacing any previous ItemStateListener. If iListener is null, sim-
ply removes the previous ItemStateListener.

Parameters:
iListener - the new listener, or null to remove it

198 Mobile Information Device Profile (JSR-37) May 5, 2000

javax.microedition.lcdui

Gauge
Syntax
public class Gauge extends Item

Item

|
+--javax.microedition.lcdui.Gauge

Description
The Gauge class implements a bar graph display of a value intended for use in a form. Gauge is optionally inter-
active. The values accepted by the object are small integers in the range 0 through a maximum value established
by the application. The application is expected to normalize its values into this range. The device is expected to
normalize this range into a smaller set of values for display purposes. Doing so will not change the actual value
contained within the object. The range of values specified by the application may be larger than the number of
distinct visual states possible on the device, so more than one value may have the same visual representation.

For example, consider a Gauge object that has a range of values from zero to 99, running on a device that dis-
plays the Gauge's approximate value using a set of one to ten bars. The device might show one bar for values
zero through nine, two bars for values ten through 19, three bars for values 20 through 29, and so forth.

A Gauge may be interactive or non-interactive. Applications may set or retrieve the Gauge's at value any time
regardless of the interaction mode. The implementation may change the visual appearance of the bar graph
depending on whether the object is created in interactive mode.

In interactive mode, the user is allowed to modify the value. The user will always have the means to change the
value up or down by one and may also have the means to change the value in greater increments. The user is
prohibited from moving the value outside the established range. The expected behavior is that the application
sets the initial value and then allows the user to modify the value thereafter. However, the application is not pro-
hibited from modifying the value even while the user is interacting with it.

In many cases the only means for the user to modify the value will be to press a button to increase or decrease
the value by one unit at a time. Therefore, applications should specify a range of no more than a few dozen val-
ues.

In non-interactive mode, the user is prohibited from modifying the value. An expected use of the non-interac-
tive mode is as a "progress indicator" to give the user some feedback as progress occurs during a long running
operation. The application is expected to update the value periodically using the setValue() method. An applica-
tion using the gauge as a progress indicator will typically also attach a public static final int
STOP command to the Form containing the Gauge to allow the user to halt the operation in progress.

Member Summary

Constructors
public Gauge (java.lang.String label, boolean interactive,
int maxValue, int initialValue)

Methods
int public int getMaxValue ()
int public int getValue ()

May 5, 2000 Mobile Information Device Profile (JSR-37) 199

Constructors

Gauge(String, boolean, int, int)

public Gauge (java.lang.String label, boolean interactive, int maxValue,
int initialValue)

Creates a new Gauge object with the given label, in interactive or non-interactive mode, with the given
maximum and initial values. The maximum value must be greater than zero. The initial value must be
within the range 0 to maxValue, inclusive.

Parameters:
label - the Gauge's label

interactive - tells whether the user can change the value

maxValue - the maximum value

initialValue - the initial value in the range [0..maxValue]

Throws: IllegalArgumentException - if maxValue or initialValue are invalid

Methods

getMaxValue()

public int getMaxValue ()

Gets the maximum value of this Gauge object.

Returns: maximum value

getValue()

public int getValue ()

Gets the value of this Gauge object.

void public void setMaxValue (int maxValue)
void public void setValue (int value)

Inherited Member Summary

Methods inherited from class Item
public java.lang.String getLabel (), public void setLabel (java.lang.String label)

Member Summary

200 Mobile Information Device Profile (JSR-37) May 5, 2000

Returns: current value of the Gauge

setMaxValue(int)

public void setMaxValue (int maxValue)

Sets the maximum value of this Gauge object. If the maxValue is less than or equal to zero, one is used
instead.

Parameters:
maxValue - the new maximum value

setValue(int)

public void setValue (int value)

Sets the value of this Gauge object. If the value is less than zero, zero is used. If the value is greater than the
current maximum value, the maximum value is used.

Parameters:
value - the new value

May 5, 2000 Mobile Information Device Profile (JSR-37) 201

javax.microedition.lcdui

Graphics
Syntax
public class Graphics

javax.microedition.lcdui.Graphics

Description
Provides simple 2D geometric rendering capability. Drawing primitives are provided for text, images, lines,
rectangles, and arcs. Rectangles and arcs may also be filled with a solid color. Rectangles may also be specified
with rounded corners.

The only drawing operation provided is pixel replacement. The destination pixel value is simply replaced by the
current pixel value specified in the graphics object being used for rendering. No facility for combining pixel
values, such as raster-ops or alpha blending, is provided.

A 24-bit color model is provided, with 8 bits for each of red, green, and blue components of a color. Not all
devices support a full 24 bits' worth of color and thus they will map colors requested by the application into col-
ors available on the device. Facilities are provided in the Display class for obtaining device characteristics,
such as whether color is available and how many distinct gray levels are available. This enables applications to
adapt their behavior to a device without compromising device independence.

Graphics may be rendered directly to the display or to an off-screen image buffer. The destination of rendered
graphics depends on the provenance of the graphics object. A graphics object for rendering to the display is
passed to the Canvas object's protected abstract void paint (Graphics g) method. This is
the only means by which a graphics object may be obtained whose destination is the display. Furthermore,
applications may draw using this graphics object only for the duration of the paint() method.

A graphics object for rendering to an off-screen image buffer may be obtained by calling the public
Graphics getGraphics () method on the desired image. A graphics object so obtained may be held
indefinitely by the application, and requests may be issued on this graphics object at any time.

The default coordinate system's origin is at the upper left-hand corner of the destination. The X-axis direction is
positive towards the right, and the Y-axis direction is positive downwards. Applications may assume that hori-
zontal and vertical distances in the coordinate system represent equal distances on the actual device display, that
is, pixels are square. A facility is provided for translating the origin of the coordinate system. All coordinates
are specified as integers.

The coordinate system represents locations between pixels, not the pixels themselves. Therefore, the first pixel
in the upper left corner of the display lies in the square bounded by coordinates (0,0) , (1,0) , (0,1) , (1,1).

Under this definition, the semantics for fill operations are clear. Since coordinate grid lines lie between pixels,
fill operations affect pixels that lie entirely within the region bounded by the coordinates of the operation. For
example, the operation

fillRect(0, 0, 3, 2)

paints exactly six pixels.

Drawing operations are performed with a one-pixel wide pen that fills the pixel immediately below and to the
right of the specified coordinate. Drawn lines touch pixels at both endpoints. Thus, the operation

202 Mobile Information Device Profile (JSR-37) May 5, 2000

drawLine(0, 0, 0, 0)

paints exactly one pixel, the first pixel in the upper left corner of the display.

An artifact of this rule is that the area affected by a fill operation differs slightly from the area affected by a
draw operation given the same coordinates. For example, consider the operations

fillRect(x, y, w, h); // 1
drawRect(x, y, w, h); // 2

Statement (1) fills a rectangle w pixels wide and h pixels high. Statement (2) draws a rectangle whose left and
top edges are within the area filled by statement (1). However, the bottom and right edges lie one pixel outside
the filled area. This is counterintuitive, but it preserves the invariant that

drawLine(x, y, x+w, y);
drawLine(x+w, y, x+w, y+h);
drawLine(x+w, y+h, x, y+h);
drawLine(x, y+h, x, y);

has an effect identical to statement (2) above.

The exact pixels painted by drawLine() and drawArc() are not specified. Pixels touched by a fill operation must
either exactly overlap or directly abut pixels touched by the corresponding draw operation. A fill operation must
never leave a gap between the filled area and the pixels touched by the corresponding draw operation, nor may
the fill operation touch pixels outside the area bounded by the corresponding draw operation.

There is a single clipping rectangle. Operations are provided for intersecting the current clip rectangle with a
given rectangle and for setting the current clip rectangle outright. The only pixels touched by graphics opera-
tions are those that lie entirely within the clip rectangle. Pixels outside the clip rectangle are not affected by any
graphics operations. It is legal to specify a clipping rectangle whose width or height is zero or negative. In this
case the clipping rectangle is considered to be empty, that is, no pixels are contained within it. Therefore, if any
graphics operations are issued under such a clipping rectangle, no pixels will be modified.

If a graphics operation is affected by the clip rectangle, the pixels touched by that operation must be the same
ones that would be touched as if the clip rectangle did not affect the operation. For example, consider a clip rect-
angle (cx, cy, cw, ch) and a point (x1, y1) that lies outside this rectangle and a point (x2, y2) that lies within this
rectangle. In the following code fragment,

setClip(0, 0, Display.getWidth(), Display.getHeight());
drawLine(x1, y1, x2, y2); // 3
setClip(cx, cy, cw, ch);
drawLine(x1, y1, x2, y2); // 4

The pixels touched by statement (4) must be identical to the pixels within (cx, cy, cw, ch) touched by statement
(3).

Anchor Points

The drawing of text is based on "anchor points". Anchor points are used to minimize the amount of computation
required when placing text. For example, in order to center a piece of text, an application needs to call string-
Width() or charWidth() to get the width and then perform a combination of subtraction and division to compute
the proper location. The method to draw text is defined as follows:

public void drawString(String text, int x, int y, int anchor);

This method draws text in current foreground and background colors, using the current font with its anchor
point at (x,y). The definition of the anchor point must be one of the horizontal constants (LEFT, HCENTER,
RIGHT) combined with one of the vertical constants (TOP, BASELINE, BOTTOM) using the logical OR oper-
ator.

May 5, 2000 Mobile Information Device Profile (JSR-37) 203

Vertical centering of the text is not specified since it is not considered useful, it is hard to specify, and it is bur-
densome to implement. Thus, the VCENTER value is not allowed in the anchor point parameter of text drawing
calls.

The actual position of the bounding box of the text relative to the (x, y) location is determined by the anchor
point. These anchor points occur at named locations along the outer edge of the bounding box. Thus, the follow-
ing calls all have identical results:

drawString(str, x, y, TOP|LEFT);
drawString(str, x + f.stringWidth(str)/2, y, TOP|HCENTER);
drawString(str, x + f.stringWidth(str), y, TOP|RIGHT);

drawString(str, x,
y + f.getBaselinePosition(), BASELINE|LEFT);
drawString(str, x + f.stringWidth(str)/2,
y + f.getBaselinePosition(), BASELINE|HCENTER);
drawString(str, x + f.stringWidth(str),

y + f.getBaselinePosition(), BASELINE|RIGHT);

drawString(str, x,
y + f.getHeight(), BOTTOM|LEFT);

drawString(str, x + f.stringWidth(str)/2,
y + f.getHeight(), BOTTOM|HCENTER);

drawString(str, x + f.stringWidth(str),
y + f.getHeight(), BOTTOM|RIGHT);

For text drawing, the inter-character and inter-line spacing (leading) specified by the font designer are included
as part of the values returned in the Font.stringWidth() and Font.getHeight() calls. For example, given the fol-
lowing code:

// (5)
drawString(string1+string2, x, y, TOP|LEFT);

// (6)
drawString(string1, x, y, TOP|LEFT);
Font f = Font.getFont();
drawString(string2, x + f.stringWidth(string1), y, TOP|LEFT);

Code fragments (5) and (6) behave identically. This occurs because Font.stringWidth() includes the inter-char-
acter spacing. Similarly, reasonable vertical spacing may be achieved simply by adding the font height to the Y-
position of subsequent lines. For example:

drawString(string1, x, y, TOP|LEFT);
drawString(string2, x, y + getFont().fontHeight(), TOP|LEFT);

draws string1 and string2 on separate lines with an appropriate amount of inter-line spacing.

The stringWidth() of the string and the fontHeight() of the font in which it is drawn define the size of the bound-
ing box of a piece of text. As described above, this box includes inter-line and inter-character spacing. The
implementation is required to put this space below and to right of the pixels actually belonging to the characters
drawn. Applications that wish to position graphics closely with respect text (for example, to paint a rectangle
around a string of text) may assume that there is space below and to the right of a string and that there is no
space above and to the left of the string.

Anchor points are also used for positioning of images. Similar to text drawing, the anchor point for an image
specifies the point on the bounding rectangle of the destination that is to positioned at the (x,y) location given in
the graphics request. Unlike text, vertical centering of images is well-defined, and thus the VCENTER value
may be used within the anchor point parameter of image drawing requests. Because images have no notion of a
baseline, the BASELINE value may not be used within the anchor point parameter of image drawing requests.

204 Mobile Information Device Profile (JSR-37) May 5, 2000

Fields

Member Summary

Fields
int public static final int BASELINE
int public static final int BOTTOM
int public static final int HCENTER
int public static final int LEFT
int public static final int RIGHT
int public static final int TOP
int public static final int VCENTER

Methods
void public void clipRect (int x, int y, int width, int height)
void public void drawArc (int x, int y, int width, int height,

int startAngle, int arcAngle)
void public void drawChar (char character, int x, int y,

int anchor)
void public void drawChars (char[] data, int offset, int length,

int x, int y, int anchor)
void public void drawImage (Image img, int x, int y, int anchor)
void public void drawLine (int x1, int y1, int x2, int y2)
void public void drawRect (int x, int y, int width, int height)
void public void drawRoundRect (int x, int y, int width,

int height, int arcWidth, int arcHeight)
void public void drawString (java.lang.String str, int x, int y,

int anchor)
void public void drawSubstring (java.lang.String str, int offset,

int len, int x, int y, int anchor)
void public void fillArc (int x, int y, int width, int height,

int startAngle, int arcAngle)
void public void fillRect (int x, int y, int width, int height)
void public void fillRoundRect (int x, int y, int width,

int height, int arcWidth, int arcHeight)
int public int getBlueComponent ()
int public int getClipHeight ()
int public int getClipWidth ()
int public int getClipX ()
int public int getClipY ()
int public int getColor ()
Font public Font getFont ()
int public int getGrayScale ()
int public int getGreenComponent ()
int public int getRedComponent ()
int public int getTranslateX ()
int public int getTranslateY ()
void public void setClip (int x, int y, int width, int height)
void public void setColor (int RGB)
void public void setColor (int red, int green, int blue)
void public void setFont (Font font)
void public void setGrayScale (int value)
void public void translate (int x, int y)

May 5, 2000 Mobile Information Device Profile (JSR-37) 205

BASELINE

public static final int BASELINE

Constant for positioning the anchor point at the baseline of text.

Value 64 is assigned to BASELINE.

BOTTOM

public static final int BOTTOM

Constant for positioning the anchor point of text and images below the text or image.

Value 32 is assigned to BOTTOM.

HCENTER

public static final int HCENTER

Constant for centering text and images horizontally around the anchor point

Value 1 is assigned to HCENTER.

LEFT

public static final int LEFT

Constant for positioning the anchor point of text and images to the left of the text or image.

Value 4 is assigned to LEFT.

RIGHT

public static final int RIGHT

Constant for positioning the anchor point of text and images to the right of the text or image.

Value 8 is assigned to RIGHT.

TOP

public static final int TOP

Constant for positioning the anchor point of text and images above the text or image.

Value 16 is assigned to TOP.

VCENTER

public static final int VCENTER

Constant for centering images vertically around the anchor point.

Value 2 is assigned to VCENTER.

206 Mobile Information Device Profile (JSR-37) May 5, 2000

Methods

clipRect(int, int, int, int)

public void clipRect (int x, int y, int width, int height)

Intersects the current clip with the specified rectangle. The resulting clipping area is the intersection of the
current clipping area and the specified rectangle. This method can only be used to make the current clip
smaller. To set the current clip larger, use the setClip method. Rendering operations have no effect outside
of the clipping area.

Parameters:
x - the x coordinate of the rectangle to intersect the clip with

y - the y coordinate of the rectangle to intersect the clip with

width - the width of the rectangle to intersect the clip with

height - the height of the rectangle to intersect the clip with

See Also: public void setClip (int x, int y, int width, int height)

drawArc(int, int, int, int, int, int)

public void drawArc (int x, int y, int width, int height, int startAngle, int arcAngle)

Draws the outline of a circular or elliptical arc covering the specified rectangle.

The resulting arc begins at startAngle and extends for arcAngle degrees, using the current color.
Angles are interpreted such that 0 degrees is at the 3 o'clock position. A positive value indicates a counter-
clockwise rotation while a negative value indicates a clockwise rotation.

The center of the arc is the center of the rectangle whose origin is (x, y) and whose size is specified by the
width and height arguments.

The resulting arc covers an area width + 1 pixels wide by height + 1 pixels tall. If either width or
height is less than zero, nothing is drawn.

The angles are specified relative to the non-square extents of the bounding rectangle such that 45 degrees
always falls on the line from the center of the ellipse to the upper right corner of the bounding rectangle. As
a result, if the bounding rectangle is noticeably longer in one axis than the other, the angles to the start and
end of the arc segment will be skewed farther along the longer axis of the bounds.

Parameters:
x - the x coordinate of the upper-left corner of the arc to be drawn.

y - the y coordinate of the upper-left corner of the arc to be drawn.

width - the width of the arc to be drawn

height - the height of the arc to be drawn

startAngle - the beginning angle

arcAngle - the angular extent of the arc, relative to the start angle.

See Also: public void fillArc (int x, int y, int width, int height,
int startAngle, int arcAngle)

May 5, 2000 Mobile Information Device Profile (JSR-37) 207

drawChar(char, int, int, int)

public void drawChar (char character, int x, int y, int anchor)

Draws the specified character using the current font and color.

Parameters:
character - the character to be drawn

x - the x coordinate of the anchor point

y - the y coordinate of the anchor point

anchor - the anchor point for positioning the text; see anchor points

Throws: ArrayIndexOutOfBoundsException - if offset and length do not specify a valid range
within the data array

IllegalArgumentException - if anchor is not a legal value

See Also: public void drawString (java.lang.String str, int x, int y,
int anchor), public void drawChars (char[] data, int offset,
int length, int x, int y, int anchor)

drawChars(char[], int, int, int, int, int)

public void drawChars (char[] data, int offset, int length, int x, int y, int anchor)

Draws the specified characters using the current font and color.

Parameters:
data - the array of characters to be drawn

offset - the start offset in the data

length - the number of characters to be drawn

x - the x coordinate of the anchor point

y - the y coordinate of the anchor point

anchor - the anchor point for positioning the text; see anchor points

Throws: ArrayIndexOutOfBoundsException - if offset and length do not specify a valid range
within the data array

IllegalArgumentException - if anchor is not a legal value

See Also: public void drawString (java.lang.String str, int x, int y,
int anchor)

drawImage(Image, int, int, int)

public void drawImage (Image img, int x, int y, int anchor)

Draws the specified image by using the anchor point. The image can be drawn in different positions relative
to the anchor point by passing the appropriate position constants. See anchor points.

Parameters:
img - the specified image to be drawn

x - the x coordinate of the anchor point

208 Mobile Information Device Profile (JSR-37) May 5, 2000

y - the y coordinate of the anchor point

anchor - the anchor point for positioning the image

Throws: IllegalArgumentException - if anchor is not a legal value

See Also: Image

drawLine(int, int, int, int)

public void drawLine (int x1, int y1, int x2, int y2)

Draws a line between the coordinates (x1,y1) and (x2,y2) using the current color.

Parameters:
x1 - the x coordinate of the start of the line

y1 - the y coordinate of the start of the line

x2 - the x coordinate of the end of the line

y2 - the y coordinate of the end of the line

drawRect(int, int, int, int)

public void drawRect (int x, int y, int width, int height)

Draws the outline of the specified rectangle using the current color. The resulting rectangle will cover an
area (width + 1) pixels wide by (height + 1) pixels tall. If either width or height is less than zero, nothing is
drawn.

Parameters:
x - the x coordinate of the rectangle to be drawn

y - the y coordinate of the rectangle to be drawn

width - the width of the rectangle to be drawn

height - the height of the rectangle to be drawn

See Also: public void fillRect (int x, int y, int width, int height)

drawRoundRect(int, int, int, int, int, int)

public void drawRoundRect (int x, int y, int width, int height, int arcWidth,
int arcHeight)

Draws the outline of the specified rounded corner rectangle using the current color. The resulting rectangle
will cover an area (width + 1) pixels wide by (height + 1) pixels tall. If either width or height is less than
zero, nothing is drawn.

Parameters:
x - the x coordinate of the rectangle to be drawn

y - the y coordinate of the rectangle to be drawn

width - the width of the rectangle to be drawn

height - the height of the rectangle to be drawn

arcWidth - the horizontal diameter of the arc at the four corners

May 5, 2000 Mobile Information Device Profile (JSR-37) 209

arcHeight - the vertical diameter of the arc at the four corners

See Also: public void fillRoundRect (int x, int y, int width, int height,
int arcWidth, int arcHeight)

drawString(String, int, int, int)

public void drawString (java.lang.String str, int x, int y, int anchor)

Draws the specified String using the current font and color. The x,y position is the position of the anchor
point. See anchor points.

Parameters:
str - the String to be drawn

x - the x coordinate of the anchor point

y - the y coordinate of the anchor point

anchor - the anchor point for positioning the text

Throws: NullPointerException - if str is null

IllegalArgumentException - if anchor is not a legal value

See Also: public void drawChars (char[] data, int offset, int length,
int x, int y, int anchor)

drawSubstring(String, int, int, int, int, int)

public void drawSubstring (java.lang.String str, int offset, int len, int x, int y,
int anchor)

Draws the specified String using the current font and color. The x,y position is the position of the anchor
point. See anchor points.

Parameters:
str - the String to be drawn

offset - zero-based index of first character in the substring

len - length of the substring

x - the x coordinate of the anchor point

y - the y coordinate of the anchor point

anchor - the anchor point for positioning the text

Throws: ArrayIndexOutOfBoundsException - if offset and length do not specify a valid range
within the data array

IllegalArgumentException - if anchor is not a legal value

See Also: public void drawString (java.lang.String str, int x, int y,
int anchor)

fillArc(int, int, int, int, int, int)

public void fillArc (int x, int y, int width, int height, int startAngle, int arcAngle)

210 Mobile Information Device Profile (JSR-37) May 5, 2000

Fills a circular or elliptical arc covering the specified rectangle.

The resulting arc begins at startAngle and extends for arcAngle degrees. Angles are interpreted such
that 0 degrees is at the 3 o'clock position. A positive value indicates a counter-clockwise rotation while a
negative value indicates a clockwise rotation.

The center of the arc is the center of the rectangle whose origin is (x, y) and whose size is specified by the
width and height arguments.

If either width or height is zero or less, nothing is drawn.

The filled region consists of the "pie wedge" region bounded by the arc segment as if drawn by drawArc(),
the radius extending from the center to this arc at startAngle degrees, and radius extending from the
center to this arc at startAngle + arcAngle degrees.

The angles are specified relative to the non-square extents of the bounding rectangle such that 45 degrees
always falls on the line from the center of the ellipse to the upper right corner of the bounding rectangle. As
a result, if the bounding rectangle is noticeably longer in one axis than the other, the angles to the start and
end of the arc segment will be skewed farther along the longer axis of the bounds.

Parameters:
x - the x coordinate of the upper-left corner of the arc to be filled.

y - the y coordinate of the upper-left corner of the arc to be filled.

width - the width of the arc to be filled

height - the height of the arc to be filled

startAngle - the beginning angle.

arcAngle - the angular extent of the arc, relative to the start angle.

See Also: public void drawArc (int x, int y, int width, int height,
int startAngle, int arcAngle)

fillRect(int, int, int, int)

public void fillRect (int x, int y, int width, int height)

Fills the specified rectangle with the current color. If either width or height is zero or less, nothing is drawn.

Parameters:
x - the x coordinate of the rectangle to be filled

y - the y coordinate of the rectangle to be filled

width - the width of the rectangle to be filled

height - the height of the rectangle to be filled

See Also: public void drawRect (int x, int y, int width, int height)

fillRoundRect(int, int, int, int, int, int)

public void fillRoundRect (int x, int y, int width, int height, int arcWidth,
int arcHeight)

Fills the specified rounded corner rectangle with the current color. If either width or height is zero or less,
nothing is drawn.

Parameters:

May 5, 2000 Mobile Information Device Profile (JSR-37) 211

x - the x coordinate of the rectangle to be filled

y - the y coordinate of the rectangle to be filled

width - the width of the rectangle to be filled

height - the height of the rectangle to be filled

arcWidth - the horizontal diameter of the arc at the four corners

arcHeight - the vertical diameter of the arc at the four corners

See Also: public void drawRoundRect (int x, int y, int width, int height,
int arcWidth, int arcHeight)

getBlueComponent()

public int getBlueComponent ()

Gets the blue component of the current color.

Returns: integer value in range 0-255

See Also: public void setColor (int red, int green, int blue)

getClipHeight()

public int getClipHeight ()

Gets the height of the current clipping area.

Returns: height of the current clipping area.

See Also: public void clipRect (int x, int y, int width, int height),
public void setClip (int x, int y, int width, int height)

getClipWidth()

public int getClipWidth ()

Gets the width of the current clipping area.

Returns: width of the current clipping area.

See Also: public void clipRect (int x, int y, int width, int height),
public void setClip (int x, int y, int width, int height)

getClipX()

public int getClipX ()

Gets the X offset of the current clipping area, relative to the coordinate system origin of this graphics con-
text. Separating the getClip operation into two methods returning integers is more performance and mem-
ory efficient than one getClip() call returning an object.

Returns: X offset of the current clipping area

See Also: public void clipRect (int x, int y, int width, int height),
public void setClip (int x, int y, int width, int height)

212 Mobile Information Device Profile (JSR-37) May 5, 2000

getClipY()

public int getClipY ()

Gets the Y offset of the current clipping area, relative to the coordinate system origin of this graphics con-
text. Separating the getClip operation into two methods returning integers is more performance and mem-
ory efficient than one getClip() call returning an object.

Returns: Y offset of the current clipping area

See Also: public void clipRect (int x, int y, int width, int height),
public void setClip (int x, int y, int width, int height)

getColor()

public int getColor ()

Gets the current color.

Returns: an integer in form 0x00RRGGBB

See Also: public void setColor (int red, int green, int blue)

getFont()

public Font getFont ()

Gets the current font.

Returns: current font

See Also: Font, public void setFont (Font font)

getGrayScale()

public int getGrayScale ()

Gets the current grayscale value of the color being used for rendering operations. If the color was set by set-
GrayScale(), that value is simply returned. If the color was set by one of the methods that allows setting of
the red, green, and blue components, the value returned is computed from the RGB color components (pos-
sibly in a device-specific fashion) that best approximates the brightness of that color.

Returns: integer value in range 0-255

getGreenComponent()

public int getGreenComponent ()

Gets the green component of the current color.

Returns: integer value in range 0-255

See Also: public void setColor (int red, int green, int blue)

getRedComponent()

public int getRedComponent ()

May 5, 2000 Mobile Information Device Profile (JSR-37) 213

Gets the red component of the current color.

Returns: integer value in range 0-255

See Also: public void setColor (int red, int green, int blue)

getTranslateX()

public int getTranslateX ()

Gets the X coordinate of the translated origin of this graphics context.

Returns: X of current origin

getTranslateY()

public int getTranslateY ()

Gets the Y coordinate of the translated origin of this graphics context.

Returns: Y of current origin

setClip(int, int, int, int)

public void setClip (int x, int y, int width, int height)

Sets the current clip to the rectangle specified by the given coordinates. Rendering operations have no
effect outside of the clipping area.

Parameters:
x - the x coordinate of the new clip rectangle

y - the y coordinate of the new clip rectangle

width - the width of the new clip rectangle

height - the height of the new clip rectangle

See Also: public void clipRect (int x, int y, int width, int height)

setColor(int)

public void setColor (int RGB)

Sets the current color to the specified RGB values. All subsequent rendering operations will use this speci-
fied color. The RGB value passed in is interpreted with the least significant eight bits giving the blue com-
ponent, the next eight more significant bits giving the green component, and the next eight more significant
bits giving the red component. That is to say, the color component is specified in the form of
0x00RRGGBB. The high order byte of this value is ignored.

Parameters:
RGB - the color being set

setColor(int, int, int)

public void setColor (int red, int green, int blue)

214 Mobile Information Device Profile (JSR-37) May 5, 2000

Sets the current color to the specified RGB values. All subsequent rendering operations will use this speci-
fied color.

Parameters:
red - The red component of the color being set in range 0-255.

green - The green component of the color being set in range 0-255.

blue - The blue component of the color being set in range 0-255.

Throws: IllegalArgumentException - if any of the color components are outside of range 0-255.

setFont(Font)

public void setFont (Font font)

Sets the font for all subsequent text rendering operations.

Parameters:
font - the specified font

See Also: Font, public Font getFont (), public void drawString
(java.lang.String str, int x, int y, int anchor), public void
drawChars (char[] data, int offset, int length, int x, int y,
int anchor)

setGrayScale(int)

public void setGrayScale (int value)

Sets the current grayscale to be used for all subsequent rendering operations. For monochrome displays, the
behavior is clear. For color displays, this sets the color for all subsequent drawing operations to be a gray
color equivalent to the value passed in. The value must be in the range 0-255.

Parameters:
value - the desired grayscale value

Throws: IllegalArgumentException - if the gray value is out of range

translate(int, int)

public void translate (int x, int y)

Translates the origin of the graphics context to the point (x, y) in the current coordinate system. All coordi-
nates used in subsequent rendering operations on this graphics context will be relative to this new origin.

The effect of calls to translate() are cumulative. For example, calling translate(1, 2) and then translate(3, 4)
results in a translation of (4, 6).

The application can set an absolute origin (ax, ay) using the following technique:

g.translate(ax - g.getTranslateX(), ay - g.getTranslateY())

Pre-conditions: - None Post-conditions: - The specified point is the new origin of the Graphics' coordi-
nate space.

Parameters:
x - the x coordinate of the new translation origin

May 5, 2000 Mobile Information Device Profile (JSR-37) 215

y - the y coordinate of the new translation origin

See Also: public int getTranslateX (), public int getTranslateY ()

216 Mobile Information Device Profile (JSR-37) May 5, 2000

javax.microedition.lcdui

Image
Syntax
public class Image

javax.microedition.lcdui.Image

Description
The Image class is used to used to hold graphical image data. Image objects exist independently of the display
device. They exist only in off-screen memory and will not be painted on the display unless an explicit command
is issued by the application (such as within the paint() method of a Canvas) or when an Image object is placed
within a Form screen or an Alert screen and that screen is made current.

Images are either mutable or immutable depending upon how they are created. Immutable images are generally
created by loading image data from resource bundles, from files, or from the network. They may not be modi-
fied once created. Mutable images are created in off-screen memory. The application may paint into them after
having created a Graphics object expressly for this purpose. Images to be placed within an ImageItem or onto
Form or Alert screens must be immutable. An immutable image may be created from a mutable image through
the use of the public static Image createImage (Image image) method. It is possible to cre-
ate a mutable copy of an immutable image using a technique similar to the following:

Image source; // the image to be copied
Image copy = Image.createImage(source.getWidth(), source.getHeight());
Graphics g = copy.getGraphics();
g.drawImage(source, 0, 0, TOP|LEFT);

The implementations are assumed to support PNG as the image format. Implementation of filtering, progressive
drawing/interlacing and transparency is not, however, required.

Methods

createImage(byte[], int, int)

Member Summary

Methods
Image public static Image createImage (byte[] imagedata,

int imageoffset, int imagelength)
Image public static Image createImage (Image image)
Image public static Image createImage (int width, int height)
Image public static Image createImage (java.lang.String name)

Graphics public Graphics getGraphics ()
int public int getHeight ()
int public int getWidth ()

boolean public boolean isMutable ()

May 5, 2000 Mobile Information Device Profile (JSR-37) 217

public static Image createImage (byte[] imagedata, int imageoffset, int imagelength)

Creates an immutable image which is decoded from the data stored in the specified byte array at the speci-
fied offset and length. The data must be in some image format supported by the implementation (such as
PNG).

The imageoffset and imagelength parameters specify a range of data the imagedata byte array. The ima-
geoffset parameter specifies the offset within the array of the first data byte to be used. It must therefore lie
within the range [0..(imagedata.length-1)]. The imagelength parameter specifies the number of data bytes to
be used. It must be a positive integer and it must not cause the range to extend beyond the end of the array.
That is, it must be true that imageoffset + imagelength <= imagedata.length.

Images created by this method are immutable. Therefore, resources permitting, the implementation is
allowed to provide a caching scheme and return the same image object if the same data is provided to a sub-
sequent createImage() call. Similarly, the application can safely cache and reuse these images.

This method is intended for use when loading an image from ROM or from the network.

Parameters:
imagedata - the array of image data in a supported image format

imageoffset - the offset of the start of the data in the array

imagelength - the length of the data in the array

Returns: the created image

Throws: ArrayIndexOutOfBoundsException - if imageoffset and imagelength specify an invalid
range

IllegalArgumentException - if imagedata is malformatted or otherwise cannot be decoded

createImage(Image)

public static Image createImage (Image image)

Creates an immutable image from a mutable image. If the image is mutable, it is copied. This can be used in
Alert , Form and Choice .

Parameters:
image - the image to be copied

Returns: the created image

createImage(int, int)

public static Image createImage (int width, int height)

Creates a new, mutable image for off-screen drawing. Every pixel within the newly created image is white.

Parameters:
width - the width, in pixels, of the new image

height - the height, in pixels, of the new image

Returns: the created image

Throws: IllegalArgumentException - if width <= 0 or height <= 0.

218 Mobile Information Device Profile (JSR-37) May 5, 2000

createImage(String)

public static Image createImage (java.lang.String name)

Creates an immutable image from decoded image data obtained from the named resource.

Parameters:
name - the name of the resource containing the pixel data in one of the recognized file formats.

Returns: the created image

Throws: java.io.IOException - if the resource does not exist, the data cannot be loaded, or the
image data cannot be decoded

getGraphics()

public Graphics getGraphics ()

Creates a Graphics object that renders to this image. This image must be mutable; it is illegal to call this
method on an immutable image. The mutability of an image may be tested with the isMutable() method.

Returns: a Graphics object with this image as its destination

Throws: IllegalStateException - if the image is immutable

getHeight()

public int getHeight ()

Gets the height of the image in pixels.

Returns: height of the image

getWidth()

public int getWidth ()

Gets the width of the image in pixels.

Returns: width of the image

isMutable()

public boolean isMutable ()

Check if this image is mutable. Mutable images can be modified by rendering to them through a Graphics
object obtained from the getGraphics() method of this object.

Returns: true if the image is mutable, false otherwise

May 5, 2000 Mobile Information Device Profile (JSR-37) 219

javax.microedition.lcdui

ImageItem
Syntax
public class ImageItem extends Item

Item

|
+--javax.microedition.lcdui.ImageItem

Description
A class that provides layout control when Image objects are added to a Form or to an Alert .

Each ImageItem object contains a reference to an Image object. This image must be immutable. (If the image
object were not required to be immutable, the application could paint into it at any time, potentially requiring
the containing Form or Alert to be updated on every graphics call.) See the definition of the Image object for
further details on image mutability how to create immutable images.

The value null may be specified for the image contents of an ImageItem. If this occurs (and if the label is also
null) the ImageItem will occupy no space on the screen.

Each ImageItem object contains a layout field that is combined from the following values: LAYOUT_LEFT,
LAYOUT_RIGHT, LAYOUT_CENTER, LAYOUT_NEWLINE_BEFORE, and
LAYOUT_NEWLINE_AFTER. LAYOUT_LEFT + LAYOUT_RIGHT is equal to LAYOUT_CENTER.
LAYOUT_DEFAULT may be specified, which indicates that the system should use its default layout policy for
this ImageItem. The value of the layout field is merely a hint. Because of device constraints, such as limited
screen size, the implementation may choose to ignore layout directions.

The altText parameter specifies a string to be displayed in place of the image if the image exceeds the capacity
of the display. The altText parameter may be null.

Member Summary

Fields
int public static final int LAYOUT_CENTER
int public static final int LAYOUT_DEFAULT
int public static final int LAYOUT_LEFT
int public static final int LAYOUT_NEWLINE_AFTER
int public static final int LAYOUT_NEWLINE_BEFORE
int public static final int LAYOUT_RIGHT

Constructors
public ImageItem (java.lang.String label, Image img,
int layout, java.lang.String altText)

Methods
String public java.lang.String getAltText ()
Image public Image getImage ()
int public int getLayout ()
void public void setImage (Image img)
void public void setLayout (int layout)
void public void setText (java.lang.String text)

220 Mobile Information Device Profile (JSR-37) May 5, 2000

Fields

LAYOUT_CENTER

public static final int LAYOUT_CENTER

Image should be horizontally centered.

Value 3 is assigned to LAYOUT_CENTER.

LAYOUT_DEFAULT

public static final int LAYOUT_DEFAULT

Use the default formatting of the "container" of the image.

Value 0 is assigned to LAYOUT_DEFAULT.

LAYOUT_LEFT

public static final int LAYOUT_LEFT

Image should be close to left-edge of the drawing area.

Value 1 is assigned to LAYOUT_LEFT.

LAYOUT_NEWLINE_AFTER

public static final int LAYOUT_NEWLINE_AFTER

A new line should be started after the image is drawn.

Value 0x200 is assigned to LAYOUT_DEFAULT.

LAYOUT_NEWLINE_BEFORE

public static final int LAYOUT_NEWLINE_BEFORE

A new line should be started before the image is drawn.

Value 0x100 is assigned to LAYOUT_NEWLINE_BEFORE.

LAYOUT_RIGHT

Inherited Member Summary

Methods inherited from class Item
public java.lang.String getLabel (), public void setLabel (java.lang.String label)

May 5, 2000 Mobile Information Device Profile (JSR-37) 221

public static final int LAYOUT_RIGHT

Image should be close to right-edge of the drawing area.

Value 2 is assigned to LAYOUT_RIGHT.

Constructors

ImageItem(String, Image, int, String)

public ImageItem (java.lang.String label, Image img, int layout,
java.lang.String altText)

Creates a new ImageItem with the given label, image, layout directive, and alternate text string.

Parameters:
label - the label string

img - the image, must be immutable

layout - a combination of layout directives

altText - the text that may be used in place of the image

Throws: IllegalArgumentException - if the image is mutable

IllegalArgumentException - if the layout value is not a legal combination of directives

Methods

getAltText()

public java.lang.String getAltText ()

Gets the text string to be used if the image exceeds the device's capacity to display it.

Returns: the alternate text value, or null if none

getImage()

public Image getImage ()

Gets the image contained within the ImageItem, or null if there is no contained image.

Returns: image used by the ImageItem

getLayout()

public int getLayout ()

Gets the layout directives used for placing the image.

Returns: a combination of layout directive values

222 Mobile Information Device Profile (JSR-37) May 5, 2000

setImage(Image)

public void setImage (Image img)

Sets the image object contained within the ImageItem. If img is null, the ImageItem is set to be empty.

Parameters:
img - the new image

setLayout(int)

public void setLayout (int layout)

Sets the layout directives.

Parameters:
layout - a combination of layout directive values

Throws: IllegalArgumentException - if the value of layout is not a valid combination of layout
directives

setText(String)

public void setText (java.lang.String text)

Sets the alternate text of the ImageItem, or null if no alternate text is provided.

Parameters:
text - the new alternate text

May 5, 2000 Mobile Information Device Profile (JSR-37) 223

javax.microedition.lcdui

Item
Syntax
public abstract class Item

javax.microedition.lcdui.Item

Direct Known Subclasses: ChoiceGroup, DateField, Gauge, ImageItem, StringItem,
TextField

Description
A superclass for interactive components that can be added to a Form and Alert . All Item objects have a
label field, which is a string that is attached to the item. The label is typically displayed near the component
when it is displayed within a screen. This means that the implementation tries to keep the label on the same hor-
izontal row with the item or directly above the item. If the screen is scrolling, the implementation tries to keep
the label visible at the same time with the Item.

In some cases, when the user attempts to interact with an Item, the system will switch to a system-generated
screen where the actual interaction takes places. If this occurs, the label will generally be carried along and dis-
played within this new screen in order to provide the user with some context for the operation. For this reason it
is recommended that applications supply a label to all interactive Item objects. However, this is not required,
and a null value for a label is legal and specifies the absence of a label.

Methods

getLabel()

public java.lang.String getLabel ()

Gets the label of this Item object.

Returns: the label string

setLabel(String)

public void setLabel (java.lang.String label)

Sets the label of the Item. If label is null, specifies that this item has no label.

Member Summary

Methods
String public java.lang.String getLabel ()

void public void setLabel (java.lang.String label)

224 Mobile Information Device Profile (JSR-37) May 5, 2000

Parameters:
label - the label string

May 5, 2000 Mobile Information Device Profile (JSR-37) 225

javax.microedition.lcdui

ItemStateListener
Syntax
public interface ItemStateListener

Description
This interface is used by applications which need to receive events that indicate changes in the internal state of
the interactive items within a Form screen.

See Also: public void setItemStateListener (ItemStateListener iListener)

Methods

itemStateChanged(Item)

public void itemStateChanged (Item item)

Called when internal state of an Item has been changed. This happens when the user:

• changes the set of selected values in a ChoiceGroup;
• adjusts the value of an interactive Gauge;
• enters a new value into a TextField; and
• enters a new Date with DateField

It is up to the device to decide when it considers a new value to have been entered into a TextField. Text
editing varies greatly from device to device. It is not expected that the listener will be called after every
character is entered. However, if this TextField's value has been changed, the listener will be called for this
TextField's change sometime before it is called for another item or before a command is delivered to the
Form's commandListener.

The listener is not called if the application - not the user - changes the value of an interactive item.

Parameters:
item - the item that was changed

Member Summary

Methods
void public void itemStateChanged (Item item)

226 Mobile Information Device Profile (JSR-37) May 5, 2000

javax.microedition.lcdui

List
Syntax
public class List extends Screen implements Choice

Displayable

|
+--Screen

|
+--javax.microedition.lcdui.List

All Implemented Interfaces: Choice

Description
The List class is a Screen containing list of choices. Most of the behavior is common with class
ChoiceGroup and the common API is defined in interface Choice . When a List is present on the display
the user can interact with it indefinitely (for instance, traversing from element to element and possibly scroll-
ing). These traversing and scrolling operations do not cause application-visible events. The system notifies the
application when some Command is fired. The notification of the application is done with public void
commandAction (Command c, Displayable d) .

List, like any Choice, utilizes a dedicated "select" or "go" functionality of the devices. Typically, the select
functionality is distinct from the soft-buttons, but some devices may use soft-buttons for the select. In any case,
it is assumed that the select key does not have application-programmable label.

In respect to select functionality here are three types of Lists:

n IMPLICIT where select causes immediate notification of the application if there is an
CommandListener registered. An implicit public static final Command
selectCommand is a parameter for the notification.

n EXCLUSIVE where select operation changes the selected element in the list. Application is not notified.
n MULTIPLE where select operation toggles the selected state of the focused. Application is not notified.

IMPLICIT List can be used to construct menus by placing logical commands to elements. In this case no appli-
cation defined Command have to be attached. Application just has to register a CommandListener that is called
when user "selects".

Another use might be a Screen with a default command. For example, the List may contain email headers, and
the following Commands:

n (SCREEN, "read");
n (SCREEN, "reply");
n (SCREEN, "delete");

If the list of type IMPLICIT, the select operation also calls the method public void commandAction
(Command c, Displayable d) with parameter public static final Command
selectCommand . The implementation of commandAction() can now do the obvious thing and start the read
operation.

It should be noted that this kind of default operation must be used carefully and the usability of the resulting
user interface must always kept in mind.

The application can also set the currently selected element(s) prior to displaying the List.

May 5, 2000 Mobile Information Device Profile (JSR-37) 227

The implementation may have keyboard shortcuts for focusing and selecting the choice elements, but the use of
these shortcuts is not visible to the application program.

Note: Many of the essential methods have been documented in Choice .

Fields

Member Summary

Fields
Command public static final Command selectCommand

Constructors
public List (java.lang.String title, int listType)
public List (java.lang.String title, int listType,
java.lang.String[] stringElements, Image[] imageElements)

Methods
int public int appendElement (java.lang.String stringPart,

Image imagePart)
void public void deleteElement (int elementNum)
Image public Image getImage (int elementNum)
int public int getSelectedFlags (boolean[] selectedArray_return)
int public int getSelectedIndex ()
int public int getSize ()

String public java.lang.String getString (int elementNum)
void public void insertElement (int elementNum,

java.lang.String stringPart, Image imagePart)
boolean public boolean isSelected (int elementNum)

void public void setElement (int elementNum,
java.lang.String stringPart, Image imagePart)

void public void setSelectedFlags (boolean[] selectedArray)
void public void setSelectedIndex (int elementNum,

boolean selected)

Inherited Member Summary

Fields inherited from interface Choice
public static final int EXCLUSIVE, public static final int IMPLICIT, public static final
int MULTIPLE

Methods inherited from class Screen
public Ticker getTicker (), public java.lang.String getTitle (), public void setTicker
(Ticker ticker), public void setTitle (java.lang.String s)

Methods inherited from class Displayable
public void addCommand (Command cmd), public boolean isShown (), public void removeCom-
mand (Command cmd), public void setListener (CommandListener l)

228 Mobile Information Device Profile (JSR-37) May 5, 2000

selectCommand

public static final Command selectCommand

selectCommand is a special command that public void commandAction (Command c,
Displayable d) can use to recognize the user did the select operation on a IMPLICIT List.

Constructors

List(String, int)

public List (java.lang.String title, int listType)

Creates a new, empty List, specifying its title and the type of the list.

Parameters:
title - the screen title (See Screen }

listType - one of IMPLICIT, EXCLUSIVE, or MULTIPLE

Throws: IllegalArgumentException - if listType is not one of IMPLICIT, EXCLUSIVE, or
MULTIPLE.

See Also: Choice

List(String, int, String[], Image[])

public List (java.lang.String title, int listType, java.lang.String[] stringElements,
Image[] imageElements)

Creates a new List, specifying its title, the type of the List, and an array of Strings and Images to be used as
its initial contents.

Parameters:
title - the screen title {@see Screen}

listType - one of IMPLICIT, EXCLUSIVE, or MULTIPLE

stringElements - set of strings specifying the visible representation of the elements.

imageElements - set of images specifying the visible representation of the elements. Empty image
is marked with null, and if no images are given, the parameter imageElements may be null..

Throws: IllegalArgumentException - if the length of stringElements is different from
imageElements and imageElements is non-null.

IllegalArgumentException - if listType is not one of IMPLICIT, EXCLUSIVE, or
MULTIPLE.

See Also: public static final int EXCLUSIVE, public static final int
MULTIPLE, public static final int IMPLICIT

Methods

May 5, 2000 Mobile Information Device Profile (JSR-37) 229

appendElement(String, Image)

public int appendElement (java.lang.String stringPart, Image imagePart)

Implementation of public int appendElement (java.lang.String stringPart,
Image imagePart) .

Specified By: public int appendElement (java.lang.String stringPart,
Image imagePart) in interface Choice

Parameters:
stringPart - the string part of the element to be added

imagePart - the image part of the element to be added, or null if there is no image part

Returns: the assigned number of the element

Throws: IllegalArgumentException - if the image is mutable

deleteElement(int)

public void deleteElement (int elementNum)

Implementation of public void deleteElement (int elementNum) .

Specified By: public void deleteElement (int elementNum) in interface Choice

Parameters:
elementNum - the number of the element to be deleted

Throws: ArrayIndexOutOfBoundsException - if elementNum is invalid

getImage(int)

public Image getImage (int elementNum)

Implementation of public Image getImage (int elementNum) .

Specified By: public Image getImage (int elementNum) in interface Choice

Parameters:
elementNum - the number of the element

Returns: the image part of the element, or null if there is no image

Throws: ArrayIndexOutOfBoundsException - if elementNum is invalid

See Also: public java.lang.String getString (int elementNum), public
java.lang.String getString (int elementNum)

getSelectedFlags(boolean[])

public int getSelectedFlags (boolean[] selectedArray_return)

Implementation of public int getSelectedFlags (boolean[]
selectedArray_return) .

Specified By: public int getSelectedFlags (boolean[] selectedArray_return)
in interface Choice

Parameters:

230 Mobile Information Device Profile (JSR-37) May 5, 2000

selectedArray_return - array to contain the results. It must be at least as long as the size of the
List as returned by getSize(). If the array is longer, the extra elements are set to false.

Returns: the number of selected elements in the Choice

Throws: IllegalArgumentException - if selectedArray_return is shorter than the size of the List.

getSelectedIndex()

public int getSelectedIndex ()

Implementation of public int getSelectedIndex () .

Specified By: public int getSelectedIndex () in interface Choice

Returns: index of selected element

getSize()

public int getSize ()

Implementation of public int getSize () .

Specified By: public int getSize () in interface Choice

Returns: number of elements in the Choice.

getString(int)

public java.lang.String getString (int elementNum)

Implementation of public java.lang.String getString (int elementNum) .

Specified By: public java.lang.String getString (int elementNum) in interface
Choice

Parameters:
elementNum - the number of the element

Returns: the string part of the element

Throws: ArrayIndexOutOfBoundsException - if elementNum is invalid

See Also: public Image getImage (int elementNum)

insertElement(int, String, Image)

public void insertElement (int elementNum, java.lang.String stringPart, Image imagePart)

Implementation of public void insertElement (int elementNum,
java.lang.String stringPart, Image imagePart) .

Specified By: public void insertElement (int elementNum,
java.lang.String stringPart, Image imagePart) in interface Choice

Parameters:
elementNum - the number of the element

stringPart - the string part of the element to be inserted

May 5, 2000 Mobile Information Device Profile (JSR-37) 231

imagePart - the image part of the element to be inserted, or null if there is no image part

Throws: ArrayIndexOutOfBoundsException - if elementNum is invalid

IllegalArgumentException - if the image is mutable

NullPointerException - if stringPart is null

isSelected(int)

public boolean isSelected (int elementNum)

Implementation of public boolean isSelected (int elementNum) .

Specified By: public boolean isSelected (int elementNum) in interface Choice

Parameters:
elementNum - index to element of interest

Returns: selection status of an element

Throws: ArrayIndexOutOfBoundsException - if elementNum specifies an invalid element.

setElement(int, String, Image)

public void setElement (int elementNum, java.lang.String stringPart, Image imagePart)

Implementation of public void setElement (int elementNum,
java.lang.String stringPart, Image imagePart) .

Specified By: public void setElement (int elementNum,
java.lang.String stringPart, Image imagePart) in interface Choice

Parameters:
elementNum - the number of the element

stringPart - the string part of the new element

imagePart - the image part of the element, or null if there is no image part

Throws: ArrayIndexOutOfBoundsException - if elementNum is invalid

IllegalArgumentException - if the image is mutable

NullPointerException - if stringPart is null

setSelectedFlags(boolean[])

public void setSelectedFlags (boolean[] selectedArray)

Implementation of public void setSelectedFlags (boolean[] selectedArray) .

Specified By: public void setSelectedFlags (boolean[] selectedArray) in
interface Choice

Parameters:
selectedArray - an array in which the method collect the selection status

Throws: IllegalArgumentException - if selectedArray is shorter than the size of the List.

232 Mobile Information Device Profile (JSR-37) May 5, 2000

setSelectedIndex(int, boolean)

public void setSelectedIndex (int elementNum, boolean selected)

Implementation of public void setSelectedIndex (int elementNum,
boolean selected) .

Specified By: public void setSelectedIndex (int elementNum,
boolean selected) in interface Choice

Parameters:
elementNum - the number of the element. Indexing of the elements is zero-based.

selected - the new state of the element true=selected, false=not selected.

Throws: ArrayIndexOutOfBoundException - if elementNum<0 or elementNum > getSize().

May 5, 2000 Mobile Information Device Profile (JSR-37) 233

javax.microedition.lcdui

Screen
Syntax
public abstract class Screen extends Displayable

Displayable

|
+--javax.microedition.lcdui.Screen

Direct Known Subclasses: Alert, Form, List, TextBox

Description
The Screen class is an abstract superclass that provides its subclasses with an optional title and an optional
ticker-tape style display.

Methods

getTicker()

public Ticker getTicker ()

Gets the ticker used by this Screen.

Returns: ticker object used, or null if no ticker is present

getTitle()

Member Summary

Methods
Ticker public Ticker getTicker ()
String public java.lang.String getTitle ()

void public void setTicker (Ticker ticker)
void public void setTitle (java.lang.String s)

Inherited Member Summary

Methods inherited from class Displayable
public void addCommand (Command cmd), public boolean isShown (), public void removeCom-
mand (Command cmd), public void setListener (CommandListener l)

234 Mobile Information Device Profile (JSR-37) May 5, 2000

public java.lang.String getTitle ()

Gets the title of the Screen. Returns null if there is no title.

setTicker(Ticker)

public void setTicker (Ticker ticker)

Set a ticker for use with this Screen, replacing any previous ticker. If null, removes the ticker object from
this screen. The same ticker is may be shared by several Screen objects within an application. This is done
by calling setTicker() on different screens with the same Ticker object. If the Screen is physically visible,
the visible effect should take place no later than immediately after the callback or protected
abstract void startApp () returns back to the implementation.

Parameters:
ticker - the ticker object used on this screen

setTitle(String)

public void setTitle (java.lang.String s)

Sets the title of the Screen. If null is given, removes the title.

If the Screen is physically visible, the visible effect should take place no later than immediately after the
callback or protected abstract void startApp () returns back to the implementation.

Parameters:
s - the new title, or null for no title

May 5, 2000 Mobile Information Device Profile (JSR-37) 235

javax.microedition.lcdui

StringItem
Syntax
public class StringItem extends Item

Item

|
+--javax.microedition.lcdui.StringItem

Description
An item that can contain a string. A StringItem is display-only; the user cannot edit the contents. Both the label
and the textual content of a StringItem may be modified by the application. The visual representation of the
label may differ from that of the textual contents.

Constructors

StringItem(String, String)

public StringItem (java.lang.String label, java.lang.String text)

Creates a new StringItem object with the given label and textual content. Either label or text may be present
or null.

Parameters:
label - the Item label

text - the text contents

Member Summary

Constructors
public StringItem (java.lang.String label,
java.lang.String text)

Methods
String public java.lang.String getText ()

void public void setText (java.lang.String text)

Inherited Member Summary

Methods inherited from class Item
public java.lang.String getLabel (), public void setLabel (java.lang.String label)

236 Mobile Information Device Profile (JSR-37) May 5, 2000

Methods

getText()

public java.lang.String getText ()

Gets the text contents of the StringItem, or null if the StringItem is empty.

Returns: a string with the content of the item

setText(String)

public void setText (java.lang.String text)

Sets the text contents of the StringItem. If text is null, the StringItem is set to be empty.

Parameters:
text - the new content

May 5, 2000 Mobile Information Device Profile (JSR-37) 237

javax.microedition.lcdui

TextBox
Syntax
public class TextBox extends Screen

Displayable

|
+--Screen

|
+--javax.microedition.lcdui.TextBox

Description
The TextBox class is a Screen that allows the user to enter and edit text. The TextBox has a title that is shown at
the top of the display. It can be given a piece of text that is used as the initial value. The TextBox has a maxi-
mum capacity (in terms of the number of characters) that is set by the application. When the TextBox reaches
this maximum capacity, the user is not allowed to enter additional characters unless some are deleted first.

A TextBox has a maximum size, which is the maximum number of characters that can be stored in the object at
any time (its capacity). This limit is enforced when the user is editing text within the TextBox, as well as when
the application program calls methods on the TextBox that modify its contents. The maximum size is the maxi-
mum stored capacity and is unrelated to the number of characters that may be displayed at any given time. The
number of characters displayed and their arrangement into rows and columns are determined by the device.

The text contained within a TextBox may be more than can be displayed at one time. If this is the case, the
implementation will let the user scroll to view and edit any part of the text. This scrolling occurs transparently to
the application.

TextBox has the concept of input constraints that is identical to TextField. The constraints parameters of
methods within the TextBox class use constants defined in the TextField class. See the description of input
constraints in the TextField class for the definition of these constants.

Member Summary

Constructors
public TextBox (java.lang.String title,
java.lang.String text, int maxSize, int constraints)

Methods
void public void deleteChars (int offset, int length)
int public int getChars (char[] data)
int public int getConstraints ()
int public int getMaxSize ()
int public int getSize ()

String public java.lang.String getString ()
void public void insertChars (char[] data, int offset, int length,

int position)
void public void insertString (java.lang.String src, int position)
void public void setChars (char[] data, int offset, int length)
void public void setConstraints (int constraints)
void public void setMaxSize (int maxSize)

238 Mobile Information Device Profile (JSR-37) May 5, 2000

Constructors

TextBox(String, String, int, int)

public TextBox (java.lang.String title, java.lang.String text, int maxSize,
int constraints)

Creates a new TextBox object with the given title string, initial contents, maximum size in characters, and
constraints. If the text parameter is null, the TextBox is created empty. The maxSize parameter must be
greater than zero.

Parameters:
title - the title text to be shown at the top of the display

text - the initial contents of the text editing area, null may be used to indicate no initial content.

maxSize - the maximum capacity in characters

constraints - see input constraints

Throws: IllegalArgumentException - if maxSize is zero or less

IllegalArgumentException - if the constraints parameter is invalid

IllegalArgumentException - if the length of the string exceeds the requested maximum
capacity

OutOfMemoryError - if the implementation cannot accommodate the requested maximum size

Methods

deleteChars(int, int)

public void deleteChars (int offset, int length)

void public void setString (java.lang.String text)

Inherited Member Summary

Methods inherited from class Screen
public Ticker getTicker (), public java.lang.String getTitle (), public void setTicker
(Ticker ticker), public void setTitle (java.lang.String s)

Methods inherited from class Displayable
public void addCommand (Command cmd), public boolean isShown (), public void removeCom-
mand (Command cmd), public void setListener (CommandListener l)

Member Summary

May 5, 2000 Mobile Information Device Profile (JSR-37) 239

Deletes characters from the TextBox.

Parameters:
offset - the beginning of the region to be deleted

length - the number of characters to be deleted

Throws: ArrayIndexOutOfBoundsException - if offset and length do not specify a valid range
within the content of TextBox

IllegalArgumentException - if the resulting content is illegal for the current input constraints

getChars(char[])

public int getChars (char[] data)

Copies the contents of the TextBox into a character array starting at index zero. Array elements beyond the
characters copied are left unchanged.

Parameters:
data - the character array to receive the value

Returns: the number of characters copied

Throws: ArrayIndexOutOfBoundsException - if the array is too short for the contents

getConstraints()

public int getConstraints ()

Get the current input constraints of the TextBox.

Returns: the current constraints value (see input constraints)

getMaxSize()

public int getMaxSize ()

Returns the maximum size (number of characters) that can be stored in this TextBox.

Returns: the maximum size in characters

getSize()

public int getSize ()

Gets the number of characters that are currently stored in this TextBox.

Returns: the number of characters

getString()

public java.lang.String getString ()

Gets the contents of the TextBox as a string value.

Returns: the current contents

240 Mobile Information Device Profile (JSR-37) May 5, 2000

insertChars(char[], int, int, int)

public void insertChars (char[] data, int offset, int length, int position)

Inserts a subrange of an array of characters just prior to the given position. The offset and length parameters
indicate the subrange of the data array to be used for insertion. Behavior is otherwise identical to public
void insertString (java.lang.String src, int position) .

Parameters:
data - the source of the character data

offset - the beginning of the region of characters to copy

length - the number of characters to copy

position - the position at which insertion is to occur

Throws: ArrayIndexOutOfBoundsException - if position is invalid

ArrayIndexOutOfBoundsException - if offset and length do not specify a valid range within
the data array

IllegalArgumentException - if the resulting content is illegal for the current input constraints

IllegalArgumentException - if the insertion would exceed the current maximum capacity

insertString(String, int)

public void insertString (java.lang.String src, int position)

Inserts a string into the contents just prior to the given position. The given position must be between zero
and the current maximum size. If the position is beyond the end of the current contents, the effect is as if
string were appended to the contents with no intervening characters. Thus, text.insertString(str, text.get-
MaxSize()) always appends the string str. The current size of the contents is increased by the number of
inserted characters. The resulting string must fit within the current maximum capacity.

Parameters:
src - the String to be inserted

position - the position at which insertion is to occur

Throws: ArrayIndexOutOfBoundsException - if position is invalid

IllegalArgumentException - if the resulting content is illegal for the current input constraints

IllegalArgumentException - if the insertion would exceed the current maximum capacity

setChars(char[], int, int)

public void setChars (char[] data, int offset, int length)

Sets the contents of the TextBox from a character array, replacing the previous contents. Characters are
copied from the region of the data array starting at array index offset and running for length charac-
ters. If the data array is null, the TextBox is set to be empty and the other parameters are ignored.

Parameters:
data - the source of the character data

offset - the beginning of the region of characters to copy

length - the number of characters to copy

May 5, 2000 Mobile Information Device Profile (JSR-37) 241

Throws: ArrayIndexOutOfBoundsException - if offset and length do not specify a valid range
within the data array

IllegalArgumentException - if the text is illegal for the current input constraints

IllegalArgumentException - if the text would exceed the current maximum capacity

setConstraints(int)

public void setConstraints (int constraints)

Sets the input constraints of the TextBox. If the current contents of the TextBox do not match the new con-
straints, the contents are set to empty.

Parameters:
constraints - see input constraints

Throws: IllegalArgumentException - if the value of the constraints parameter is invalid

setMaxSize(int)

public void setMaxSize (int maxSize)

Sets the maximum size (number of characters) that can be contained in this TextBox. If the current contents
of the TextBox are larger than maxSize, the contents are truncated to fit.

Parameters:
maxSize - the new maximum size

Throws: IllegalArgumentException - if maxSize is zero or less

OutOfMemoryError - if the implementation cannot accommodate the requested maximum size

setString(String)

public void setString (java.lang.String text)

Sets the contents of the TextBox as a string value, replacing the previous contents.

Parameters:
text - the new value of the TextBox

Throws: IllegalArgumentException - if the text is illegal for the current input constraints

IllegalArgumentException - if the text would exceed the current maximum capacity

242 Mobile Information Device Profile (JSR-37) May 5, 2000

javax.microedition.lcdui

TextField
Syntax
public class TextField extends Item

Item

|
+--javax.microedition.lcdui.TextField

Description
A TextField is an editable text component that may be placed into a Form . It can be given a piece of text that is
used as the initial value.

A TextField has a maximum size, which is the maximum number of characters that can be stored in the object at
any time (its capacity). This limit is enforced when the user is editing text within the TextField, as well as when
the application program calls methods on the TextField that modify its contents. The maximum size is the max-
imum stored capacity and is unrelated to the number of characters that may be displayed at any given time. The
number of characters displayed and their arrangement into rows and columns are determined by the device.

The TextField shares the concept of input constraints with the TextBox object. The different constraints
allow the application to request that the user's input be restricted in a variety of ways. The implementation is
required to restrict the user's input as requested by the application. For example, if the application requests the
NUMERIC constraint on a TextField, the implementation must allow only numerals to be entered.

The implementation may provide special formatting for the value entered. For example, a PHONENUMBER
field may be separated and punctuated as appropriate for the phone number conventions in use, grouping the
digits into country code, area code, prefix, etc. Any spaces or punctuation provided are not considered part of
the text field's value. For example, a TextField with the PHONENUMBER constraint might display as follows:

(408) 555-1212

but the value of the field visible to the application would be the string "4085551212".

Member Summary

Fields
int public static final int ANY
int public static int CONSTRAINT_MASK
int public static final int EMAILADDR
int public static final int NUMERIC
int public static int PASSWORD
int public static final int PHONENUMBER
int public static final int URL

Constructors
public TextField (java.lang.String label,
java.lang.String text, int maxSize, int constraints)

Methods
void public void deleteChars (int offset, int length)
int public int getChars (char[] data)

May 5, 2000 Mobile Information Device Profile (JSR-37) 243

Fields

ANY

public static final int ANY

The user is allowed to enter any text.

Constant 0 is assigned to ANY.

CONSTRAINT_MASK

public static int CONSTRAINT_MASK

The mask value for determining the constraint mode. The application should use the logical AND operation
with a value returned by getConstraints() and CONSTRAINT_MASK in order to retrieve the current con-
straint mode, in order to remove any modifier flags such as the PASSWORD flag.

EMAILADDR

public static final int EMAILADDR

The user is allowed to enter an e-mail address.

Constant 1 is assigned to EMAILADDDR.

NUMERIC

public static final int NUMERIC

int public int getConstraints ()
int public int getMaxSize ()
int public int getSize ()

String public java.lang.String getString ()
void public void insertChars (char[] data, int offset, int length,

int position)
void public void insertString (java.lang.String src, int position)
void public void setChars (char[] data, int offset, int length)
void public void setConstraints (int constraints)
void public void setMaxSize (int maxSize)
void public void setString (java.lang.String text)

Inherited Member Summary

Methods inherited from class Item
public java.lang.String getLabel (), public void setLabel (java.lang.String label)

Member Summary

244 Mobile Information Device Profile (JSR-37) May 5, 2000

The user is allowed to enter only an integer value.

Constant 2 is assigned to NUMERIC.

PASSWORD

public static int PASSWORD

The text entered must be masked so that the characters typed are not visible. The actual contents of the text
field are not affected, but each character is displayed using a mask character such as "*". The character
chosen as the mask character is implementation-dependent. This is useful for entering confidential informa-
tion such as passwords or PINs (personal identification numbers).

The PASSWORD modifier can be combined with any of the input constraints by using the logical OR oper-
ator (|).

Constant 0x10000 is assigned to PASSWORD.

PHONENUMBER

public static final int PHONENUMBER

The user is allowed to enter a phone number. The phone number is a special case, since a phone-based
implementation may be linked to the native phone dialing application. The implementation may automati-
cally start a phone dialer application that is initialized so that pressing the "green" key would be enough to
make a call. The call must not made automatically without requiring user's confirmation.

Constant 3 is assigned to PHONENUMBER.

URL

public static final int URL

The user is allowed to enter a URL.

Constant 4 is assigned to URL.

Constructors

TextField(String, String, int, int)

public TextField (java.lang.String label, java.lang.String text, int maxSize,
int constraints)

Creates a new TextField object with the given label, initial contents, maximum size in characters, and con-
straints. If the text parameter is null, the TextField is created empty. The maxSize parameter must be
greater than zero.

Parameters:
label - item label

text - the initial contents, or null if the TextField is to be empty

maxSize - the maximum capacity in characters

May 5, 2000 Mobile Information Device Profile (JSR-37) 245

constraints - see input constraints

Throws: IllegalArgumentException - if maxSize is zero or less

IllegalArgumentException - if the value of the constraints parameter is invalid

IllegalArgumentException - if the length of the string exceeds the requested maximum
capacity

OutOfMemoryError - if the implementation cannot accommodate the requested maximum size

Methods

deleteChars(int, int)

public void deleteChars (int offset, int length)

Deletes characters from the TextField.

Parameters:
offset - the beginning of the region to be deleted

length - the number of characters to be deleted

Throws: ArrayIndexOutOfBoundsException - if offset and length do not specify a valid range
within the content of TextField

IllegalArgumentException - if the resulting content is illegal for the current input constraints

getChars(char[])

public int getChars (char[] data)

Copies the contents of the TextField into a character array starting at index zero. Array elements beyond the
characters copied are left unchanged.

Parameters:
data - the character array to receive the value

Returns: the number of characters copied

Throws: ArrayIndexOutOfBoundsException - if the array is too short for the contents

getConstraints()

public int getConstraints ()

Get the current input constraints of the TextField.

Returns: the current constraints value (see input constraints)

getMaxSize()

public int getMaxSize ()

Returns the maximum size (number of characters) that can be stored in this TextField.

246 Mobile Information Device Profile (JSR-37) May 5, 2000

Returns: the maximum size in characters

getSize()

public int getSize ()

Gets the number of characters that are currently stored in this TextField.

Returns: number of characters in the TextField

getString()

public java.lang.String getString ()

Gets the contents of the TextField as a string value.

Returns: the current contents

insertChars(char[], int, int, int)

public void insertChars (char[] data, int offset, int length, int position)

Inserts a subrange of an array of characters just prior to the given position. The offset and length parameters
indicate the subrange of the data array to be used for insertion. Behavior is otherwise identical to public
void insertString (java.lang.String src, int position) .

Parameters:
data - the source of the character data

offset - the beginning of the region of characters to copy

length - the number of characters to copy

position - the position at which insertion is to occur

Throws: ArrayIndexOutOfBoundsException - if position is invalid

ArrayIndexOutOfBoundsException - if offset and length do not specify a valid range within
the data array

IllegalArgumentException - if the resulting content is illegal for the current input constraints

IllegalArgumentException - if the insertion would exceed the current maximum capacity

insertString(String, int)

public void insertString (java.lang.String src, int position)

Inserts a string into the contents just prior to the given position. The given position must be between zero
and the current maximum size. If the position is beyond the end of the current contents, the effect is as if
string were appended to the contents with no intervening characters. Thus, text.insertString(str, text.get-
MaxSize()) always appends the string str. The current size of the contents is increased by the number of
inserted characters. The resulting string must fit within the current maximum capacity.

Parameters:
src - the String to be inserted

position - the position at which insertion is to occur

May 5, 2000 Mobile Information Device Profile (JSR-37) 247

Throws: ArrayIndexOutOfBoundsException - if position is invalid

IllegalArgumentException - if the resulting content is illegal for the current input constraints

IllegalArgumentException - if the insertion would exceed the current maximum capacity

setChars(char[], int, int)

public void setChars (char[] data, int offset, int length)

Sets the contents of the TextField from a character array, replacing the previous contents. Characters are
copied from the region of the data array starting at array index offset and running for length charac-
ters. If the data array is null, the TextField is set to be empty and the other parameters are ignored.

Parameters:
data - the source of the character data

offset - the beginning of the region of characters to copy

length - the number of characters to copy

Throws: ArrayIndexOutOfBoundsException - if offset and length do not specify a valid range
within the data array

IllegalArgumentException - if the text is illegal for the current input constraints

IllegalArgumentException - if the text would exceed the current maximum capacity

setConstraints(int)

public void setConstraints (int constraints)

Sets the input constraints of the TextField. If the the current contents of the TextField do not match the new
constraints, the contents are set to empty.

Parameters:
constraints - see input constraints

Throws: IllegalArgumentException - if constraints is not any of the ones specified in input
constraints

setMaxSize(int)

public void setMaxSize (int maxSize)

Sets the maximum size (number of characters) that can be contained in this TextField. If the current con-
tents of the TextField are larger than maxSize, the contents are truncated to fit.

Parameters:
maxSize - the new maximum size

Throws: IllegalArgumentException - if maxSize is zero or less

OutOfMemoryError - if the implementation cannot accommodate the requested maximum size

setString(String)

public void setString (java.lang.String text)

248 Mobile Information Device Profile (JSR-37) May 5, 2000

Sets the contents of the TextField as a string value, replacing the previous contents.

Parameters:
text - the new value of the TextField

Throws: IllegalArgumentException - if the text is illegal for the current input constraints

IllegalArgumentException - if the text would exceed the current maximum capacity

May 5, 2000 Mobile Information Device Profile (JSR-37) 249

javax.microedition.lcdui

Ticker
Syntax
public class Ticker

javax.microedition.lcdui.Ticker

Description
Implements a "ticker-tape," a piece of text that runs continuously across the display. The direction and speed of
scrolling are determined by the implementation. While animating, the ticker string scrolls continuously. That is,
when the string finishes scrolling off the display, the ticker starts over at the beginning of the string.

There is no API provided for starting and stopping the ticker. The application model is that the ticker is always
scrolling continuously. However, the implementation is allowed to pause the scrolling for power consumption
purposes, for example, if the user doesn't interact with the device for a certain period of time. The implementa-
tion should resume scrolling the ticker when the user interacts with the device again.

The same ticker may be shared by several Screen objects. This can be accomplished by calling public void
setTicker (Ticker ticker) on all such screens. Typical usage is for an application to place the same
ticker on all of its screens. When the application switches between two screens that have the same ticker, a
desirable effect is for the ticker to be displayed at the same location on the display and to continue scrolling its
contents at the same position. This gives the illusion of the ticker being attached to the display instead of to each
screen.

An alternative usage model is for the application to use different tickers on different sets of screens or even a
different one on each screen. The ticker is an attribute of the Screen class so that applications may implement
this model without having to update the ticker to be displayed as the user switches among screens.

Constructors

Ticker(String)

public Ticker (java.lang.String str)

Constructs a new Ticker object, given its initial contents string.

Parameters:

Member Summary

Constructors
public Ticker (java.lang.String str)

Methods
String public java.lang.String getString ()

void public void setString (java.lang.String str)

250 Mobile Information Device Profile (JSR-37) May 5, 2000

str - string to be set for the Ticker

Throws: NullPointerException - if str is null

Methods

getString()

public java.lang.String getString ()

Gets the string currently being scrolled by the ticker.

Returns: string of the ticker

setString(String)

public void setString (java.lang.String str)

Sets the string to be displayed by this ticker. If this ticker is active and is on the display, it immediately
begins showing the new string.

Parameters:
str - string to be set for the Ticker

Throws: NullPointerException - if str is null

251

Index

A
addCommand(Command) - javax.microedition.lc-

dui.Alert.addCommand(javax.microedition.lcdui.C
ommand) 141

addCommand(Command) - javax.microedition.lc-
dui.Displayable.addCommand(javax.microedition.l
cdui.Command) 185

addRecord(byte[], int, int) - javax.microedi-
tion.rms.RecordStore.addRecord(byte[], int, int) 99

addRecordListener(RecordListener) - javax.microedi-
tion.rms.RecordStore.addRecordListener(javax.mic
roedition.rms.RecordListener) 100

Alert - javax.microedition.lcdui.Alert 139
Alert(String) - javax.microedition.lcdui.Alert.Alert(ja-

va.lang.String) 140
ANY - javax.microedition.lcdui.TextField.ANY 243
appendElement(String, Image) - javax.microedition.lc-

dui.Choice.appendElement(java.lang.String, jav-
ax.microedition.lcdui.Image) 160

appendElement(String, Image) - javax.microedition.lc-
dui.ChoiceGroup.appendElement(java.lang.String,
javax.microedition.lcdui.Image) 166

appendElement(String, Image) - javax.microedition.lc-
dui.List.appendElement(java.lang.String, javax.mi-
croedition.lcdui.Image) 229

appendImage(Image) - javax.microedition.lc-
dui.Alert.appendImage(javax.microedition.lcdui.Im
age) 141

appendImage(Image) - javax.microedition.lc-
dui.Form.appendImage(javax.microedition.lcdui.I
mage) 195

appendItem(ImageItem) - javax.microedition.lc-
dui.Alert.appendItem(javax.microedition.lcdui.Ima
geItem) 141

appendItem(Item) - javax.microedition.lcdui.Form.ap-
pendItem(javax.microedition.lcdui.Item) 195

appendItem(StringItem) - javax.microedition.lc-
dui.Alert.appendItem(javax.microedition.lcdui.Stri
ngItem) 142

appendString(String) - javax.microedition.lc-
dui.Alert.appendString(java.lang.String) 142

appendString(String) - javax.microedition.lc-
dui.Form.appendString(java.lang.String) 195

B
BACK - javax.microedition.lcdui.Command.BACK

171
BASELINE - javax.microedition.lcdui.Graphics.BASE-

LINE 205
BOTTOM - javax.microedition.lcdui.Graphics.BOT-

TOM 205

C
call() - javax.microedition.lcdui.Callable.call() 145
Callable - javax.microedition.lcdui.Callable 145
callSerially(Callable) - javax.microedition.lcdui.Dis-

play.callSerially(javax.microedition.lcdui.Callable)
182

CANCEL - javax.microedition.lcdui.Command.CAN-
CEL 171

cancel() - java.util.Timer.cancel() 76
cancel() - java.util.TimerTask.cancel() 82
Canvas - javax.microedition.lcdui.Canvas 146
Canvas() - javax.microedition.lcdui.Canvas.Canvas()

152
charWidth(char) - javax.microedition.lcdui.Font.char-

Width(char) 189
charWidth(char[], int, int) - javax.microedition.lc-

dui.Font.charWidth(char[], int, int) 190
Choice - javax.microedition.lcdui.Choice 158
ChoiceGroup - javax.microedition.lcdui.ChoiceGroup

164
ChoiceGroup(String, int) - javax.microedition.lc-

dui.ChoiceGroup.ChoiceGroup(java.lang.String,
int) 165

ChoiceGroup(String, int, String[], Image[]) - javax.mi-
croedition.lcdui.ChoiceGroup.ChoiceGroup(ja-
va.lang.String, int, java.lang.String[],
javax.microedition.lcdui.Image[]) 165

clipRect(int, int, int, int) - javax.microedition.lc-
dui.Graphics.clipRect(int, int, int, int) 206

closeRecordStore() - javax.microedition.rms.Record-
Store.closeRecordStore() 100

Command - javax.microedition.lcdui.Command 170
Command(String, int, int) - javax.microedition.lc-

dui.Command.Command(java.lang.String, int, int)
173

commandAction(Command, Displayable) - javax.micro-
edition.lcdui.CommandListener.commandAc-
tion(javax.microedition.lcdui.Command,
javax.microedition.lcdui.Displayable) 175

CommandListener - javax.microedition.lcdui.Com-
mandListener 175

compare(byte[], byte[]) - javax.microedition.rms.Re-
cordComparator.compare(byte[], byte[]) 90

CONSTRAINT_MASK - javax.microedition.lcdui.Tex-
tField.CONSTRAINT_MASK 243

createImage(byte[], int, int) - javax.microedition.lc-
dui.Image.createImage(byte[], int, int) 217

createImage(Image) - javax.microedition.lcdui.Im-
age.createImage(javax.microedition.lcdui.Image)

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

252 Mobile Information Device Profile (JSR-37) May 5, 2000

217
createImage(int, int) - javax.microedition.lcdui.Im-

age.createImage(int, int) 217
createImage(String) - javax.microedition.lcdui.Im-

age.createImage(java.lang.String) 218

D
DATE - javax.microedition.lcdui.DateField.DATE 177
DATE_TIME - javax.microedition.lcdui.Date-

Field.DATE_TIME 177
DateField - javax.microedition.lcdui.DateField 176
DateField(int) - javax.microedition.lcdui.Date-

Field.DateField(int) 177
DateField(int, TimeZone) - javax.microedition.lc-

dui.DateField.DateField(int, java.util.TimeZone)
178

deleteChars(int, int) - javax.microedition.lcdui.Text-
Box.deleteChars(int, int) 238

deleteChars(int, int) - javax.microedition.lcdui.Text-
Field.deleteChars(int, int) 245

deleteElement(int) - javax.microedition.lc-
dui.Choice.deleteElement(int) 160

deleteElement(int) - javax.microedition.lcdui.Choice-
Group.deleteElement(int) 166

deleteElement(int) - javax.microedition.lcdui.List.dele-
teElement(int) 229

deleteItem(int) - javax.microedition.lc-
dui.Alert.deleteItem(int) 142

deleteItem(int) - javax.microedition.lc-
dui.Form.deleteItem(int) 196

deleteRecord(int) - javax.microedition.rms.Record-
Store.deleteRecord(int) 100

deleteRecordStore(String) - javax.microedi-
tion.rms.RecordStore.deleteRecordStore(java.lang.
String) 100

destroy() - javax.microedition.rms.RecordEnumera-
tion.destroy() 92

destroyApp(boolean) - javax.microedi-
tion.midlet.MIDlet.destroyApp(boolean) 116

Display - javax.microedition.lcdui.Display 180
Displayable - javax.microedition.lcdui.Displayable 185
DOWN - javax.microedition.lcdui.Canvas.DOWN 149
drawArc(int, int, int, int, int, int) - javax.microedition.lc-

dui.Graphics.drawArc(int, int, int, int, int, int) 206
drawChar(char, int, int, int) - javax.microedition.lc-

dui.Graphics.drawChar(char, int, int, int) 207
drawChars(char[], int, int, int, int, int) - javax.microedi-

tion.lcdui.Graphics.drawChars(char[], int, int, int,
int, int) 207

drawImage(Image, int, int, int) - javax.microedition.lc-
dui.Graphics.drawImage(javax.microedition.lc-
dui.Image, int, int, int) 207

drawLine(int, int, int, int) - javax.microedition.lc-

dui.Graphics.drawLine(int, int, int, int) 208
drawRect(int, int, int, int) - javax.microedition.lc-

dui.Graphics.drawRect(int, int, int, int) 208
drawRoundRect(int, int, int, int, int, int) - javax.micro-

edition.lcdui.Graphics.drawRoundRect(int, int, int,
int, int, int) 208

drawString(String, int, int, int) - javax.microedition.lc-
dui.Graphics.drawString(java.lang.String, int, int,
int) 209

drawSubstring(String, int, int, int, int, int) - javax.micro-
edition.lcdui.Graphics.drawSubstring(ja-
va.lang.String, int, int, int, int, int) 209

E
EMAILADDR - javax.microedition.lcdui.Text-

Field.EMAILADDR 243
enumerateRecords(RecordFilter, RecordComparator,

boolean) - javax.microedition.rms.Record-
Store.enumerateRecords(javax.microedi-
tion.rms.RecordFilter,
javax.microedition.rms.RecordComparator, bool-
ean) 101

EQUIVALENT - javax.microedition.rms.RecordCom-
parator.EQUIVALENT 89

EXCLUSIVE - javax.microedition.lcdui.Choice.EX-
CLUSIVE 159

F
FACE_MONOSPACE - javax.microedition.lc-

dui.Font.FACE_MONOSPACE 188
FACE_PROPORTIONAL - javax.microedition.lc-

dui.Font.FACE_PROPORTIONAL 188
FACE_SYSTEM - javax.microedition.lc-

dui.Font.FACE_SYSTEM 188
fillArc(int, int, int, int, int, int) - javax.microedition.lc-

dui.Graphics.fillArc(int, int, int, int, int, int) 209
fillRect(int, int, int, int) - javax.microedition.lc-

dui.Graphics.fillRect(int, int, int, int) 210
fillRoundRect(int, int, int, int, int, int) - javax.microedi-

tion.lcdui.Graphics.fillRoundRect(int, int, int, int,
int, int) 210

FIRE - javax.microedition.lcdui.Canvas.FIRE 149
FOLLOWS - javax.microedition.rms.RecordCompara-

tor.FOLLOWS 89
Font - javax.microedition.lcdui.Font 187
FOREVER - javax.microedition.lcdui.Alert.FOREVER

140
Form - javax.microedition.lcdui.Form 193
Form(String) - javax.microedition.lcdui.Form.Form(ja-

va.lang.String) 194
Form(String, Item[]) - javax.microedition.lc-

dui.Form.Form(java.lang.String, javax.microedi-

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

May 5, 2000 Index 253

tion.lcdui.Item[]) 194

G
GAME_A - javax.microedition.lcdui.Canvas.GAME_A

149
GAME_B - javax.microedition.lcdui.Canvas.GAME_B

150
GAME_C - javax.microedition.lcdui.Canvas.GAME_C

150
GAME_D - javax.microedition.lcdui.Canvas.GAME_D

150
Gauge - javax.microedition.lcdui.Gauge 198
Gauge(String, boolean, int, int) - javax.microedition.lc-

dui.Gauge.Gauge(java.lang.String, boolean, int, int)
199

GET - javax.microedition.io.HttpConnection.GET 126
getAltText() - javax.microedition.lcdui.Image-

Item.getAltText() 221
getAppProperty(String) - javax.microedi-

tion.midlet.MIDlet.getAppProperty(java.lang.Strin
g) 116

getBaselinePosition() - javax.microedition.lc-
dui.Font.getBaselinePosition() 190

getBlueComponent() - javax.microedition.lcdui.Graph-
ics.getBlueComponent() 211

getChars(char[]) - javax.microedition.lcdui.Text-
Box.getChars(char[]) 239

getChars(char[]) - javax.microedition.lcdui.Text-
Field.getChars(char[]) 245

getClipHeight() - javax.microedition.lcdui.Graphics.get-
ClipHeight() 211

getClipWidth() - javax.microedition.lcdui.Graphics.get-
ClipWidth() 211

getClipX() - javax.microedition.lcdui.Graphics.get-
ClipX() 211

getClipY() - javax.microedition.lcdui.Graphics.get-
ClipY() 212

getColor() - javax.microedition.lcdui.Graphics.getCol-
or() 212

getCommandType() - javax.microedition.lcdui.Com-
mand.getCommandType() 173

getConstraints() - javax.microedition.lcdui.TextBox.get-
Constraints() 239

getConstraints() - javax.microedition.lcdui.Text-
Field.getConstraints() 245

getCurrent() - javax.microedition.lcdui.Display.getCur-
rent() 182

getDate() - javax.microedition.io.HttpConnection.get-
Date() 132

getDate() - javax.microedition.lcdui.DateField.getDate()
178

getDefaultFont() - javax.microedition.lcdui.Font.getDe-
faultFont() 190

getDefaultTimeout() - javax.microedition.lc-
dui.Alert.getDefaultTimeout() 142

getDisplay(MIDlet) - javax.microedition.lcdui.Dis-
play.getDisplay(javax.microedition.midlet.MIDlet)
183

getExpiration() - javax.microedition.io.HttpConnec-
tion.getExpiration() 132

getFace() - javax.microedition.lcdui.Font.getFace() 190
getFile() - javax.microedition.io.HttpConnection.get-

File() 132
getFont() - javax.microedition.lcdui.Graphics.getFont()

212
getFont(int, int, int) - javax.microedition.lcdui.Font.get-

Font(int, int, int) 191
getGameAction(int) - javax.microedition.lcdui.Can-

vas.getGameAction(int) 152
getGraphics() - javax.microedition.lcdui.Image.get-

Graphics() 218
getGrayScale() - javax.microedition.lcdui.Graphics.get-

GrayScale() 212
getGreenComponent() - javax.microedition.lc-

dui.Graphics.getGreenComponent() 212
getHeaderField(int) - javax.microedition.io.HttpCon-

nection.getHeaderField(int) 132
getHeaderField(String) - javax.microedition.io.Http-

Connection.getHeaderField(java.lang.String) 133
getHeaderFieldDate(String, long) - javax.microedi-

tion.io.HttpConnection.getHeaderFieldDate(ja-
va.lang.String, long) 133

getHeaderFieldInt(String, int) - javax.microedi-
tion.io.HttpConnection.getHeaderFieldInt(ja-
va.lang.String, int) 133

getHeaderFieldKey(int) - javax.microedition.io.Http-
Connection.getHeaderFieldKey(int) 133

getHeight() - javax.microedition.lcdui.Canvas.getH-
eight() 153

getHeight() - javax.microedition.lcdui.Font.getHeight()
191

getHeight() - javax.microedition.lcdui.Image.getH-
eight() 218

getHost() - javax.microedition.io.HttpConnection.getH-
ost() 134

getImage() - javax.microedition.lcdui.ImageItem.getIm-
age() 221

getImage(int) - javax.microedition.lcdui.Choice.getIm-
age(int) 160

getImage(int) - javax.microedition.lcdui.Choice-
Group.getImage(int) 167

getImage(int) - javax.microedition.lcdui.List.getIm-
age(int) 229

getInputMode() - javax.microedition.lcdui.Date-
Field.getInputMode() 178

getItemAt(int) - javax.microedition.lcdui.Alert.getItem-
At(int) 143

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

254 Mobile Information Device Profile (JSR-37) May 5, 2000

getItemAt(int) - javax.microedition.lcdui.Form.getItem-
At(int) 196

getKeyCode(int) - javax.microedition.lcdui.Canvas.get-
KeyCode(int) 153

getKeyName(int) - javax.microedition.lcdui.Canvas.get-
KeyName(int) 153

getLabel() - javax.microedition.lcdui.Command.getLa-
bel() 173

getLabel() - javax.microedition.lcdui.Item.getLabel()
223

getLastModified() - javax.microedition.io.HttpConnec-
tion.getLastModified() 134

getLastModified() - javax.microedition.rms.Record-
Store.getLastModified() 101

getLayout() - javax.microedition.lcdui.ImageItem.get-
Layout() 221

getMaxSize() - javax.microedition.lcdui.TextBox.get-
MaxSize() 239

getMaxSize() - javax.microedition.lcdui.TextField.get-
MaxSize() 245

getMaxValue() - javax.microedition.lcdui.Gauge.get-
MaxValue() 199

getName() - javax.microedition.rms.RecordStore.get-
Name() 101

getNextRecordID() - javax.microedition.rms.Record-
Store.getNextRecordID() 101

getNumRecords() - javax.microedition.rms.Record-
Store.getNumRecords() 102

getPort() - javax.microedition.io.HttpConnection.get-
Port() 134

getPriority() - javax.microedition.lcdui.Command.getP-
riority() 174

getProtocol() - javax.microedition.io.HttpConnec-
tion.getProtocol() 134

getQuery() - javax.microedition.io.HttpConnec-
tion.getQuery() 134

getRecord(int) - javax.microedition.rms.Record-
Store.getRecord(int) 102

getRecord(int, byte[], int) - javax.microedi-
tion.rms.RecordStore.getRecord(int, byte[], int)
102

getRecordSize(int) - javax.microedition.rms.Record-
Store.getRecordSize(int) 102

getRedComponent() - javax.microedition.lcdui.Graph-
ics.getRedComponent() 212

getRef() - javax.microedition.io.HttpConnection.ge-
tRef() 134

getRequestMethod() - javax.microedition.io.HttpCon-
nection.getRequestMethod() 135

getRequestProperty(String) - javax.microedition.io.Ht-
tpConnection.getRequestProperty(java.lang.String)
135

getResponseCode() - javax.microedition.io.HttpConnec-
tion.getResponseCode() 135

getResponseMessage() - javax.microedition.io.HttpCon-
nection.getResponseMessage() 135

getSelectedFlags(boolean[]) - javax.microedition.lc-
dui.Choice.getSelectedFlags(boolean[]) 160

getSelectedFlags(boolean[]) - javax.microedition.lc-
dui.ChoiceGroup.getSelectedFlags(boolean[]) 167

getSelectedFlags(boolean[]) - javax.microedition.lc-
dui.List.getSelectedFlags(boolean[]) 229

getSelectedIndex() - javax.microedition.lc-
dui.Choice.getSelectedIndex() 161

getSelectedIndex() - javax.microedition.lcdui.Choice-
Group.getSelectedIndex() 167

getSelectedIndex() - javax.microedition.lcdui.List.get-
SelectedIndex() 230

getSize() - javax.microedition.lcdui.Alert.getSize() 143
getSize() - javax.microedition.lcdui.Choice.getSize()

161
getSize() - javax.microedition.lcdui.ChoiceGroup.get-

Size() 167
getSize() - javax.microedition.lcdui.Font.getSize() 191
getSize() - javax.microedition.lcdui.Form.getSize() 196
getSize() - javax.microedition.lcdui.List.getSize() 230
getSize() - javax.microedition.lcdui.TextBox.getSize()

239
getSize() - javax.microedition.lcdui.TextField.getSize()

246
getSize() - javax.microedition.rms.RecordStore.get-

Size() 103
getSizeAvailable() - javax.microedition.rms.Record-

Store.getSizeAvailable() 103
getString() - javax.microedition.lcdui.TextBox.get-

String() 239
getString() - javax.microedition.lcdui.TextField.get-

String() 246
getString() - javax.microedition.lcdui.Ticker.getString()

250
getString(int) - javax.microedition.lcdui.Choice.get-

String(int) 161
getString(int) - javax.microedition.lcdui.Choice-

Group.getString(int) 167
getString(int) - javax.microedition.lcdui.List.get-

String(int) 230
getStyle() - javax.microedition.lcdui.Font.getStyle()

191
getText() - javax.microedition.lcdui.StringItem.get-

Text() 236
getTicker() - javax.microedition.lcdui.Screen.getTick-

er() 233
getTimeout() - javax.microedition.lcdui.Alert.getTime-

out() 143
getTitle() - javax.microedition.lcdui.Screen.getTitle()

234
getTranslateX() - javax.microedition.lcdui.Graph-

ics.getTranslateX() 213

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

May 5, 2000 Index 255

getTranslateY() - javax.microedition.lcdui.Graph-
ics.getTranslateY() 213

getURL() - javax.microedition.io.HttpConnec-
tion.getURL() 136

getValue() - javax.microedition.lcdui.Gauge.getValue()
199

getVersion() - javax.microedition.rms.RecordStore.get-
Version() 103

getWidth() - javax.microedition.lcdui.Canvas.get-
Width() 154

getWidth() - javax.microedition.lcdui.Image.getWidth()
218

Graphics - javax.microedition.lcdui.Graphics 201

H
hasNextElement() - javax.microedition.rms.RecordEnu-

meration.hasNextElement() 92
hasPointerEvents() - javax.microedition.lcdui.Can-

vas.hasPointerEvents() 154
hasPointerMotionEvents() - javax.microedition.lc-

dui.Canvas.hasPointerMotionEvents() 154
hasPreviousElement() - javax.microedition.rms.Record-

Enumeration.hasPreviousElement() 92
hasRepeatEvents() - javax.microedition.lcdui.Can-

vas.hasRepeatEvents() 154
HCENTER - javax.microedition.lcdui.Graph-

ics.HCENTER 205
HEAD - javax.microedition.io.HttpConnection.HEAD

127
HELP - javax.microedition.lcdui.Command.HELP 172
hideNotify() - javax.microedition.lcdui.Canvas.hideNo-

tify() 154
HTTP_ACCEPTED - javax.microedition.io.HttpCon-

nection.HTTP_ACCEPTED 127
HTTP_BAD_GATEWAY - javax.microedition.io.Http-

Connection.HTTP_BAD_GATEWAY 127
HTTP_BAD_METHOD - javax.microedition.io.Http-

Connection.HTTP_BAD_METHOD 127
HTTP_BAD_REQUEST - javax.microedition.io.Http-

Connection.HTTP_BAD_REQUEST 127
HTTP_CLIENT_TIMEOUT - javax.microedition.io.Ht-

tpConnection.HTTP_CLIENT_TIMEOUT 127
HTTP_CONFLICT - javax.microedition.io.HttpCon-

nection.HTTP_CONFLICT 127
HTTP_CREATED - javax.microedition.io.HttpConnec-

tion.HTTP_CREATED 127
HTTP_ENTITY_TOO_LARGE - javax.microedi-

tion.io.HttpConnection.HTTP_ENTITY_TOO_LA
RGE 128

HTTP_EXPECT_FAILED - javax.microedition.io.Http-
Connection.HTTP_EXPECT_FAILED 128

HTTP_FORBIDDEN - javax.microedition.io.HttpCon-
nection.HTTP_FORBIDDEN 128

HTTP_GATEWAY_TIMEOUT - javax.microedi-
tion.io.HttpConnection.HTTP_GATEWAY_TIME
OUT 128

HTTP_GONE - javax.microedition.io.HttpConnec-
tion.HTTP_GONE 128

HTTP_INTERNAL_ERROR - javax.microedi-
tion.io.HttpConnection.HTTP_INTERNAL_ERRO
R 128

HTTP_LENGTH_REQUIRED - javax.microedi-
tion.io.HttpConnection.HTTP_LENGTH_REQUIR
ED 128

HTTP_MOVED_PERM - javax.microedition.io.Http-
Connection.HTTP_MOVED_PERM 128

HTTP_MOVED_TEMP - javax.microedition.io.Http-
Connection.HTTP_MOVED_TEMP 129

HTTP_MULT_CHOICE - javax.microedition.io.Http-
Connection.HTTP_MULT_CHOICE 129

HTTP_NO_CONTENT - javax.microedition.io.Http-
Connection.HTTP_NO_CONTENT 129

HTTP_NOT_ACCEPTABLE - javax.microedi-
tion.io.HttpConnection.HTTP_NOT_ACCEPTAB
LE 129

HTTP_NOT_AUTHORITATIVE - javax.microedi-
tion.io.HttpConnection.HTTP_NOT_AUTHORIT
ATIVE 129

HTTP_NOT_FOUND - javax.microedition.io.HttpCon-
nection.HTTP_NOT_FOUND 129

HTTP_NOT_IMPLEMENTED - javax.microedi-
tion.io.HttpConnection.HTTP_NOT_IMPLEMEN
TED 129

HTTP_NOT_MODIFIED - javax.microedition.io.Http-
Connection.HTTP_NOT_MODIFIED 129

HTTP_OK - javax.microedition.io.HttpConnec-
tion.HTTP_OK 130

HTTP_PARTIAL - javax.microedition.io.HttpConnec-
tion.HTTP_PARTIAL 130

HTTP_PAYMENT_REQUIRED - javax.microedi-
tion.io.HttpConnection.HTTP_PAYMENT_REQU
IRED 130

HTTP_PRECON_FAILED - javax.microedition.io.Ht-
tpConnection.HTTP_PRECON_FAILED 130

HTTP_PROXY_AUTH - javax.microedition.io.Http-
Connection.HTTP_PROXY_AUTH 130

HTTP_REQ_TOO_LONG - javax.microedition.io.Http-
Connection.HTTP_REQ_TOO_LONG 130

HTTP_RESET - javax.microedition.io.HttpConnec-
tion.HTTP_RESET 130

HTTP_SEE_OTHER - javax.microedition.io.HttpCon-
nection.HTTP_SEE_OTHER 130

HTTP_TEMP_REDIRECT - javax.microedition.io.Ht-
tpConnection.HTTP_TEMP_REDIRECT 131

HTTP_UNAUTHORIZED - javax.microedition.io.Http-
Connection.HTTP_UNAUTHORIZED 131

HTTP_UNAVAILABLE - javax.microedition.io.Http-

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

256 Mobile Information Device Profile (JSR-37) May 5, 2000

Connection.HTTP_UNAVAILABLE 131
HTTP_UNSUPPORTED_RANGE - javax.microedi-

tion.io.HttpConnection.HTTP_UNSUPPORTED_
RANGE 131

HTTP_UNSUPPORTED_TYPE - javax.microedi-
tion.io.HttpConnection.HTTP_UNSUPPORTED_
TYPE 131

HTTP_USE_PROXY - javax.microedition.io.HttpCon-
nection.HTTP_USE_PROXY 131

HTTP_VERSION - javax.microedition.io.HttpConnec-
tion.HTTP_VERSION 131

HttpConnection - javax.microedition.io.HttpConnection
121

I
IllegalStateException - java.lang.IllegalStateException

72
IllegalStateException() - java.lang.IllegalStateExcep-

tion.IllegalStateException() 72
IllegalStateException(String) - java.lang.IllegalStateEx-

ception.IllegalStateException(java.lang.String) 72
Image - javax.microedition.lcdui.Image 216
ImageItem - javax.microedition.lcdui.ImageItem 219
ImageItem(String, Image, int, String) - javax.microedi-

tion.lcdui.ImageItem.ImageItem(java.lang.String,
javax.microedition.lcdui.Image, int, ja-
va.lang.String) 221

IMPLICIT - javax.microedition.lcdui.Choice.IMPLICIT
159

insertChars(char[], int, int, int) - javax.microedition.lc-
dui.TextBox.insertChars(char[], int, int, int) 240

insertChars(char[], int, int, int) - javax.microedition.lc-
dui.TextField.insertChars(char[], int, int, int) 246

insertElement(int, String, Image) - javax.microedi-
tion.lcdui.Choice.insertElement(int, ja-
va.lang.String, javax.microedition.lcdui.Image) 161

insertElement(int, String, Image) - javax.microedi-
tion.lcdui.ChoiceGroup.insertElement(int, ja-
va.lang.String, javax.microedition.lcdui.Image) 168

insertElement(int, String, Image) - javax.microedi-
tion.lcdui.List.insertElement(int, java.lang.String,
javax.microedition.lcdui.Image) 230

insertItem(int, ImageItem) - javax.microedition.lc-
dui.Alert.insertItem(int, javax.microedition.lc-
dui.ImageItem) 143

insertItem(int, Item) - javax.microedition.lcdui.Form.in-
sertItem(int, javax.microedition.lcdui.Item) 196

insertItem(int, StringItem) - javax.microedition.lc-
dui.Alert.insertItem(int, javax.microedition.lc-
dui.StringItem) 143

insertString(String, int) - javax.microedition.lcdui.Text-
Box.insertString(java.lang.String, int) 240

insertString(String, int) - javax.microedition.lcdui.Text-

Field.insertString(java.lang.String, int) 246
InvalidRecordIDException - javax.microedition.rms.In-

validRecordIDException 88
InvalidRecordIDException() - javax.microedi-

tion.rms.InvalidRecordIDException.InvalidRecordI
DException() 88

InvalidRecordIDException(String) - javax.microedi-
tion.rms.InvalidRecordIDException.InvalidRecordI
DException(java.lang.String) 88

isBold() - javax.microedition.lcdui.Font.isBold() 191
isColor() - javax.microedition.lcdui.Display.isColor()

183
isItalic() - javax.microedition.lcdui.Font.isItalic() 192
isKeptUpdated() - javax.microedition.rms.RecordEnu-

meration.isKeptUpdated() 92
isMutable() - javax.microedition.lcdui.Image.isMut-

able() 218
isPlain() - javax.microedition.lcdui.Font.isPlain() 192
isSelected(int) - javax.microedition.lcdui.Choice.isSe-

lected(int) 162
isSelected(int) - javax.microedition.lcdui.Choice-

Group.isSelected(int) 168
isSelected(int) - javax.microedition.lcdui.List.isSelect-

ed(int) 231
isShown() - javax.microedition.lcdui.Displayable.isS-

hown() 185
Item - javax.microedition.lcdui.Item 223
itemStateChanged(Item) - javax.microedition.lc-

dui.ItemStateListener.itemStateChanged(javax.mic
roedition.lcdui.Item) 225

ItemStateListener - javax.microedition.lcdui.ItemState-
Listener 225

J
java.lang - java.lang 71
java.util - java.util 73
javax.microedition.io - javax.microedition.io 119
javax.microedition.lcdui - javax.microedition.lcdui 137
javax.microedition.midlet - javax.microedition.midlet

109
javax.microedition.rms - javax.microedition.rms 83

K
keepUpdated(boolean) - javax.microedition.rms.Re-

cordEnumeration.keepUpdated(boolean) 92
KEY_NUM0 - javax.microedition.lcdui.Can-

vas.KEY_NUM0 150
KEY_NUM1 - javax.microedition.lcdui.Can-

vas.KEY_NUM1 150
KEY_NUM2 - javax.microedition.lcdui.Can-

vas.KEY_NUM2 150
KEY_NUM3 - javax.microedition.lcdui.Can-

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

May 5, 2000 Index 257

vas.KEY_NUM3 150
KEY_NUM4 - javax.microedition.lcdui.Can-

vas.KEY_NUM4 151
KEY_NUM5 - javax.microedition.lcdui.Can-

vas.KEY_NUM5 151
KEY_NUM6 - javax.microedition.lcdui.Can-

vas.KEY_NUM6 151
KEY_NUM7 - javax.microedition.lcdui.Can-

vas.KEY_NUM7 151
KEY_NUM8 - javax.microedition.lcdui.Can-

vas.KEY_NUM8 151
KEY_NUM9 - javax.microedition.lcdui.Can-

vas.KEY_NUM9 151
KEY_POUND - javax.microedition.lcdui.Can-

vas.KEY_POUND 151
KEY_STAR - javax.microedition.lcdui.Can-

vas.KEY_STAR 152
keyPressed(int) - javax.microedition.lcdui.Canvas.key-

Pressed(int) 154
keyReleased(int) - javax.microedition.lcdui.Canvas.key-

Released(int) 155
keyRepeated(int) - javax.microedition.lcdui.Can-

vas.keyRepeated(int) 155

L
LAYOUT_CENTER - javax.microedition.lcdui.Image-

Item.LAYOUT_CENTER 220
LAYOUT_DEFAULT - javax.microedition.lcdui.Im-

ageItem.LAYOUT_DEFAULT 220
LAYOUT_LEFT - javax.microedition.lcdui.Image-

Item.LAYOUT_LEFT 220
LAYOUT_NEWLINE_AFTER - javax.microedition.lc-

dui.ImageItem.LAYOUT_NEWLINE_AFTER 220
LAYOUT_NEWLINE_BEFORE - javax.microedi-

tion.lcdui.ImageItem.LAYOUT_NEWLINE_BEF
ORE 220

LAYOUT_RIGHT - javax.microedition.lcdui.Image-
Item.LAYOUT_RIGHT 221

LEFT - javax.microedition.lcdui.Canvas.LEFT 152
LEFT - javax.microedition.lcdui.Graphics.LEFT 205
List - javax.microedition.lcdui.List 226
List(String, int) - javax.microedition.lcdui.List.List(ja-

va.lang.String, int) 228
List(String, int, String[], Image[]) - javax.microedi-

tion.lcdui.List.List(java.lang.String, int, ja-
va.lang.String[], javax.microedition.lcdui.Image[])
228

listRecordStores() - javax.microedition.rms.Record-
Store.listRecordStores() 103

M
matches(byte[]) - javax.microedition.rms.RecordFil-

ter.matches(byte[]) 95
MIDlet - javax.microedition.midlet.MIDlet 115
MIDlet() - javax.microedition.midlet.MIDlet.MIDlet()

115
MIDletStateChangeException - javax.microedi-

tion.midlet.MIDletStateChangeException 118
MIDletStateChangeException() - javax.microedi-

tion.midlet.MIDletStateChangeException.MIDletSt
ateChangeException() 118

MIDletStateChangeException(String) - javax.microedi-
tion.midlet.MIDletStateChangeException.MIDletSt
ateChangeException(java.lang.String) 118

MULTIPLE - javax.microedition.lcdui.Choice.MULTI-
PLE 159

N
nextRecord() - javax.microedition.rms.RecordEnumera-

tion.nextRecord() 92
nextRecordIndex() - javax.microedition.rms.RecordE-

numeration.nextRecordIndex() 93
notifyDestroyed() - javax.microedi-

tion.midlet.MIDlet.notifyDestroyed() 116
notifyPaused() - javax.microedition.midlet.MIDlet.noti-

fyPaused() 117
numColors() - javax.microedition.lcdui.Display.num-

Colors() 183
NUMERIC - javax.microedition.lcdui.TextField.NU-

MERIC 243
numRecords() - javax.microedition.rms.RecordEnumer-

ation.numRecords() 93

O
OK - javax.microedition.lcdui.Command.OK 172
openRecordStore(String, boolean) - javax.microedi-

tion.rms.RecordStore.openRecordStore(ja-
va.lang.String, boolean) 104

P
paint(Graphics) - javax.microedition.lcdui.Can-

vas.paint(javax.microedition.lcdui.Graphics) 155
PASSWORD - javax.microedition.lcdui.Text-

Field.PASSWORD 244
pauseApp() - javax.microedition.midlet.MIDlet.pauseA-

pp() 117
PHONENUMBER - javax.microedition.lcdui.Text-

Field.PHONENUMBER 244
pointerDragged(int, int) - javax.microedition.lcdui.Can-

vas.pointerDragged(int, int) 156
pointerPressed(int, int) - javax.microedition.lcdui.Can-

vas.pointerPressed(int, int) 156
pointerReleased(int, int) - javax.microedition.lcdui.Can-

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

258 Mobile Information Device Profile (JSR-37) May 5, 2000

vas.pointerReleased(int, int) 156
POST - javax.microedition.io.HttpConnection.POST

132
PRECEDES - javax.microedition.rms.RecordCompara-

tor.PRECEDES 90
previousRecord() - javax.microedition.rms.RecordEnu-

meration.previousRecord() 93
previousRecordIndex() - javax.microedition.rms.Re-

cordEnumeration.previousRecordIndex() 93

R
rebuild() - javax.microedition.rms.RecordEnumera-

tion.rebuild() 94
recordAdded(RecordStore, int) - javax.microedi-

tion.rms.RecordListener.recordAdded(javax.micro-
edition.rms.RecordStore, int) 96

recordChanged(RecordStore, int) - javax.microedi-
tion.rms.RecordListener.recordChanged(javax.mi-
croedition.rms.RecordStore, int) 96

RecordComparator - javax.microedition.rms.Record-
Comparator 89

recordDeleted(RecordStore, int) - javax.microedi-
tion.rms.RecordListener.recordDeleted(javax.mi-
croedition.rms.RecordStore, int) 96

RecordEnumeration - javax.microedition.rms.RecordE-
numeration 91

RecordFilter - javax.microedition.rms.RecordFilter 95
RecordListener - javax.microedition.rms.RecordListen-

er 96
RecordStore - javax.microedition.rms.RecordStore 98
RecordStoreException - javax.microedition.rms.Record-

StoreException 105
RecordStoreException() - javax.microedi-

tion.rms.RecordStoreException.RecordStoreExcept
ion() 105

RecordStoreException(String) - javax.microedi-
tion.rms.RecordStoreException.RecordStoreExcept
ion(java.lang.String) 105

RecordStoreFullException - javax.microedi-
tion.rms.RecordStoreFullException 106

RecordStoreFullException() - javax.microedi-
tion.rms.RecordStoreFullException.RecordStoreFu
llException() 106

RecordStoreFullException(String) - javax.microedi-
tion.rms.RecordStoreFullException.RecordStoreFu
llException(java.lang.String) 106

RecordStoreNotFoundException - javax.microedi-
tion.rms.RecordStoreNotFoundException 107

RecordStoreNotFoundException() - javax.microedi-
tion.rms.RecordStoreNotFoundException.RecordSt
oreNotFoundException() 107

RecordStoreNotFoundException(String) - javax.micro-
edition.rms.RecordStoreNotFoundException.Recor

dStoreNotFoundException(java.lang.String) 107
RecordStoreNotOpenException - javax.microedi-

tion.rms.RecordStoreNotOpenException 108
RecordStoreNotOpenException() - javax.microedi-

tion.rms.RecordStoreNotOpenException.RecordSt
oreNotOpenException() 108

RecordStoreNotOpenException(String) - javax.micro-
edition.rms.RecordStoreNotOpenException.Record
StoreNotOpenException(java.lang.String) 108

removeCommand(Command) - javax.microedition.lc-
dui.Displayable.removeCommand(javax.microediti
on.lcdui.Command) 186

removeRecordListener(RecordListener) - javax.micro-
edition.rms.RecordStore.removeRecordListener(ja
vax.microedition.rms.RecordListener) 104

repaint() - javax.microedition.lcdui.Canvas.repaint()
156

repaint(int, int, int, int) - javax.microedition.lcdui.Can-
vas.repaint(int, int, int, int) 156

reset() - javax.microedition.rms.RecordEnumeration.re-
set() 94

resumeRequest() - javax.microedition.midlet.MIDlet.re-
sumeRequest() 117

RIGHT - javax.microedition.lcdui.Canvas.RIGHT 152
RIGHT - javax.microedition.lcdui.Graphics.RIGHT

205
run() - java.util.TimerTask.run() 82

S
schedule(TimerTask, Date) - java.util.Timer.sched-

ule(java.util.TimerTask, java.util.Date) 76
schedule(TimerTask, Date, long) - java.util.Tim-

er.schedule(java.util.TimerTask, java.util.Date,
long) 77

schedule(TimerTask, long) - java.util.Timer.sched-
ule(java.util.TimerTask, long) 77

schedule(TimerTask, long, long) - java.util.Timer.sched-
ule(java.util.TimerTask, long, long) 77

scheduleAtFixedRate(TimerTask, Date, long) - ja-
va.util.Timer.scheduleAtFixedRate(java.util.Timer-
Task, java.util.Date, long) 78

scheduleAtFixedRate(TimerTask, long, long) - ja-
va.util.Timer.scheduleAtFixedRate(java.util.Timer-
Task, long, long) 79

scheduledExecutionTime() - java.util.TimerTask.sched-
uledExecutionTime() 82

SCREEN - javax.microedition.lcdui.Com-
mand.SCREEN 172

Screen - javax.microedition.lcdui.Screen 233
selectCommand - javax.microedition.lcdui.List.select-

Command 228
serviceRepaints() - javax.microedition.lcdui.Canvas.ser-

viceRepaints() 157

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

May 5, 2000 Index 259

setChars(char[], int, int) - javax.microedition.lcdui.Text-
Box.setChars(char[], int, int) 240

setChars(char[], int, int) - javax.microedition.lcdui.Text-
Field.setChars(char[], int, int) 247

setClip(int, int, int, int) - javax.microedition.lc-
dui.Graphics.setClip(int, int, int, int) 213

setColor(int) - javax.microedition.lcdui.Graphics.set-
Color(int) 213

setColor(int, int, int) - javax.microedition.lcdui.Graph-
ics.setColor(int, int, int) 213

setConstraints(int) - javax.microedition.lcdui.Text-
Box.setConstraints(int) 241

setConstraints(int) - javax.microedition.lcdui.Text-
Field.setConstraints(int) 247

setCurrent(Alert, Displayable) - javax.microedition.lc-
dui.Display.setCurrent(javax.microedition.lc-
dui.Alert, javax.microedition.lcdui.Displayable)
183

setCurrent(Displayable) - javax.microedition.lcdui.Dis-
play.setCurrent(javax.microedition.lcdui.Displayab
le) 184

setDate(Date) - javax.microedition.lcdui.DateField.set-
Date(java.util.Date) 178

setElement(int, String, Image) - javax.microedition.lc-
dui.Choice.setElement(int, java.lang.String, jav-
ax.microedition.lcdui.Image) 162

setElement(int, String, Image) - javax.microedition.lc-
dui.ChoiceGroup.setElement(int, java.lang.String,
javax.microedition.lcdui.Image) 168

setElement(int, String, Image) - javax.microedition.lc-
dui.List.setElement(int, java.lang.String, javax.mi-
croedition.lcdui.Image) 231

setFont(Font) - javax.microedition.lcdui.Graphics.set-
Font(javax.microedition.lcdui.Font) 214

setGrayScale(int) - javax.microedition.lcdui.Graph-
ics.setGrayScale(int) 214

setImage(Image) - javax.microedition.lcdui.Image-
Item.setImage(javax.microedition.lcdui.Image) 222

setInputMode(int) - javax.microedition.lcdui.Date-
Field.setInputMode(int) 179

setItem(int, Item) - javax.microedition.lcdui.Alert.set-
Item(int, javax.microedition.lcdui.Item) 144

setItem(int, Item) - javax.microedition.lcdui.Form.set-
Item(int, javax.microedition.lcdui.Item) 196

setItemStateListener(ItemStateListener) - javax.micro-
edition.lcdui.Form.setItemStateListener(javax.micr
oedition.lcdui.ItemStateListener) 197

setLabel(String) - javax.microedition.lcdui.Item.setLa-
bel(java.lang.String) 223

setLayout(int) - javax.microedition.lcdui.ImageItem.set-
Layout(int) 222

setListener(CommandListener) - javax.microedition.lc-
dui.Alert.setListener(javax.microedition.lcdui.Com
mandListener) 144

setListener(CommandListener) - javax.microedition.lc-
dui.Displayable.setListener(javax.microedition.lcd
ui.CommandListener) 186

setMaxSize(int) - javax.microedition.lcdui.TextBox.set-
MaxSize(int) 241

setMaxSize(int) - javax.microedition.lcdui.Text-
Field.setMaxSize(int) 247

setMaxValue(int) - javax.microedition.lcdui.Gauge.set-
MaxValue(int) 200

setRecord(int, byte[], int, int) - javax.microedi-
tion.rms.RecordStore.setRecord(int, byte[], int, int)
104

setRequestMethod(String) - javax.microedition.io.Http-
Connection.setRequestMethod(java.lang.String)
136

setRequestProperty(String, String) - javax.microedi-
tion.io.HttpConnection.setRequestProperty(ja-
va.lang.String, java.lang.String) 136

setSelectedFlags(boolean[]) - javax.microedition.lc-
dui.Choice.setSelectedFlags(boolean[]) 162

setSelectedFlags(boolean[]) - javax.microedition.lc-
dui.ChoiceGroup.setSelectedFlags(boolean[]) 169

setSelectedFlags(boolean[]) - javax.microedition.lc-
dui.List.setSelectedFlags(boolean[]) 231

setSelectedIndex(int, boolean) - javax.microedition.lc-
dui.Choice.setSelectedIndex(int, boolean) 163

setSelectedIndex(int, boolean) - javax.microedition.lc-
dui.ChoiceGroup.setSelectedIndex(int, boolean)
169

setSelectedIndex(int, boolean) - javax.microedition.lc-
dui.List.setSelectedIndex(int, boolean) 232

setString(String) - javax.microedition.lcdui.Text-
Box.setString(java.lang.String) 241

setString(String) - javax.microedition.lcdui.Text-
Field.setString(java.lang.String) 247

setString(String) - javax.microedition.lcdui.Ticker.set-
String(java.lang.String) 250

setText(String) - javax.microedition.lcdui.Image-
Item.setText(java.lang.String) 222

setText(String) - javax.microedition.lcdui.String-
Item.setText(java.lang.String) 236

setTicker(Ticker) - javax.microedition.lcdui.Screen.set-
Ticker(javax.microedition.lcdui.Ticker) 234

setTimeout(int) - javax.microedition.lcdui.Alert.setTim-
eout(int) 144

setTitle(String) - javax.microedition.lcdui.Screen.setTi-
tle(java.lang.String) 234

setValue(int) - javax.microedition.lcdui.Gauge.setVal-
ue(int) 200

showNotify() - javax.microedition.lcdui.Can-
vas.showNotify() 157

SIZE_LARGE - javax.microedition.lc-
dui.Font.SIZE_LARGE 188

SIZE_MEDIUM - javax.microedition.lc-

ALL RIGHTS RESERVED UNDER JSPA (JAVA SPECIFICATION PARTICIPATION AGREEMENT)

260 Mobile Information Device Profile (JSR-37) May 5, 2000

dui.Font.SIZE_MEDIUM 189
SIZE_SMALL - javax.microedition.lc-

dui.Font.SIZE_SMALL 189
startApp() - javax.microedition.midlet.MIDlet.star-

tApp() 117
STOP - javax.microedition.lcdui.Command.STOP 172
StringItem - javax.microedition.lcdui.StringItem 235
StringItem(String, String) - javax.microedition.lc-

dui.StringItem.StringItem(java.lang.String, ja-
va.lang.String) 235

stringWidth(String) - javax.microedition.lc-
dui.Font.stringWidth(java.lang.String) 192

STYLE_BOLD - javax.microedition.lc-
dui.Font.STYLE_BOLD 189

STYLE_ITALIC - javax.microedition.lc-
dui.Font.STYLE_ITALIC 189

STYLE_PLAIN - javax.microedition.lc-
dui.Font.STYLE_PLAIN 189

STYLE_UNDERLINED - javax.microedition.lc-
dui.Font.STYLE_UNDERLINED 189

substringWidth(String, int, int) - javax.microedition.lc-
dui.Font.substringWidth(java.lang.String, int, int)
192

T
TextBox - javax.microedition.lcdui.TextBox 237
TextBox(String, String, int, int) - javax.microedition.lc-

dui.TextBox.TextBox(java.lang.String, ja-
va.lang.String, int, int) 238

TextField - javax.microedition.lcdui.TextField 242
TextField(String, String, int, int) - javax.microedition.lc-

dui.TextField.TextField(java.lang.String, ja-
va.lang.String, int, int) 244

Ticker - javax.microedition.lcdui.Ticker 249
Ticker(String) - javax.microedition.lcdui.Ticker.Tick-

er(java.lang.String) 249
TIME - javax.microedition.lcdui.DateField.TIME 177
Timer - java.util.Timer 75
Timer() - java.util.Timer.Timer() 76
TimerTask - java.util.TimerTask 81
TimerTask() - java.util.TimerTask.TimerTask() 81
TOP - javax.microedition.lcdui.Graphics.TOP 205
translate(int, int) - javax.microedition.lcdui.Graph-

ics.translate(int, int) 214

U
UP - javax.microedition.lcdui.Canvas.UP 152
URL - javax.microedition.lcdui.TextField.URL 244

V
VCENTER - javax.microedition.lcdui.Graph-

ics.VCENTER 205

	Mobile Information Device Profile (JSR-37) Specification
	Contents
	List of Tables
	List of Figures
	Preface
	Revision History
	Table P-1. Revision History

	Who Should Use This Specification
	How This Specification Is Organized
	Related Literature

	Introduction and Background
	1.1 Introduction
	1.2 Background
	1.3 Document Conventions
	1.3.1 Definitions
	Table 1-1. Specification Terms

	1.3.2 Formatting Conventions
	Table 1-2. Formatting Conventions

	Requirements and Scope
	2.1 Requirements
	2.1.1 Hardware
	2.1.2 Software

	2.2 Scope

	Architecture
	3.1 Overview
	3.2 Architecture
	Figure 3-1. High-Level Architecture View
	Table 3-1. MID Application Types

	System Functions
	4.1 Overview
	4.2 System Properties
	Table 4-1. System Properties Defined by MIDP

	4.3 Application Resource Files
	4.4 System.exit

	Timers
	5.1 Overview
	5.2 Timers

	Networking
	6.1 Overview
	Figure 6-1. HTTP Network Connection

	6.2 HttpConnection
	6.2.1 HTTP Request Headers
	Table 6-1. System Properties for User-Agent Request Header

	6.3 DatagramConnection

	Persistent Storage
	7.1 Overview
	7.2 Record Store
	7.3 Records

	Applications
	8.1 Overview
	8.2 MIDP MIDlet Suite
	8.3 MIDP Execution Environment
	8.4 MIDlet Suite Packaging
	Table 8-1. MIDlet Attributes
	8.4.1 JAR Manifest
	8.4.2 MIDlet Classes

	8.5 Application Descriptor
	8.6 Application Lifecycle
	Table 8-2. Classes in the javax.microedition.midlet Package

	User Interface
	9.1 Overview
	9.2 Structure of the MIDP UI API
	9.2.1 Class Hierarchy
	9.2.2 Class Overview
	9.2.3 Interplay with Application Manager

	9.3 Event Handling
	9.3.1 Abstract Commands
	9.3.2 High-Level API for Events
	9.3.3 Low-Level API for Events
	9.3.4 Interplay of High-Level Commands and Low- Level API

	9.4 Graphics and Text in Low-Level API
	9.4.1 The Redrawing Scheme
	9.4.2 Drawing Model
	9.4.3 Coordinate System
	9.4.4 Font Support
	9.4.5 Drawing Text and Images

	9.5 A Note on Concurrency

	Appendix A: Implementation Notes
	A.1 Overview
	A.2 Implementation
	A.2.1 Application Management
	A.2.1.1 Classes of MIDlets
	Table A-1. Possible Classes of MIDlets

	A.2.1.2 MIDlet Management Software Functionality
	Table A-2. Typical MIDlet Management Software Operations

	A.2.1.3 Installation, Upgrade, and Removal

	A.3 Developer Issues

	Appendix B: Packages
	java.lang
	IllegalStateException
	Constructors
	IllegalStateException()
	IllegalStateException(String)

	java.util
	Timer
	Constructors
	Timer()

	Methods
	cancel()
	schedule(TimerTask, Date)
	schedule(TimerTask, Date, long)
	schedule(TimerTask, long)
	schedule(TimerTask, long, long)
	scheduleAtFixedRate(TimerTask, Date, long)
	scheduleAtFixedRate(TimerTask, long, long)

	TimerTask
	Constructors
	TimerTask()

	Methods
	cancel()
	run()
	scheduledExecutionTime()

	javax.microedition.rms
	InvalidRecordIDException
	Constructors
	InvalidRecordIDException()
	InvalidRecordIDException(String)

	RecordComparator
	Fields
	EQUIVALENT
	FOLLOWS
	PRECEDES

	Methods
	compare(byte[], byte[])

	RecordEnumeration
	Methods
	destroy()
	hasNextElement()
	hasPreviousElement()
	isKeptUpdated()
	keepUpdated(boolean)
	nextRecord()
	nextRecordIndex()
	numRecords()
	previousRecord()
	previousRecordIndex()
	rebuild()
	reset()

	RecordFilter
	Methods
	matches(byte[])

	RecordListener
	Methods
	recordAdded(RecordStore, int)
	recordChanged(RecordStore, int)
	recordDeleted(RecordStore, int)

	RecordStore
	Methods
	addRecord(byte[], int, int)
	addRecordListener(RecordListener)
	closeRecordStore()
	deleteRecord(int)
	deleteRecordStore(String)
	enumerateRecords(RecordFilter, RecordComparator, boolean)
	getLastModified()
	getName()
	getNextRecordID()
	getNumRecords()
	getRecord(int)
	getRecord(int, byte[], int)
	getRecordSize(int)
	getSize()
	getSizeAvailable()
	getVersion()
	listRecordStores()
	openRecordStore(String, boolean)
	removeRecordListener(RecordListener)
	setRecord(int, byte[], int, int)

	RecordStoreException
	Constructors
	RecordStoreException()
	RecordStoreException(String)

	RecordStoreFullException
	Constructors
	RecordStoreFullException()
	RecordStoreFullException(String)

	RecordStoreNotFoundException
	Constructors
	RecordStoreNotFoundException()
	RecordStoreNotFoundException(String)

	RecordStoreNotOpenException
	Constructors
	RecordStoreNotOpenException()
	RecordStoreNotOpenException(String)

	javax.microedition.midlet
	MIDlet
	Constructors
	MIDlet()

	Methods
	destroyApp(boolean)
	getAppProperty(String)
	notifyDestroyed()
	notifyPaused()
	pauseApp()
	resumeRequest()
	startApp()

	MIDletStateChangeException
	Constructors
	MIDletStateChangeException()
	MIDletStateChangeException(String)

	javax.microedition.io
	HttpConnection
	Fields
	GET
	HEAD
	HTTP_ACCEPTED
	HTTP_BAD_GATEWAY
	HTTP_BAD_METHOD
	HTTP_BAD_REQUEST
	HTTP_CLIENT_TIMEOUT
	HTTP_CONFLICT
	HTTP_CREATED
	HTTP_ENTITY_TOO_LARGE
	HTTP_EXPECT_FAILED
	HTTP_FORBIDDEN
	HTTP_GATEWAY_TIMEOUT
	HTTP_GONE
	HTTP_INTERNAL_ERROR
	HTTP_LENGTH_REQUIRED
	HTTP_MOVED_PERM
	HTTP_MOVED_TEMP
	HTTP_MULT_CHOICE
	HTTP_NO_CONTENT
	HTTP_NOT_ACCEPTABLE
	HTTP_NOT_AUTHORITATIVE
	HTTP_NOT_FOUND
	HTTP_NOT_IMPLEMENTED
	HTTP_NOT_MODIFIED
	HTTP_OK
	HTTP_PARTIAL
	HTTP_PAYMENT_REQUIRED
	HTTP_PRECON_FAILED
	HTTP_PROXY_AUTH
	HTTP_REQ_TOO_LONG
	HTTP_RESET
	HTTP_SEE_OTHER
	HTTP_TEMP_REDIRECT
	HTTP_UNAUTHORIZED
	HTTP_UNAVAILABLE
	HTTP_UNSUPPORTED_RANGE
	HTTP_UNSUPPORTED_TYPE
	HTTP_USE_PROXY
	HTTP_VERSION
	POST

	Methods
	getDate()
	getExpiration()
	getFile()
	getHeaderField(int)
	getHeaderField(String)
	getHeaderFieldDate(String, long)
	getHeaderFieldInt(String, int)
	getHeaderFieldKey(int)
	getHost()
	getLastModified()
	getPort()
	getProtocol()
	getQuery()
	getRef()
	getRequestMethod()
	getRequestProperty(String)
	getResponseCode()
	getResponseMessage()
	getURL()
	setRequestMethod(String)
	setRequestProperty(String, String)

	javax.microedition.lcdui
	Alert
	Fields
	FOREVER

	Constructors
	Alert(String)

	Methods
	addCommand(Command)
	appendImage(Image)
	appendItem(ImageItem)
	appendItem(StringItem)
	appendString(String)
	deleteItem(int)
	getDefaultTimeout()
	getItemAt(int)
	getSize()
	getTimeout()
	insertItem(int, ImageItem)
	insertItem(int, StringItem)
	setItem(int, Item)
	setListener(CommandListener)
	setTimeout(int)

	Callable
	Methods
	call()

	Canvas
	Fields
	DOWN
	FIRE
	GAME_A
	GAME_B
	GAME_C
	GAME_D
	KEY_NUM0
	KEY_NUM1
	KEY_NUM2
	KEY_NUM3
	KEY_NUM4
	KEY_NUM5
	KEY_NUM6
	KEY_NUM7
	KEY_NUM8
	KEY_NUM9
	KEY_POUND
	KEY_STAR
	LEFT
	RIGHT
	UP

	Constructors
	Canvas()

	Methods
	getGameAction(int)
	getHeight()
	getKeyCode(int)
	getKeyName(int)
	getWidth()
	hasPointerEvents()
	hasPointerMotionEvents()
	hasRepeatEvents()
	hideNotify()
	keyPressed(int)
	keyReleased(int)
	keyRepeated(int)
	paint(Graphics)
	pointerDragged(int, int)
	pointerPressed(int, int)
	pointerReleased(int, int)
	repaint()
	repaint(int, int, int, int)
	serviceRepaints()
	showNotify()

	Choice
	Fields
	EXCLUSIVE
	IMPLICIT
	MULTIPLE

	Methods
	appendElement(String, Image)
	deleteElement(int)
	getImage(int)
	getSelectedFlags(boolean[])
	getSelectedIndex()
	getSize()
	getString(int)
	insertElement(int, String, Image)
	isSelected(int)
	setElement(int, String, Image)
	setSelectedFlags(boolean[])
	setSelectedIndex(int, boolean)

	ChoiceGroup
	Constructors
	ChoiceGroup(String, int)
	ChoiceGroup(String, int, String[], Image[])

	Methods
	appendElement(String, Image)
	deleteElement(int)
	getImage(int)
	getSelectedFlags(boolean[])
	getSelectedIndex()
	getSize()
	getString(int)
	insertElement(int, String, Image)
	isSelected(int)
	setElement(int, String, Image)
	setSelectedFlags(boolean[])
	setSelectedIndex(int, boolean)

	Command
	Fields
	BACK
	CANCEL
	HELP
	OK
	SCREEN
	STOP

	Constructors
	Command(String, int, int)

	Methods
	getCommandType()
	getLabel()
	getPriority()

	CommandListener
	Methods
	commandAction(Command, Displayable)

	DateField
	Fields
	DATE
	DATE_TIME
	TIME

	Constructors
	DateField(int)
	DateField(int, TimeZone)

	Methods
	getDate()
	getInputMode()
	setDate(Date)
	setInputMode(int)

	Display
	Methods
	callSerially(Callable)
	getCurrent()
	getDisplay(MIDlet)
	isColor()
	numColors()
	setCurrent(Alert, Displayable)
	setCurrent(Displayable)

	Displayable
	Methods
	addCommand(Command)
	isShown()
	removeCommand(Command)
	setListener(CommandListener)

	Font
	Fields
	FACE_MONOSPACE
	FACE_PROPORTIONAL
	FACE_SYSTEM
	SIZE_LARGE
	SIZE_MEDIUM
	SIZE_SMALL
	STYLE_BOLD
	STYLE_ITALIC
	STYLE_PLAIN
	STYLE_UNDERLINED

	Methods
	charWidth(char)
	charWidth(char[], int, int)
	getBaselinePosition()
	getDefaultFont()
	getFace()
	getFont(int, int, int)
	getHeight()
	getSize()
	getStyle()
	isBold()
	isItalic()
	isPlain()
	stringWidth(String)
	substringWidth(String, int, int)

	Form
	Constructors
	Form(String)
	Form(String, Item[])

	Methods
	appendImage(Image)
	appendItem(Item)
	appendString(String)
	deleteItem(int)
	getItemAt(int)
	getSize()
	insertItem(int, Item)
	setItem(int, Item)
	setItemStateListener(ItemStateListener)

	Gauge
	Constructors
	Gauge(String, boolean, int, int)

	Methods
	getMaxValue()
	getValue()
	setMaxValue(int)
	setValue(int)

	Graphics
	Fields
	BASELINE
	BOTTOM
	HCENTER
	LEFT
	RIGHT
	TOP
	VCENTER

	Methods
	clipRect(int, int, int, int)
	drawArc(int, int, int, int, int, int)
	drawChar(char, int, int, int)
	drawChars(char[], int, int, int, int, int)
	drawImage(Image, int, int, int)
	drawLine(int, int, int, int)
	drawRect(int, int, int, int)
	drawRoundRect(int, int, int, int, int, int)
	drawString(String, int, int, int)
	drawSubstring(String, int, int, int, int, int)
	fillArc(int, int, int, int, int, int)
	fillRect(int, int, int, int)
	fillRoundRect(int, int, int, int, int, int)
	getBlueComponent()
	getClipHeight()
	getClipWidth()
	getClipX()
	getClipY()
	getColor()
	getFont()
	getGrayScale()
	getGreenComponent()
	getRedComponent()
	getTranslateX()
	getTranslateY()
	setClip(int, int, int, int)
	setColor(int)
	setColor(int, int, int)
	setFont(Font)
	setGrayScale(int)
	translate(int, int)

	Image
	Methods
	createImage(byte[], int, int)
	createImage(Image)
	createImage(int, int)
	createImage(String)
	getGraphics()
	getHeight()
	getWidth()
	isMutable()

	ImageItem
	Fields
	LAYOUT_CENTER
	LAYOUT_DEFAULT
	LAYOUT_LEFT
	LAYOUT_NEWLINE_AFTER
	LAYOUT_NEWLINE_BEFORE
	LAYOUT_RIGHT

	Constructors
	ImageItem(String, Image, int, String)

	Methods
	getAltText()
	getImage()
	getLayout()
	setImage(Image)
	setLayout(int)
	setText(String)

	Item
	Methods
	getLabel()
	setLabel(String)

	ItemStateListener
	Methods
	itemStateChanged(Item)

	List
	Fields
	selectCommand

	Constructors
	List(String, int)
	List(String, int, String[], Image[])

	Methods
	appendElement(String, Image)
	deleteElement(int)
	getImage(int)
	getSelectedFlags(boolean[])
	getSelectedIndex()
	getSize()
	getString(int)
	insertElement(int, String, Image)
	isSelected(int)
	setElement(int, String, Image)
	setSelectedFlags(boolean[])
	setSelectedIndex(int, boolean)

	Screen
	Methods
	getTicker()
	getTitle()
	setTicker(Ticker)
	setTitle(String)

	StringItem
	Constructors
	StringItem(String, String)

	Methods
	getText()
	setText(String)

	TextBox
	Constructors
	TextBox(String, String, int, int)

	Methods
	deleteChars(int, int)
	getChars(char[])
	getConstraints()
	getMaxSize()
	getSize()
	getString()
	insertChars(char[], int, int, int)
	insertString(String, int)
	setChars(char[], int, int)
	setConstraints(int)
	setMaxSize(int)
	setString(String)

	TextField
	Fields
	ANY
	CONSTRAINT_MASK
	EMAILADDR
	NUMERIC
	PASSWORD
	PHONENUMBER
	URL

	Constructors
	TextField(String, String, int, int)

	Methods
	deleteChars(int, int)
	getChars(char[])
	getConstraints()
	getMaxSize()
	getSize()
	getString()
	insertChars(char[], int, int, int)
	insertString(String, int)
	setChars(char[], int, int)
	setConstraints(int)
	setMaxSize(int)
	setString(String)

	Ticker
	Constructors
	Ticker(String)

	Methods
	getString()
	setString(String)

	Index
	A-C
	D-F
	G
	H
	I-K
	L-P
	R-S
	T-V

