
 Copyright 2000 Sun Microsystems, Inc.

JAIN JCC 09/21/00 Version 0.8.4 Call Flow Sequence Diagrams

JAINtm, a set of Javatm APIs for
Integrated Networks

JAIN
JAVA CALL CONTROL (JCC)

APPLICATION PROGRAMMING INTERFACE
(API)

Version 0.8.4

Example Sequence Diagrams

September 21, 2000

JAIN JCC 09/21/00 Version 0.8.4 Call Flow Sequence Diagrams 2

1. Introduction

This document presents several example call flows to illustrate use of the JAIN Java Call Control
(JCC) API. This document is a companion to the JCC Overview and the JCC specification. Note
that this document assumes the JCC package (and not the JCP package) of the specification is
being used.

The call flows are represented using message sequence charts. The goal is to illustrate typical
sequences based on the current version of the JCC specification, which the application
programmer might use in order to provide the named service. Messages signaled between objects
are shown as numbered lines with arrows indicating the direction of the signal. Temporal
ordering of messages is indicated by the sequence number. Each message reflects the operation
name to be invoked by the object receiving the message. The general format of the call flow
diagrams is described below.

1.1 Service overview

Before each sequence diagram, a brief description of the service is given.

1.2 Objects

These are given at the top of each call flow. Where given, the names of the objects implementing
the interfaces are given before the colon. The interface types are given after the colon.

1.3 API method invocations

API method invocations are shown as messages flowing between objects representing the
application and the objects representing the JCC platform. These messages are shown as
numbered arrows. Sequence numbers indicate the ordering of messages. Each message is given a
message name, which indicates the method call to be invoked on the object receiving the
message.

Intra-application or intra-service flows are implementation dependent and are also shown in some
instances.

1.4 Description of service

At the end of each sequence diagram, a detailed description, describing each of the call flows, for
the service is given.

JAIN JCC 09/21/00 Version 0.8.4 Call Flow Sequence Diagrams 3

2. The JCC call flow sequence diagrams

In all the sequence diagrams AppLogic is referring to the Application Logic written by the
programmer. The application developer is also expected to provide an implementation of the
relevant Listener classes (JcpProviderListener, JcpCallListener, JcpConnectionListener etc) that
the application expects to use. Normally, we show only the JccConnectionListener since we
assume that in our call flows the application would need the services of only the
JccConnectionListener. Note also that the JccConnectionListener is a subclass of JccCallListener.

The objects provided by the JCC implementation are the JccProvider, JccCall, JccConnection and
the JccAddress objects. In the call flows we may show only some of these objects for the purpose
of avoiding confusion.

We would also like to point out that in the call flows shown before the call flow corresponding to
the Virtual Private Network, we do not show the EventFilter interfaces so as to keep the
explanation and flows simple. Note that EventFilter interface is expected to provide the event
filtering functionality. Note that the later call flows do show the EventFilters. Finally, we would
also like to point out that in these call flows we do not show the occurrence of all the events again
from the point of view of simplicity. Hence, only the significant events are explicitly shown.

JAIN JCC 09/21/00 Version 0.8.4 Call Flow Sequence Diagrams 4

2.1 First Party Call--Origination

The following diagram depicts a simple call flow. The scenario considered is that of an
application at an end point originating a call.

 : AppLogic : JccProvider : JccCall

2: createCall()

4: routeCall

JCC Application first party call
orig : Jcc

Connection
term : Jcc

Connectio n
 : JccConnection

Li sten er

5: new()

6: transiti ons to CALL_DEL IVERY state

based on
underlying
network signaling

TALK

16: release()

17: Event

18: release()

network
signaling results
in call resources
being released

1: addConnectionListener()

11: transitions to CONNECTED state

10: new()

9: routeCall()

3: new()

7: connectionCallDelivery()

8: forward event

12: event

13: transiti ons to CONNECTED state

14: connectionConnected()
15 : forwa rd e vent

1. The application adds a listener to the call. The application can use the
addCallListener(callListener) method if it desires to receive all events on all addresses

JAIN JCC 09/21/00 Version 0.8.4 Call Flow Sequence Diagrams 5

associated with this JccProvider. Note that this is okay since the JccConnectionListener
interface extends the JccCallListener interface. With the call flow shown, an EventFilter to
filter the events is also expected to be provided. The EventFilter is an object which
implements the EventFilter interface and is expected to be provided by the application. In
order to improve performance a set of standard EventFilters will be provided by the JCC
implementation. The application if it desires can choose this set of standard EventFilters. In
this flow though we do not show the EventFilter to keep the flow simple as explained earlier.

2. This message is then used by the application to request the JccProvider to create an object
implementing the JccCall interface.

3. The message is used by the JccProvider to create an object implementing the JccCall
interface.

4. This message instructs the object implementing the JccCall interface to create a
JccConnection object representing the originating party and route it to the party. Note that
using this API method both the creation and routing of the JccConnection object is done. It is
also possible for the application to have these tasks done separately by using APIs like
JccCall.createConnection and JccConnection.routeConnection.

5. This message is used to create an object implementing the JccConnection interface
representing the originating party hereafter referred to as the originating JccConnection. The
JccConnection passes through different states while proceeding with the different steps of
basic call processing such as analyzing the digits dialed (for special processing such as on 1-
800 calls etc), authorizing whether call with the given number can be setup etc.

6. This results in the JccConnection object finally transitioning to the CALL_DELIVERY state.

7. The registered JccConnectionListener is then informed of the originating JccConnection
being in the CALL_DELIVERY state. The assumption here is that the EventFilter has
advised the JCC implementation to inform the listener of this event on the given address.
This is done by sending an appropriate JccConnectionEvent using the
connectionCallDelivery(connectionevent) method which is to be implemented by the
registered JccConnectionListener object.

8. The JccConnectionListener then informs the application about the occurrence of the event
specified.

9. The application in order to complete the call, then sets to “dial” the terminating party. It does
this by specifying the “number” of the destination party using the routeCall() method.

10. This results in the creation of a new JccConnection object representing the terminating party
hereafter referred to as the terminating JccConnection.

11. The terminating JccConnection object transits to the CONNECTED state possibly as a result
of underlying network signaling causing this to happen. Note that many intervening events
such as the alerting of the destination party etc have not been shown.

12. An event internal to the implementation then informs the originating JccConnection that the
destination terminating JccConnection is in the CONNECTED state. Note that this way of

JAIN JCC 09/21/00 Version 0.8.4 Call Flow Sequence Diagrams 6

informing the originating JccConnection is implementation specific and is not governed in
any way by the API specification.

13. The originating JccConnection transits to the CONNECTED state.

14. The JCC implementation then informs the JccConnectionListener that the original
JccConnection is in the CONNECTED state.

15. The application is then informed of the terminating JccConnection being in the
CONNECTED state by the JccConnectionListener.

16. When the application decides to end the conversation, it does so by using this message on the
originating JccConnection. This results in the originating JccConnection transitioning from
the CONNECTED state to the DISCONNECTED state. Call resources related to the
originating party may also be released on account of network signaling. Note also that this is
one possible way in which the call may be released. There are other ways in which the call
can be disconnected and which are not shown here. Additional JccConnections may be
dropped indirectly as a result of this method. For example, dropping the destination
JccConnection of a two-party call as shown here may result in the entire telephone call being
dropped which is what is shown in the next two flows. It is up to the implementation to
determine which JccConnections are dropped as a result of this method. Implementations
should not, however, drop additional JccConnections representing additional parties if it does
not reflect the natural response of the underlying telephone hardware.

17. Since there are only two parties in this call, this also results in the other party namely the
terminating JccConnection also transitioning to the DISCONNECTED state. This is caused
by this event send internally within the JCC implementation. Note that the way events are
passed around classes is highly implementation specific.

18. This message causes the terminating JccConnection to transition to the DISCONNECTED
state and call resources related to the destination party used up in the network are also
released as a result of network signaling.

JAIN JCC 09/21/00 Version 0.8.4 Call Flow Sequence Diagrams 7

2.2 First Party Call--Termination

The following diagram depicts a simple call flow. The scenario considered is that of an
application at an end point terminating a call. Hence, we do not show the originating party in this
call.

Connection
object
t ransit ions to
CONNECTED
state

 : AppLogic : JccProvider : JccCall term : Jcc
Connection

1: addConnectionListener()

Signaling
Protocol

 : JccConnection
Listener

2: incoming call signal

3: new()

4: new()

Due to underlying
network signaling

JCC Application: Incoming Call

Connection
object has
transitioned
to ALERTING
state

TALK

8: release()

5: connectionAlerting()

6: forward event

7: answer()

results in underlying network
signaling causing the
release of call resources

9: transitions to the DISCONNECTED state

1. This message is used by the application to add a listener to the call. It is assumed that the
application is interested in receiving the CONNECTION_ALERTING event for the address
of interest shown here.

JAIN JCC 09/21/00 Version 0.8.4 Call Flow Sequence Diagrams 8

2. A network event (because of the signaling protocol) is delivered to the JccProvider notifying
the JccProvider of an incoming call on the end point of interest.

3. The JccProvider creates a new JccCall object representing the incoming call.

4. A new JccConnection object is also created to represent the party receiving the call. Note that
in this diagram, the JccConnection is shown as being created by the JccCall object. This fact
though depends on the implementation of the JCC.

5. An event is delivered to the JccConnectionListener alerting the listener to an incoming call.
Note that this event is generated by the JCC implementation as a result of the JccConnection
being in the ALERTING state.

6. This event is used by the listener to inform the application that a JccConnection on the
endpoint of interest is in the ALERTING state. This message is specific to the applications
and is not specified as part of the specification.

7. The application uses this message to tell the JCC implementation that it does want to receive
the call. This results in the JccConnection transitioning to the CONNECTED state. Further,
this also results in appropriate network signals being sent to the corresponding party
informing it that the call has been accepted.

8. The application uses this message to release the call and associated resources.

9. The JccConnection object transitions to the DISCONNECTED state and this results in
underlying network signaling which releases all the network resources used in this call. The
corresponding party is also informed of the release of the call.

JAIN JCC 09/21/00 Version 0.8.4 Call Flow Sequence Diagrams 9

2.3 Third Party Application—I

In this scenario we show the call flows associated with a third party application. It is assumed that
the JCC application is responsible for dialing two parties A and B and then connecting them
together. This is a third party application since the corresponding parties A and B are connected
by the application. The parties themselves do not initiate the call.

 : JccProv ider : AppLogic : JccCall Orig : Jcc
Connection

Term : Jcc
Connection

 : JccConnection
Listener

Third Party Application

Connection object is
created and routed to
the end terminal by
underly ing signaling

creates and routes
the Connection to
the destination
party

Due to underly ing
network signaling

TALK

Network signaling
results in the
connections being
disconnected

1: createCall()
2: new()

14: release()

3: addConnectionListener()

15: release()

16: release()

4: routeCall()

5: new()

7: connectionConnected()

6: transitions to CONNECTED state

8: f orward ev ent

9: routeCall()
10: new()

11: transitions to CONNECTED state

12: connectionConnected()
13: f orward ev ent

JAIN JCC 09/21/00 Version 0.8.4 Call Flow Sequence Diagrams 10

1. The application uses this to request the JCC platform to create a JccCall object so as to
initiate the call between the two parties.

2. This results in the JCC implementation creating the object implementing the JccCall
interface.

3. The application then registers a JccConnectionListener for receiving events associated with
this call.

4. The application then instructs the JCC implementation to place a call to one of the parties by
invoking this method.

5. This results in the JccConnection object representing one of the parties being created. The
JccConnection object then passes through different states with corresponding signals being
sent on the network to the end terminal of the party of interest.

6. The JccConnection object transitions to the CONNECTED state.

7. This message informs the JccConnectionListener that the JccConnection object is in the
CONNECTED state.

8. The JccConnectionListener informs the application of the occurrence of the previous event.

9. The application then proceeds with calling the “destination” . It does so by using this method
to specify to the JCC platform the address of the “destination” party.

10. The JccConnection object representing the other party is created.

11. The terminating JccConnection object transits to the CONNECTED state.

12. The JccConnectionListener is notified that the other party is also connected on the call.

13. The JccConnectionListener informs the application of the occurrence of the previous event.

14. The application releases the connection between the two corresponding parties. Note that the
connection can also be released due to action taken by either of the end parties but we do not
show that here.

15. This results in the resources used by one of the parties in the call being released and the
corresponding JccConnection object transitioning to the DISCONNECTED state.

16. This results in the resources used by the other party in the call also being released and the
corresponding JccConnection object also transitioning to the DISCONNECTED state.

JAIN JCC 09/21/00 Version 0.8.4 Call Flow Sequence Diagrams 11

2.4 Third Party Application—II

In this scenario also we show the call flows associated with a third party application. The
difference though with the earlier call flows is that in this case the first party is connected using
some different API methods.

 : JccProvider : AppLogic : JccCall Orig : Jcc
Connection

Term : Jcc
Connection

 : JccConnection
Listener

Connection object
created in the
IDLE state

Third Party Application

Connection object is
routed to the end
terminal by underly ing
signaling

creates and routes
the Connect ion to
the dest ination
party

1: createCall()

2: new()

4: createConnection()

3: addConnectionListener()

5: new()

9: routeConnection()

Rest of the Call proceeds as
before

10: transitions to CONNECTED state

6: transitions to IDLE state

11: connectionConnected()
12: forward event

13: routeCall()
14: new()

7: connect ionCreated()
8: event

JAIN JCC 09/21/00 Version 0.8.4 Call Flow Sequence Diagrams 12

1. The application uses this to create a JccCall object so as to initiate the call between the two
parties.

2. This results in the JCC implementation creating the object implementing the JccCall
interface.

3. The application then registers as a listener for receiving events associated with this call.

4. The application then instructs the JCC implementation to create a JccConnection. The created
JccConnection will be in the IDLE state and is associated with a JccCall and JccAddress.

5. This results in the object implementing the JccConnection interface being created.

6. The JccConnection object is created in the IDLE state.

7. The JccConnectionListener is informed that the JccConnection object has been created and is
in the IDLE state.

8. The JccConnectionListener informs the application of the occurrence of the previous event.

9. The application then asks the JCC implementation to route the connection to the
corresponding end party. This results in network signaling causing the JccConnection object
to pass through various states.

10. The JccConnection object finally transitions to the CONNECTED state.

11. This message informs the JccConnectionListener of success in connecting one of the parties
of the call. This also implies that the corresponding JccConnection object is in the
CONNECTED state.

12. The JccConnectionListener informs the application of the occurrence of the previous event.

13. The application then proceeds with calling the “destination” party since one of the parties of
the call is already connected. It does so by using this method to specify to the JCC platform
the address of the “destination” party.

14. The JccConnection object representing the other party is created.

The rest of the call proceeds as earlier.

2.5 Virtual Private Network—with Application supplied EventFilter

This example call flow demonstrates a basic abbreviated number translation for a VPN user.
Unlike earlier call flows, we also explicitly show the EventFilter interface in this figure.

JAIN JCC 09/21/00 Version 0.8.4 Call Flow Sequence Diagrams 13

Virtual Private Network
VPN :

AppLogic
 : Event

Fil ter
 : Jcc

Provider
 : JccCall

2: addConnectionListener()

EventFilter returns
an EVENT_BLOCK
result for
ANALYZE_
INFORMATION
event

call
processing
suspended

call
processing
resumes

Registers the
object
implementing the
Event Filter and
Listener interfaces

The Event
Filter is to be
consulted for
every event in
the platform

Signaling
Protocol

 : Jcc
Connection

term : Jcc
Connection

3: incoming call signal

4: new()

5: getEventDisposition()

orig : Jcc
Connection

6: new()

7: getEventDisposition()

8: getEventDisposition()

10: transitions to ADDRESS_ANALYZE state

11: getEventDisposit ion()

15: routeConnection()

16: routeCal l()
17: new()

12: connectionAddressAnalyze()
13: event

1: new()

Rest of call proceeds as in case of a normal first party
call

9: getEventDisposition()

14: address translation

JAIN JCC 09/21/00 Version 0.8.4 Call Flow Sequence Diagrams 14

1. This message is used by the application to create an object implementing the EventFilter
interface. Note that we show this message explicitly in this case only to bring attention to the
fact that the EventFilter interface in this case has to be provided by the application. This is in
contrast to the next call flow where standard EventFilter interfaces are used and which are
provided by the platform.

2. This message is used by the VPN application to register the JccConnectionListener object
and the EventFilter objects with the JCC implementation. Note that the EventFilter object
registered by the VPN application is expected to contain the logic to return EVENT_BLOCK
for the ANALYZE_INFORMATION event. This is because the VPN application is then
expected to translate the address before the call processing can proceed.

3. This message is used to inform the JccProvider of an incoming call.

4. The object implementing the JccProvider interface then creates an object implementing the
JccCall object to cater to the incoming call.

5. For every event occurring in the platform, the EventFilter is to be consulted for indication of
whether the application is interested in the event. This message shows the platform consulting
the EventFilter for one such event, which in this case is the CALL_CREATED event. It is
assumed that the EventFilter returns EVENT_DISCARD.

6. The JccCall object then creates a new object implementing the JccConnection interface to
model the incoming connection.

7. This message also shows the platform consulting the EventFilter for another event
(CONNECTION_CREATED). The EventFilter returns EVENT_DISCARD.

8. This message also shows the platform consulting the EventFilter for another event
(CONNECTION_AUTHORIZE_CALL_ATTEMPT). The EventFilter returns
EVENT_DISCARD.

9. This message also shows the platform consulting the EventFilter for another event
(CONNECTION_ADDRESS_COLLECT). The EventFilter returns EVENT_DISCARD.

10. This message indicates that the JccConnection has transitioned to the
ADDRESS_ANALYZE state which is the state of interest for the VPN application.

11. This message also shows the platform consulting the EventFilter for another event
(CONNECTION_ADDRESS_ANALYZE). EventFilter is expected to return
EVENT_BLOCK.

12. In this case, since the EVENT_BLOCK value was returned previously, a
ConnectionAddressAnalyze() method is used to inform the registered JccConnectionlistener
of the occurrence of the event. Note also that call processing is blocked as a result.

13. The JccConnectionListener informs the application of the occurrence of the previous event.

14. This flow shows that the VPN application is then responsible for translating the address.

JAIN JCC 09/21/00 Version 0.8.4 Call Flow Sequence Diagrams 15

15. This message is then used by the VPN Application to instruct the platform to proceed with
further processing of the call for the incoming call leg. As a result of this, the JccConnection
object representing the incoming call leg transitions to an appropriate state.

16. The VPN application having translated the digits uses this message to route the call which has
come in, to the proper destination.

17. This message results in a new JccConnection object being created in order to model the
terminating party which in this case represents the translated number.

2.6 Virtual Private Network—with Standard EventFilters

This example call flow demonstrates a basic abbreviated number translation for a VPN user. We
show the use of standard EventFilters to enhance the performance of the system in this call flow.

JAIN JCC 09/21/00 Version 0.8.4 Call Flow Sequence Diagrams 16

1. This message is used by the application to request the JCC platform to create an EventFilter
object, which will filter events, based on their types such as JccCONNECTION.ALERTING,
JccCall.ACTIVE etc.

Rest of call proceeds as in case of a normal first party
call

Virtual Private Network
VPN :

AppLogic
 : Event

Filter
 : Jcc

Provider
 : JccCall

EventFilter returns
an EVENT_BLOCK
result for
ANALYZE_
INFORMATION
event

call
processing
suspended

call
processing
resumes

Registers the
object
implementing the
Event Filter and
Listener interfaces

The Event
Filter is to be
consulted for
every event in
the platform

Signaling
Protocol

 : Event
Filter

 : Event
Filter

 : Jcc
Connection

term : Jcc
Connection

orig : Jcc
Connection

7: addConnectionListener()

21: routeCall()

8: incoming call signal

9: new()

10: getEventDisposition()

22: new()

11: new()

12: getEventDisposition()

13: getEventDisposition()

15: transitions to ADDRESS_ANALYZE state

16: getEventDisposition()

20: routeConnection()

17: connect ionAddressAnalyze()
18: event

1: createEventFilterEventSet()

3: createEventFilterAddressRange()

5: createEventFilterAnd

This creates
standard Event
Filters

2: new()

4: new()

6: new()

Application passes an array
of previously constructed
EventFilter references

14: getEventDisposition()

19: address translation

JAIN JCC 09/21/00 Version 0.8.4 Call Flow Sequence Diagrams 17

2. This message is used by the JCC platform to create a new EventFilter object.

3. This message is used by the application to request the JCC platform to create an EventFilter
object, which will filter events, based on the endpoints of occurrence.

4. This message is used by the JCC platform to create a new EventFilter object.

5. This message is used by the application to request the JCC platform to create an EventFilter
object which will use both the previously created filters. Note that this results in events being
filtered based on the types as well based on the endpoints of occurrence.

6. This message is used by the JCC platform to create a new EventFilter object.

7. This message is used by the VPN application to register a JccConnectionListener and an
EventFilter object (one created with an array of EventFilters in a previous step) with the JCC
implementation. Note that the EventFilter interface registered by the VPN application is
expected to contain the logic to return EVENT_BLOCK for the
ANALYZE_INFORMATION event. This is because the VPN application is then expected to
translate the address before the call processing can proceed.

8. This message is used to inform the JccProvider of an incoming call.

9. The object implementing the JccProvider interface then creates an object implementing the
JccCall object to cater to the incoming call.

10. For every event occurring in the platform, the registered EventFilter is to be consulted for
indication of whether the application is interested in the event. This message shows the
platform consulting the registered EventFilter for one such event (CALL_CREATED). It is
assumed that the EventFilter returns EVENT_DISCARD. Note that the consultation is shown
being done using the method getEventDisposition(). In reality, this might be an
implementation specific method.

11. The JccCall object then creates a new object implementing the JccConnection interface to
model the incoming connection.

12. This message also shows the platform consulting the registered EventFilter for another event
(CONNECTION_CREATED). The EventFilter returns EVENT_DISCARD.

13. This message also shows the platform consulting the EventFilter for another event
(CONNECTION_AUTHORIZE_CALL_ATTEMPT). The EventFilter returns
EVENT_DISCARD.

14. This message also shows the platform consulting the EventFilter for another event
(CONNECTION_ADDRESS_COLLECT). The EventFilter returns EVENT_DISCARD.

15. This message indicates that the JccConnection has transitioned to the
ADDRESS_ANALYZE state which is the state of interest for the VPN application.

16. This message also shows the platform consulting the EventFilter for another event
(CONNECTION_ADDRESS_ANALYZE). EventFilter is expected to return
EVENT_BLOCK.

JAIN JCC 09/21/00 Version 0.8.4 Call Flow Sequence Diagrams 18

17. In this case, since the EVENT_BLOCK value was returned previously, a
ConnectionAddressAnalyze() method is used to inform the registered JccConnectionlistener
of the occurrence of the event. Note also that call processing is blocked as a result.

18. The JccConnectionListener informs the application of the occurrence of the previous event.

19. This flow shows that the VPN application is then responsible for translating the address.

20. This message is then used by the VPN Application to instruct the platform to proceed with
further processing of the call for the incoming call leg. As a result of this, the JccConnection
object representing the incoming call leg transitions to an appropriate state.

21. The VPN application having translated the digits uses this message to route the call which has
come in, to the proper destination.

22. This message results in a new JccConnection object being created in order to model the
terminating party which in this case represents the translated number.

