
 OSS through JavaTM Initiative

Change Log for OSS Common API version 1.2

OSS through Java™ Initiative

Vincent Perrot, Sun Microsystems, Inc.

COM-API-SPEC_change_log.1.2.5.doc

Copyright © 2002-2005 Sun Microsystems, Inc. All rights reserved. Use is subject to license
terms.

 COM-API-SPEC_change_log.1.2.5.doc page 1 / 27

 OSS through JavaTM Initiative

Executive Summary

This document summarizes the changes to the OSS Common API (JSR 144) specification
Version 1.2. The main purpose of this version is

• to add the Core Business Entities (CBE) interfaces for the new JSRs (like Pricing)
management purpose,

• Follow the new Draft of the OSS/J Design Guideline v1.2

However, since maintenance release to the specification was taking place, additional
modifications to the previously existing Java Value Type interface were also incorporated.
All these modifications are coming from the Web Bug tracking system at:
http://bugs.sun.com/bugdatabase/index.jsp

There are two lists of changes:

• "proposed" changes are those modifications that are included in OSS Common API
version 1.2.

• “rejected” changes are those modification that will not be included in the OSS
Common API v 1.2

• "deferred" changes are those modifications that are not included in OSS Common
API version 1.2, whether for time reasons or because it was considered that the
changes were too significant.

The detailed description of changes in this document is principally of interest to people
implementing the OSS Common API specification.

 COM-API-SPEC_change_log.1.2.5.doc page 2 / 27

http://bugs.sun.com/bugdatabase/index.jsp

 OSS through JavaTM Initiative

Table of Contents

Executive Summary 2

Table of Contents 3

1 Preface 5

1.1 Objectives 5
1.2 Audience 5
1.3 Approval and Distribution 5
1.4 Related Information 5
1.5 Revision History 6

2 Summary of changes 7

3 Accepted changes 8

3.1 Bug ID: 6280947 Add CBE components related to Pricing 8
3.2 Bug ID: 6265157 INVALID EVENT_TYPE_VALUE definition for all alarm events 9
3.3 Bug ID: 6267986 PartyRoleKey and PartyKey shall be EntityKey instead of managedEntityKey
 9
3.4 Bug ID: 6293854 Remove definition of IRPEvent* 10
3.5 Bug ID: 6250093 MOC and MOI attribute of the AlarmEvent shall move to the Event interface
 10
3.6 Bug ID: 4753620 Apply OSS/J Design Guidelines v1.2 to the OSS Common API 10

3.6.1 Fix Design Guidelines implementation in CBE implementation 10
3.6.2 Deprecate Serializer* and XmlSerializer* interface definitions 11
3.6.3 Add the new query pattern in the javax.oss.JVTSession interface definition 11
3.6.4 Add update procedure methods in in the javax.oss.JVTSession interface definition 13
3.6.5 New exception model 16
3.6.6 Bug ID: 6293880 Issues in CBE XML Schemas 17
3.6.7 Split the CBE jar into jars: One jar per package name (under javax.oss.cbe domain). 18
3.6.8 Bug ID: 6307589: AlarmType enumeration should be integer 18

3.7 Bug ID: 6294417 Use boolean instead of Boolean in interface AlarmValue and
NotifyNewAlarmEvent 20
3.8 Bug ID 6307648 Re-align the SID and CBE for SLA package 20
3.9 Bug ID: 6308263 Invalid field description in javax.oss.cbe.product package 21
3.10 Bug ID 6312124: RFE: replacement of ThresholdInfo with AlarmSpecificInfo 22
3.11 Bug ID 6267195: PerformanceMonitorValueImpl not initialized with correct attribute name 23
3.12 Bug ID: 6308261 Move TroubleTicketValue to CBE 23

4 Rejected changes 24

 COM-API-SPEC_change_log.1.2.5.doc page 3 / 27

 OSS through JavaTM Initiative

4.1 Bug ID 6309694: Missing get/setManagedObjectClass and ManagedObjectInstance in
AlarmValue def 24
4.2 Bug ID 6310400: Breaks Key/Value pair paradigm to reduce the number of unnecessary Key
def. 25
4.3 Deferred Changes from Common v1.1 25

4.3.1 Relocation of the (JSR 130) activity package 25
4.3.2 Improve Weakly Typed Arguments 26

 COM-API-SPEC_change_log.1.2.5.doc page 4 / 27

 OSS through JavaTM Initiative

1 Preface

1.1 Objectives

This document lists all the changes that have been requested for the
maintenance release v1.2 version of the OSS Common API, JSR 144.

The changes have been collected through:

• Bug parade: Bug and Request For Evolution (RFE) submitted by Java
developers

• OSS/J specification leaders: evolution necessary to incorporate new
common objects and to improve the common interfaces and Reference
Implementation that will be “inherited” by all maintenance releases of
the existing OSS APIs

• OSS/J Architectural Board: The common API needs to reflect the
necessary new architectural recommendation (new CBE, etc)

1.2 Audience

This document is used to start a Maintenance Release of the OSS Common API
JSR 144.

According to the JCPSM :

The Maintenance Lead (ML) will arrange to have all change items placed into
the PROPOSED section of the Change Log (this document) and then send a
request to the PMO to initiate a Maintenance Review. The PMO will make a
public announcement and begin the review.

1.3 Approval and Distribution

The ML may choose to modify one or more of the proposed changes based on
comments received during review.

1.4 Related Information

oss_commmon-1_1-fr-spec.zip: contains the Version 1.1 of the OSS common
API, JSR 144, http://java.sun.com/products/oss/start_download.html

 COM-API-SPEC_change_log.1.2.5.doc page 5 / 27

http://java.sun.com/products/oss/start_download.html

 OSS through JavaTM Initiative

1.5 Revision History

Date Version Author State Comments
June 2005 1.2 Vincent Perrot,

Sun Microsystems
Initial Draft • Add CBE for Pricing and order

management
• Add bug from bug Parade

July 2005 1.2.1 Vincent Perrot,
Sun Microsystems

Draft 1 • Add/complete changes after the
Product team face to face

August 2005 1.2.2 Vincent Perrot,
Sun Microsystems

Draft 2 • Document sent for AB review,
comment are due 08-26-2005

August2005 1.2.3 Vincent Perrot,
Sun Microsystems

After Review
period

• Add *KeyResultIterator in 3.7.2
chapter
• Section 3.2 and 3.7.6 still
incomplete

August 2005 1.2.4 Vincent Perrot,
Sun Microsystems

Proposed
changes

• Remove from the list items that
not ready for this release.

Oct 2005 1.2.5 Vincent Perrot,
Sun Microsystems

Final • Classify issues

 COM-API-SPEC_change_log.1.2.5.doc page 6 / 27

 OSS through JavaTM Initiative

2 Summary of changes

3 Accepted changes

3.1 Bug ID: 6280947 Add CBE components related to Pricing
3.2 Bug ID: 6265157 INVALID EVENT_TYPE_VALUE definition
for all alarm events
3.3 Bug ID: 6267986 PartyRoleKey and PartyKey shall be EntityKey
instead of managedEntityKey
3.4 Bug ID: 6293854 Remove definition of IRPEvent*
3.5 Bug ID: 6250093 MOC and MOI attribute of the AlarmEvent shall
move to the Event interface
3.6 Bug ID: 4753620 Apply OSS/J Design Guidelines v1.2 to the OSS
Common API
3.6.1 Fix Design Guidelines implementation in CBE implementation
3.6.2 Deprecate Serializer* and XmlSerializer* interface definitions
3.6.3 Add the new query pattern in the javax.oss.JVTSession interface
definition
3.6.4 Add update procedure methods in in the javax.oss.JVTSession
interface definition
3.6.5 New exception model
3.6.6 Bug ID: 6293880 Issues in CBE XML Schemas
3.6.7 Split the CBE jar into jars: One jar per package name (under
javax.oss.cbe domain).
3.6.8 Bug ID: 6307589: AlarmType enumeration should be integer
3.7 Bug ID: 6294417 Use boolean instead of Boolean in interface
AlarmValue and NotifyNewAlarmEvent
3.8 Bug ID 6307648 Re-align the SID and CBE for SLA package
3.9 Bug ID: 6308263 Invalid field description in javax.oss.cbe.product
package
3.10 Bug ID 6312124: RFE: replacement of ThresholdInfo with
AlarmSpecificInfo
3.11 Bug ID 6267195: PerformanceMonitorValueImpl not initialized
with correct attribute name
3.12 Bug ID: 6308261 Move TroubleTicketValue to CBE

4 Rejected changes

4.1 Bug ID 6309694: Missing get/setManagedObjectClass and
ManagedObjectInstance in AlarmValue def
4.2 Bug ID 6310400: Breaks Key/Value pair paradigm to reduce the
number of unnecessary Key def.
4.3 Deferred Changes from Common v1.1
4.3.1 Relocation of the (JSR 130) activity package
4.3.2 Improve Weakly Typed Arguments

 COM-API-SPEC_change_log.1.2.5.doc page 7 / 27

 OSS through JavaTM Initiative

3 Accepted changes

3.1 Bug ID: 6280947 Add CBE components related to Pricing

The JSR 144 has the opportunity to improve the efficiency of API
developers and maintain consistency by defining, modeling and
implementing these core concepts. This work effort leverages work already
in progress being carried out by the TeleManagement Forum’s New
Generation OSS (NGOSS) Shared Information/Data (SID) Model team.

The following java packages and interfaces are added to the OSS Common
API , javax.oss.cbe package to take into account all the base interfaces
definitions that will be needed by the Pricing JSR (251) and shared between
other JSRs.

Java interface definitions to be added to javax.oss.cbe package

• javax.oss.cbe.policy
The Policy domain defines Policy entities that can be used in managing the
behaviour and definition of entities in other domains. Policy takes three
primary forms. The first is the definition of how policy is used to manage
the definition, change, and configuration of other entities. The second is the
definition of how policy itself is managed. The third is how applications use
policies to manage entities. All those forms are represented by the based
PolicyValue interface definition.

o PolicyKey
o PolicyValue

• javax.oss.cbe.product.productoffering
This package contains only the base interfaces for product offering
definition. A product offering is what is externally presented to the market
for the markets use. The product offering is primarily the way to position
products in the marketplace to create profit.

o BundledProductOfferingKey
o BundledProductOfferingValue
o ProductCatalogKey
o ProductCatalogValue
o ProductOfferingKey
o ProductOfferingValue
o SimpleProductOfferingKey
o SimpleProductOfferingValue

 COM-API-SPEC_change_log.1.2.5.doc page 8 / 27

 OSS through JavaTM Initiative

• javax.oss.cbe.product.productofferingprice
This package contains only the base interfaces for product offering price
definition. It contains a set of components that can be combined to offer a
complete and accurate description of the price charged for an offering.

o ProductOfferingPriceKey
o ProductOfferingPriceValue

The interfaces listed in this section are subject to change to follow the latest
CBE model definition from the OSS/J CBE team.

3.2 Bug ID: 6265157 INVALID EVENT_TYPE_VALUE definition
for all alarm events

The EVENT_TYPE_VALUE field in all of *EventPropertyDescriptor
interfaces in the javax.oss.cbe.alarm package are not correctly set.

This field shall be set with the name of the interface defining the type of the
event.

Example:

public static final String EVENT_TYPE_VALUE =
javax.oss.cbe.alarm.NotifyNewAlarmEvent.class.getName();

This impacts the following interface definition:

o javax.oss.cbe.alarm.AlarmEventPropertyDescriptor

Note: the Notify* definition from v 1.1 have also been remove from this
version as they are not base definition and are info model specific.

3.3 Bug ID: 6267986 PartyRoleKey and PartyKey shall be
EntityKey instead of managedEntityKey

The javax.oss.cbe.party.PartyRoleValue and javax.oss.cbe.party.PartyValue
are EntityValue, so their respective key definition shall also inherit from
EntityKey.

This impacts the following interface definition:

o javax.oss.cbe.party.PartyKey

 COM-API-SPEC_change_log.1.2.5.doc page 9 / 27

 OSS through JavaTM Initiative

o javax.oss.cbe.party.PartyRoleKey

3.4 Bug ID: 6293854 Remove definition of IRPEvent*

The javax.oss.util.IRPEvent* definition are specific to the IRP information
model. This kind of specification is out of the Scope of the cbe package
which shall stay domain agnostic.

The deprecation of this util package impacts the javax.oss.Event and
javax.oss.cbe.alarm.AlarmEvent definitions as detail in the following Bug
ID 6250093.

Note: javax.oss.util now contains only the InteractionRecord definition
mainly used in the quality of service domains.

3.5 Bug ID: 6250093 MOC and MOI attribute of the AlarmEvent
shall move to the Event interface

The deprecation of the util package (See above Bug ID 6293854) impacts
the javax.oss.Event and javax.oss.cbe.alarm.AlarmEvent definitions as
follow:

o The attributes named managedEntityClass and
managedEntityInstance move from the IRP definition to the
javax.oss.Event interface

o The Attribute NotificationId move to the
javax.oss.cbe.alarm.AlarmValue. The Alarm value and key are now
the only 2 attribute of the AlarmEvent.

3.6 Bug ID: 4753620 Apply OSS/J Design Guidelines v1.2 to the
OSS Common API

3.6.1 Fix Design Guidelines implementation in CBE implementation

All managed entity values (using the naming convention <name>Value)
shall get its corresponding key definition (using the naming convention
<name>Key.

Example:

ManagedEntityValue.java

 COM-API-SPEC_change_log.1.2.5.doc page 10 / 27

 OSS through JavaTM Initiative

ManagedEntityKey.java

All managed entity values shall include accessor and mutator for their
corresponding key attribute.

All managed entity values shall include a factory method starting with
“make” to create the corresponding key definition.

All managed entity values shall declare the attribute names (also including
the key attribute) as public final static strings. The naming convention used
follow the example below:

Public final static string MANAGED_ENTITY_KEY = “managedEntityKey”;

Note: it follows the bean convention.

Note: the TCK have been also improved to consolidate this.

3.6.2 Deprecate Serializer* and XmlSerializer* interface definitions

The interface definitions Serializer, XmlSerialer, SerializerFactory, and
XmlSerializerEncodingStyles in the javax.oss package have been created to
anticipate the java to/from XML marshaling capabilities to implement the
XML over JMS integration profile. The java/XML technologies are now
mature enough to remove/deprecate these interface definitions from the
Common API itself.

In addition with the deprecation of the interfaces, the common interface
definitions are impacted as follow:

javax.oss.SerializerFactory is removed from the extension list of the
interfaces:

o javax.oss.cbe.measurement.PerformanceAttributeDescriptor
o javax.oss.cbe.report.CurrentResultReport
o javax.oss.cbe.report.ReportFormat
o javax.oss.Event
o javax.oss.ManagedEntityKey
o javax.oss.ManagedEntityValue
o javax.oss.QueryValue

3.6.3 Add the new query pattern in the javax.oss.JVTSession
interface definition

Named queries are used to implement complex query operations. The result
of a named query is named a query response. Usually the template-based
JVT operations (like queryManagedEntities ()) are not sufficient to
implement such complex query operations.

 COM-API-SPEC_change_log.1.2.5.doc page 11 / 27

 OSS through JavaTM Initiative

The corresponding methods in JVT Session are deprecated:

o String[] getQueryTypes()
o QueryValue makeQueryValue(String type)
o ManagedEntityValueIterator queryManagedEntities(QueryValue

query, String[] attributeNames)

The implementation of this named query pattern needs the addition of
several methods in the JVTSession interface and the creation of the
javax.oss.NamedQueryValue and javax.oss.NamedQueryResponse
interfaces.

The based definitions javax.oss.ManagedEntityValueIterator and
javax.oss.ManagedEntityKeyResultIterator is also extending the
NamedQueryResponse.

JVTSession (and JVTLocalSession) contains the following new methods:

 /**
 * Query multiple Entities using a NamedQueryValue.
 *
 * @param query a NamedQueryValue object representing the query.
 * @return a NamedQueryResponse used to extract the results of the query.
 * @exception javax.oss.OssIllegalArgumentException unsupported named query value
type.
 * @exception java.rmi.RemoteException
 *
 * @ossj:nillableField name=methodReturnValue value=true
 * @ossj:minOccursField name=methodReturnValue value=0
 * @ossj:minOccursField name=namedQuery value=0
 */
 NamedQueryResponse query(NamedQueryValue namedQuery)
 throws javax.oss.OssIllegalArgumentException, java.rmi.RemoteException;

 /**
 * Get the Named Query type names supported by a JVT Session Bean
 *
 * @return String array which contains the fully qualified names of the leaf
 * node interfaces representing the supported named query value types,
 * i.e., interfaces which extend NamedQueryValue.
 * @exception java.rmi.RemoteException
 */
 String[] getNamedQueryTypes()
 throws java.rmi.RemoteException;

 /**
 * Create a NamedQueryValue Instance matching a Named Query type name.
 * The Session Bean is used as a factory for the creation of
 * named query values.
 *
 * @param type fully qualified name of the leaf node NamedQueryValue interface.
 * @return query value object of the specified type.
 * @exception javax.oss.OssIllegalArgumentException unknown or unsupported
 * named query type.
 * @exception java.rmi.RemoteException
 */
 NamedQueryValue makeNamedQueryValue(String type)
 throws javax.oss.OssIllegalArgumentException,java.rmi.RemoteException;

 COM-API-SPEC_change_log.1.2.5.doc page 12 / 27

 OSS through JavaTM Initiative

New javax.oss.NamedQueryValue and javax.oss.NamedQueryResponse
interface definitions:

package javax.oss;

import java.io.Serializable;

/**
 * Named query object is used to implement complex query operations.
 * The result of a named query is named a query response.
 * @see javax.oss.JVTSession
 * @see javax.oss.NamedQueryResponse
 * @see javax.oss.QueryValue
 *
 * @author OSS through Java Initiative, Vincent Perrot Sun Microsystems Inc.
 * @version 1.2
 * @since August 2005
 * @ossj:queryvalue
 * @ossj:abstract
 */
public interface NamedQueryValue extends AttributeAccess, Serializable, Cloneable {
 /** This String defines the type of the named query.

 * This value shall be overloaded according to type, vendor or technology specific
interface defining the new query.
 * The QUERY_TYPE shall correspond to the <interface>.class.getName();
 *
It's value is "javax.oss.QueryValue".
 */
 public static final String QUERY_TYPE = "javax.oss.NamedQueryValue";

 /**
 * Deep copy this query value.
 *
 * @return deep copy of this query value.
 */
 public Object clone();
}

package javax.oss;

/**
 * Object returned as result of a named query execution using a specified NamedQueryValue.
 * @see java.oss.JVTSession
 * @see java.oss.NamedQueryValue
 *
 * @author OSS through Java Initiative, Vincent Perrot Sun Microsystems Inc.
 * @version 1.2
 * @since August 2005
 * @ossj:complexdata
 */

public interface NamedQueryResponse {

}

3.6.4 Add update procedure methods in in the javax.oss.JVTSession
interface definition

Named Update Procedures are used to implement complex Update
operations.

Named update procedures are similar to named queries and allow
implementing complex atomic update operations. The result of the
execution of a named update procedure will typically be the creation,

 COM-API-SPEC_change_log.1.2.5.doc page 13 / 27

 OSS through JavaTM Initiative

removal or update of a collection of managed entity values As in the case
of named queries, the template-based JVT operations are not sufficient to
implement such complex operations.

Even if equivalent functionality can be achieved by template-based JVT
operations, named update procedures may still be the preferred approach
when there is a need to expose a business oriented method for update
purposes instead of a generic (template-based) operation. In general better
performance should be expected for named update procedures than for
specification-based update operations.

Similarly to the named queries, named update procedures allow extending
the functionality of the javax.oss.JVTSession interface in order to support
new update operations and the creation of the
javax.oss.UpdateProcedureValue and javax.oss.UpdateProcedureResponse
interfaces. The result of an update using an UpdateProcedureValue is an
UpdateProcedureResponse.

JVTSession (and JVTLocalSession) contains the following new methods:

 /**
 * used to execute named update procedures
 * Execute the given update procedure.
 *
 * @param updateValue a UpdateProcedureValue object representing the Update Procedure
to be performed.
 * @return a UpdateProcedureResponse resulting from the Update Procedure execution.
 * @exception javax.oss.OssIllegalArgumentException unsupported Update Procedure value
type.
 * @exception java.rmi.RemoteException
 *
 * @ossj:nillableField name=methodReturnValue value=true
 * @ossj:minOccursField name=methodReturnValue value=0
 * @ossj:minOccursField name=updateValue value=0
 */
 UpdateProcedureResponse update(UpdateProcedureValue updateValue)
 throws javax.oss.OssIllegalArgumentException ,java.rmi.RemoteException;

 /**
 * Create a UpdateProcedureValue Instance matching a Update Procedure type name.
 * The Session Bean is used as a factory for the creation of
 * Update Procedure values.
 *
 * @param type fully qualified name of the leaf node UpdateProcedureValue interface.
 * @return Update Procedure value object of the specified type.
 * @exception javax.oss.OssIllegalArgumentException unknown or unsupported
 * Update Procedure type.
 * @exception java.rmi.RemoteException
 */
 UpdateProcedureValue makeUpdateProcedureValue(String type)
 throws javax.oss.OssIllegalArgumentException ,java.rmi.RemoteException;

 /**
 * Get the UpdateProcedure type names supported by a JVT Session Bean
 *
 * @return String array which contains the fully qualified names of the leaf
 * node interfaces representing the supported update procedure value types,
 * i.e., interfaces which extend UpdateProcedureValue.
 * @exception java.rmi.RemoteException
 */

 String[] getUpdateProcedureTypes()

 COM-API-SPEC_change_log.1.2.5.doc page 14 / 27

 OSS through JavaTM Initiative

 throws java.rmi.RemoteException;

New javax.oss.UpdateProcedureValue and
javax.oss.UpdateProcedureResponse interfaces:

package javax.oss;

import java.io.Serializable;

/**
 * Named Update Procedures are used to implement complex Update operations.
 * <p>
 * Named update procedures are similar to named queries and allow implementing
 * complex atomic update operations. The result of the execution of a named update
 * procedure will typically be the creation, removal or update of a collection
 * of managed entity values. As in the case of named queries, the template-based
 * JVT operations are not sufficient to implement such complex operations.
 * <p>
 * @see javax.oss.JVTSession
 *
 * @author OSS through Java Initiative, Vincent Perrot Sun Microsystems Inc.
 * @version 1.2
 * @since August 2005
 * @ossj:complexdata
 */

public interface UpdateProcedureValue extends AttributeAccess, Serializable, Cloneable {

 /**
 * This String defines the type of update procedure.

 * This value shall be overloaded according to type, vendor or technology specific
interface
 * defining the new update procedure.
 * The UPDATE_TYPE shall correspond to the <interface>.class.getName();
 *
It's value is "javax.oss.UpdateProcedureValue".
 */
 public static final String UPDATE_TYPE = "javax.oss.UpdateProcedureValue";

 /**
 * Deep copy this update procedure value.
 *
 * @return deep copy of this update procedure value.
 */
 public Object clone();

}

package javax.oss;

/**
 * Object returned as result of an update execution using a specified
UpdateProcedureValue.
 * @see java.oss.JVTSession#update
 * @see java.oss.UpdateProcedureValue
 *
 * @author OSS through Java Initiative, Vincent Perrot Sun Microsystems Inc.
 * @version 1.2
 * @since August 2005
 * @ossj:complexdata
 */

public interface UpdateProcedureResponse {

 /**
 * Flag indicating that the update procedure is still in progress
 */

 COM-API-SPEC_change_log.1.2.5.doc page 15 / 27

 OSS through JavaTM Initiative

 public final static int IN_PROGRESS = 1;

 /**
 * Flag indicating that the update procedure was completed successfully.
 */
 public final static int COMPLETE = 8;

 /**
 * Flag indicating that the update procedure was aborted.
 */
 public final static int ABORTED = 2;

 /**
 * Flag indicating that the update procedure was completed successfully.
 */
 public final static int ERRORED = 4;

 /**
 * Flag indicating that the update procedure was either completed
 * or aborted or encoutered an error.
 */
 public final static int DONE = (ABORTED | ERRORED | COMPLETE);

 /**
 * Return the execution status of the update procedure
 */
 public int getStatus();

 /**
 * Return true is the update procedure was completed sucessfully.
 * @return completion
 */

 public boolean isSuccessful();
}

3.6.5 New exception model

It is recommended to reuse as much as possible application Exceptions
already defined in Java. In particular, the exceptions as defined in the EJB
Specification should be reused as much as possible and their semantic
should be preserved while applying them to JVTSession Bean operations on
managed entities.

Since RuntimeException exceptions are meant to be caught by the container
and will not be thrown to the user they should not be used as application
exceptions. Some RuntimeException names defined in the java.lang domain
have been redefined (extending java.lang.Exception) in the javax.oss
domain using the same exception names. Even if this was valid regarding
the java language definition, this caused several major issues especially in
automatically generated code when deploying applications or when using
“import javax.oss.*;” in source code.

So the following exception definitions in the javax.oss domain have been
deprecated and replaced by prefixing their name with the string ”Oss”.

o javax.oss.IllegalArgumentException replaced by
javax.oss.OssIllegalArgumentException

 COM-API-SPEC_change_log.1.2.5.doc page 16 / 27

 OSS through JavaTM Initiative

o javax.oss.IllegalAttributeValueException replaced by
javax.oss.OssIllegalAttributeValueException

o javax.oss.IllegalStateException replaced by
javax.oss.OssIllegalStateException

o javax.oss.ResyncRequiredException replaced by
javax.oss.OssResyncRequiredException

o javax.oss.SetException replaced by javax.oss.OssSetException
o javax.oss.UnsupportedAttributeException replaced by

javax.oss.OssUnsupportedAttributeException
o javax.oss.UnsupportedOperationException replaced by

javax.oss.OssUnsupportedOperationException

3.6.6 Bug ID: 6293880 Issues in CBE XML Schemas

The XML schema present in the COM-API-
SPEC_PART4_XML_SCHEMA.1.2.zip are automatically generated from
the doclet information present in the java interface definitions.

The following issues are fixed either by improving the XML schema
generator, or fixing the generation properties or finally fixing the doclet
information (“@ossj”) present in the javadoc sections of the interfaces.

Note also that the new XML schema naming convention has been applied.

1) XmlCommonSchema renamed Common/v1-2/OSSJ-Common-v1-2.xsd

The missing definition of the RuntimeException is added:

 <complexType name="RuntimeException">
 <annotation>
 <documentation>
 RuntimeException is the superclass of those exceptions that
 can be thrown during the normal operation of the Java
 Virtual Machine.
 </documentation>
 </annotation>
 <complexContent>
 <extension base="co-v1-2:BaseException">
 <sequence/>
 </extension>
 </complexContent>
 </complexType>

2) XmlCBEAlarmSchema renamed Common-CBEAlarm/v1-2/OSSJ-
Common-CBEAlarm-v1-2.xsd

The invalid references to IRPEvent* from the javax.oss.util package
disappear automatically as the IRPEvent* are deprecated and not used
anymore.

 COM-API-SPEC_change_log.1.2.5.doc page 17 / 27

 OSS through JavaTM Initiative

In javax.oss.cbe.alarm.AlarmValue and
javax.oss.cbe.alarm.NotifyNewAlarmEventType, the attribute named
backedUpStatus moves from the java.lang.Boolean to boolean. Then the
generator sets the correct mapping. (see chapter 3.7 Bug ID: 6294417 Use
boolean instead of Boolean in interface AlarmValue and
NotifyNewAlarmEvent)

 3) XmlCBEPartySchema renamed Common-CBEParty/v1-2/OSSJ-
Common-CBEParty-v1-2.xsd

In the doclet.properties used for generation, the invalid string “DataTypes”
is replaced by the valid “Datatypes” string.

4) XmlCBEServiceSchema renamed Common-CBEService/v1-2/OSSJ-
Common-CBEService-v1-2.xsd

The missing Datatypes dependent schema is added to doclet.properties.

3.6.7 Split the CBE jar into jars: One jar per package name (under
javax.oss.cbe domain).

To ease the adoption and usage of the CBE definitions, one jar per package
name under the javax.oss.cbe domain have been created.

The following jar naming convention has been used:

oss_cbe_<package name>_spec-<version>.jar

Example:

oss_cbe_location_spec-1.2.2.jar

Note: The java definitions present in the javax.oss.cbe package are included
into the oss_common_spec-1.2.jar

3.6.8 Bug ID: 6307589: AlarmType enumeration should be integer

Following the Design Guidelines the enumeration types shall be map to int
to reduce the memory usage.

The same integer values already used in the existing standards have been
used. A default value named “UNKNOWN_ALARM_TYPE “ has also
been created at the same time.

Find below the new definitions:

package javax.oss.cbe.alarm;

import java.io.Serializable;

 COM-API-SPEC_change_log.1.2.5.doc page 18 / 27

 OSS through JavaTM Initiative

/**
 * This interface identifies all 3G TS 32.111-2 [5] defined alarm event
 * types used by this API. Their semantics are defined by 3GPP. Their
 * encodings for this API are defined here.
 * @author OSS through Java Initiative, Vincent Perrot Sun Microsystems Inc.
 * @version 1.2.2
 * @since March 2005
 * @ossj:enumeration
 */
public interface AlarmType extends Serializable {
 ///////////////////////////////////////
 //attributes
 /**
 * Default Alarm type
 */
 public static final int UNKNOWN_ALARM_TYPE = Integer.MAX_VALUE;

 /**
 * An alarm of this type is associated with the procedure and/or process required
conveying
 information from one point to another
 */

 // CR6307589:
 // public static final String COMMUNICATIONS_ALARM = "communicationsAlarm";
 public static final int COMMUNICATIONS_ALARM = 1;

 /**
 * An alarm of this type is associated with a software or processing fault
 */

 // CR6307589:
 // public static final String PROCESSING_ERROR_ALARM = "processingErrorAlarm";
 public static final int PROCESSING_ERROR_ALARM = 2;

 /**
 * An alarm of this type is associated with a condition related to an enclosure in
which the equipment
 resides
 */

 // CR6307589:
 // public static final String ENVIRONMENTAL_ALARM = "environmentalAlarm";
 public static final int ENVIRONMENTAL_ALARM = 3;

 /**
 * An alarm of this type is associated with degradation in the quality of a service
 */

 // CR6307589:
 // public static final String QUALITY_OF_SERVICE_ALARM = "qualityOfServiceAlarm";
 public static final int QUALITY_OF_SERVICE_ALARM = 4;

 /**
 * An alarm of this type is associated with an equipment fault
 */

 // CR6307589:
 // public static final String EQUIPMENT_ALARM = "equipmentAlarm";
 public static final int EQUIPMENT_ALARM = 5;

 /**
 * An attempt to alter or destroy data or executable content that is inconsistent with
the sensor's surveillance policy
 */

 // CR6307589:
 // public static final String INTEGRITY_VIOLATION = "integrityViolation";
 public static final int INTEGRITY_VIOLATION = 6;

 /**
 * Represents ...

 COM-API-SPEC_change_log.1.2.5.doc page 19 / 27

 OSS through JavaTM Initiative

 */

 // CR6307589:
 // public static final String OPERATIONAL_VIOLATION = "operationalViolation";
 public static final int OPERATIONAL_VIOLATION = 7;

 /**
 * Represents ...
 */

 // CR6307589:
 // public static final String PHYSICAL_VIOLATION = "physicalViolation";
 public static final int PHYSICAL_VIOLATION = 8;

 /**
 * Represents ...
 * It is equals to SECURITY_SERVICE_OR_MECHANISM_VIOLATION as named in
 * Rel-5 CR 32.111-3 (Fault Management; Alarm IRP CORBA solution set)
 */

 // CR6307589:
 // public static final String SECURITY_VIOLATION = "securityViolation";
 public static final int SECURITY_VIOLATION = 9;

 /**
 * Represents ...
 */

 // CR6307589:
 // public static final String TIME_DOMAIN_VIOLATION = "timeDomainViolation";
 public static final int TIME_DOMAIN_VIOLATION = 10;

} // end AlarmType

3.7 Bug ID: 6294417 Use boolean instead of Boolean in interface
AlarmValue and NotifyNewAlarmEvent

javax.oss.cbe.alarm.AlarmValue and
javax.oss.cbe.alarm.NotifyNewAlarmEvent both contain the attribute
backedUpStatus which is of type java.lang.Boolean. This attribute shall be
boolean instead.

This issue was caused when generating the corresponding XML schema
definition where this attribute shall be map to a simple nillable boolean in
the xml declaration.

3.8 Bug ID 6307648 Re-align the SID and CBE for SLA package

javax.oss.cbe.sla.KeyQualityIndicatorParam and
KeyPerformanceIndicatorSlsParm move to javax.oss.cbe.service package.
The interface definitions follow the SID name (to explain the typo in name
“Parm” instead of “Param”).

 COM-API-SPEC_change_log.1.2.5.doc page 20 / 27

 OSS through JavaTM Initiative

javax.oss.cbe.sla.KeyQualityIndicatorParamIterator is removed. It is not
used anymore in the interface.

javax.oss.cbe.sla.Query* interface are removed. It is a service that shall be
provided by the interface itself rather than as a component in the cbe
package.

javax.oss.cbe.sla.ServiceLevelObjective* move to the javax.oss.cbe.service
package. This follows the SID model service definitions.

javax.oss.cbe.sla.TransformationAlgorithm move to the
javax.oss.cbe.service package. This interface is used only by components
from the service package.

The javax.oss.cbe.sla.* interface definitions are removed and replaced by
the following one:

o javax.oss.cbe.sla.ServiceLevelAgreementItemKey
o javax.oss.cbe.sla.ServiceLevelAgreementItemKeyResult
o javax.oss.cbe.sla.ServiceLevelAgreementItemValue
o javax.oss.cbe.sla.ServiceLevelAgreementItemValueIterator
o javax.oss.cbe.sla.ServiceLevelAgreementKey
o javax.oss.cbe.sla.ServiceLevelAgreementKeyResult
o javax.oss.cbe.sla.ServiceLevelAgreementValue
o javax.oss.cbe.sla.ServiceLevelAgreementValueIterator

This follows the SID component names.

Some of these components extend the new definitions from the agreement
package:

o javax.oss.cbe.agreement.AgreementItemKey
o javax.oss.cbe.agreement.AgreementItemValue
o javax.oss.cbe.agreement.AgreementKey
o javax.oss.cbe.agreement.AgreementValue

Themselves extending the based business interaction definitions (see also
chapter 3.12 Bug ID: 6308261 Move TroubleTicketValue to CBE)

3.9 Bug ID: 6308263 Invalid field description in
javax.oss.cbe.product package

The typo in javax.oss.cbe.product.ProductValue is fixed as follow:

o The final static string name is renamed from "DESCRPTION" to
“DESCRIPTION”

 COM-API-SPEC_change_log.1.2.5.doc page 21 / 27

 OSS through JavaTM Initiative

The typo in javax.oss.cbe.product.ProductSpecificationValue is fixed as
follow:

o The final static string name is renamed from "DSECRPTION" to
“DESCRIPTION”

Note: The javadoc comment in the interface
javax.oss.cbe.service.ServiceSpecificationValue component is also fixed
using “description” instead of "desciption".

3.10 Bug ID 6312124: RFE: replacement of ThresholdInfo with
AlarmSpecificInfo

The javax.oss.cbe.alarm.ThresholdInfo components were handled from the
AlarmValue and NotifyNewAlarmEvent of the same package. The alarm
definition shall be more generic and shall handle more kind of alarm
information components.

The component javax.oss.cbe.alarm.AlarmSpecificInfo is replacing
ThresholdInfo as the based interface definition for alarm specific
information. The factory pattern will be used to implements
AlarmSpecificInfo.

The ThresholdInfo component now extends AlarmSpecificInfo, and so shall
be a supported as a valid AlarmSpecificInfo type.

Find below the interface changes that are applied to AlarmValue:

 /**
 * Return the Alarm Specific Info
 *
 * @return alarm information, defined in interface AlarmSpecificInfo.
 * @throws IllegalStateException
 * @throws UnsupportedOperationException
 */
 public AlarmSpecificInfo getAlarmSpecificInfo()
 throws IllegalStateException, UnsupportedOperationException;

 /**
 * Changes the Alarm Specific Info
 *
 * @param value
 * @throws IllegalStateException
 * @throws UnsupportedOperationException
 * @throws IllegalArgumentException
 */
 public void setAlarmSpecificInfo(AlarmSpecificInfo value)
 throws IllegalStateException, UnsupportedOperationException, IllegalArgumentException;

 COM-API-SPEC_change_log.1.2.5.doc page 22 / 27

 OSS through JavaTM Initiative

Note: The factory methods for getting and creating new AlarmSpecificInfo
types will be handle by the JVT session of the domain specific API(s) to
simplify the AlarmValue definition and implementation size.

3.11 Bug ID 6267195: PerformanceMonitorValueImpl not
initialized with correct attribute name

The PerformanceMonitorValue interface definition shall use a consistent
attribute naming convention. The interface definition
javax.oss.cbe.measurement.PerformanceMonitorValue is modified as
follow:

//Fix to 6267195: rename attribute definition using "name" instead of "measurementName"
public static final String NAME = "name";

3.12 Bug ID: 6308261 Move TroubleTicketValue to CBE

The JSR 144 has the opportunity to improve the efficiency of API
developers and maintain consistency by defining, modeling and
implementing these core concepts. This work effort leverages work already
in progress being carried out by the TeleManagement Forum’s New
Generation OSS (NGOSS) Shared Information/Data (SID) Model team.

The following java packages and interfaces are added to the OSS Common
API , javax.oss.cbe package to take into account all the basic interfaces
definitions that will be needed by the OSS Trouble Ticket JSR 91 and
shared between other JSRs.

Java interface definitions to be added to javax.oss.cbe package

o javax.oss.cbe.trouble

o javax.oss.cbe.bi (for business interaction) (see also chapter 3.8Bug
ID 6307648 Re-align the SID and CBE for SLA package)

The classes listed in this section are subject to change to follow the latest
CBE model definition from the OSS/J CBE team.

 COM-API-SPEC_change_log.1.2.5.doc page 23 / 27

 OSS through JavaTM Initiative

4 Rejected changes

4.1 Bug ID 6309694: Missing get/setManagedObjectClass and
ManagedObjectInstance in AlarmValue def

The javax.oss.cbe.alarm.AlarmValue declared the attributes
managedObjectClass and managedObjectInstance but didn’t implement the
corresponding accessor and mutator methods.

The following method declarations are added to the AlarmValue interface:

 /**
 * Gets the class name of the object instance.
 *
 * @return String The class name object instance.
 * @exception IllegalStateException Is thrown if the attribute is supported,
 * and the attribute has not been populated.
 * @see #setManagedObjectClass
 */
 //CR6309694
 String getManagedObjectClass() throws IllegalStateException;

 /**
 * Sets the class name of the object instance.
 *
 * @param moc The class name of the object instance.
 * @exception IllegalArgumentException Is thrown to report that
 * a bad argument was provided to the method.
 * @see #getManagedObjectClass
 */
 //CR6309694
 void setManagedObjectClass(String moc) throws IllegalArgumentException;

 /**
 * Gets the distinguished name of the object instance.
 *
 * @return String The distinguished name object instance.
 * @exception IllegalStateException Is thrown if the attribute is supported,
 * and the attribute has not been populated.
 * @see #setManagedObjectInstance
 */
 //CR6309694
 String getManagedObjectInstance() throws IllegalStateException;

 /**
 * Sets the distinguished name of the object instance.
 *
 * @param moi The distinguished name of the object instance.
 * @exception IllegalArgumentException Is thrown to report that
 * a bad argument was provided to the method.
 * @see #getManagedObjectInstance
 */
 //CR6309694
 void setManagedObjectInstance(String moi) throws IllegalArgumentException;

Reason:

 COM-API-SPEC_change_log.1.2.5.doc page 24 / 27

 OSS through JavaTM Initiative

The managedObjectClass and managedObjectInstance shall only be present
in the Event definition, else they will be redundant if present also in
AlarmValue.

4.2 Bug ID 6310400: Breaks Key/Value pair paradigm to reduce
the number of unnecessary Key def.

The proposal is to keep only the definitions for the EntityKey,
EntitySpecification and AssociationKey. The other CBE Keys do not add
more value (except the strong typing).

Reason:

This would represent a deviation from the existing DG that is not “easy”
explained. That is the fact that only “concrete” model should provide keys
is self-contradictory with the fact that the CBE model itself contains and
need to contain Entity, Association, Specification keys (otherwise we need
to revisit a number of specification).

See also 3.6.1 Fix Design Guidelines implementation in CBE
implementation

4.3 Deferred Changes from Common v1.1

4.3.1 Relocation of the (JSR 130) activity package

In order to share the activity concept with other OSSJ JSRs, the classes in the
activity package from the JSR 130 specification shall move to the JSR 144. The
location of the activity package is javax.oss.cfi. The following classes are
impacted:

javax.oss.cfi.activity.ActivityCapability
javax.oss.cfi.activity.ActivityControlException
javax.oss.cfi.activity.ActivityControlParams
javax.oss.cfi.activity.ActivityController
javax.oss.cfi.activity.ActivityCreationEvent
javax.oss.cfi.activity.ActivityCreationEventPropertyDescriptor
javax.oss.cfi.activity.ActivityEvent
javax.oss.cfi.activity.ActivityEventPropertyDescriptor
javax.oss.cfi.activity.ActivityExecParams
javax.oss.cfi.activity.ActivityKey
javax.oss.cfi.activity.ActivityKeyResult
javax.oss.cfi.activity.ActivityKeyResultIterator
javax.oss.cfi.activity.ActivityPrimaryKey
javax.oss.cfi.activity.ActivityRemovalEvent
javax.oss.cfi.activity.ActivityRemovalEventPropertyDescriptor

 COM-API-SPEC_change_log.1.2.5.doc page 25 / 27

 OSS through JavaTM Initiative

javax.oss.cfi.activity.ActivityReportAvailableEvent
javax.oss.cfi.activity.ActivityReportAvailableEventPropertyDescriptor
javax.oss.cfi.activity.ActivityReportDataEvent
javax.oss.cfi.activity.ActivityReportDataEventPropertyDescriptor
javax.oss.cfi.activity.ActivityReportParams
javax.oss.cfi.activity.ActivityResumeEvent
javax.oss.cfi.activity.ActivityResumeEventPropertyDescriptor
javax.oss.cfi.activity.ActivityState
javax.oss.cfi.activity.ActivitySuspendEvent
javax.oss.cfi.activity.ActivitySuspendEventPropertyDescriptor
javax.oss.cfi.activity.ActivityValue
javax.oss.cfi.activity.ActivityValueIterator
javax.oss.cfi.activity.AttributeDescriptor
javax.oss.cfi.activity.DailyScheduleInfo
javax.oss.cfi.activity.QueryActivityReportData
javax.oss.cfi.activity.QueryActivityValue
javax.oss.cfi.activity.RecordDescriptor
javax.oss.cfi.activity.ReportFormat
javax.oss.cfi.activity.ReportInfo
javax.oss.cfi.activity.ReportInfoIterator
javax.oss.cfi.activity.ReportIterator
javax.oss.cfi.activity.ReportMode
javax.oss.cfi.activity.ReportRecord
javax.oss.cfi.activity.Schedule
javax.oss.cfi.activity.SubscriptionFilter
javax.oss.cfi.activity.SubscriptionParams
javax.oss.cfi.activity.WeeklyScheduleInfo

Reason:
These component have already more or less been defines in the CBE using the
definitions from the SID. It looks like the JSR 130 will need a maintenance
release to realign its API and components definitions with the common API V
1.2.

4.3.2 Improve Weakly Typed Arguments

Replace static final constants with J2SE 1.5 enums. Update the design
guidelines and Interfaces definitions accordingly. Update all OSS/J APIs in the
following releases.

public enum OrderState { OPEN, OPEN.NOT_RUNNING, OPEN.NOT_RUNNING.NOT_STARTED,
OPEN.NOT_RUNNING.SUSPENDED, RUNNING, CLOSED, COMPLETED, ABORTED, ABORTED_BYCLIENT,
ABORTED_BYSERVER };

Reason:

 COM-API-SPEC_change_log.1.2.5.doc page 26 / 27

 OSS through JavaTM Initiative

In J2SE 5 the enum can not be extended. The base pattern/design guideline for
the common API is the extention. So enum will not adopted.

I also looks like that most of the deployed applications are still using J2SE 1.4.
And the Common API definitions shall still be integrated/implemented by those
applications.

 COM-API-SPEC_change_log.1.2.5.doc page 27 / 27

	Executive Summary
	Table of Contents
	Preface
	Objectives
	Audience
	Approval and Distribution
	Related Information
	Revision History

	Summary of changes
	Accepted changes
	Bug ID: 6280947 Add CBE components related to Pricing
	Bug ID: 6265157 INVALID EVENT_TYPE_VALUE definition for all
	Bug ID: 6267986 PartyRoleKey and PartyKey shall be EntityKey
	Bug ID: 6293854 Remove definition of IRPEvent*
	Bug ID: 6250093 MOC and MOI attribute of the AlarmEvent shal
	Bug ID: 4753620 Apply OSS/J Design Guidelines v1.2 to the OS
	Fix Design Guidelines implementation in CBE implementation
	Deprecate Serializer* and XmlSerializer* interface definitio
	Add the new query pattern in the javax.oss.JVTSession interf
	Add update procedure methods in in the javax.oss.JVTSession
	New exception model
	Bug ID: 6293880 Issues in CBE XML Schemas
	Split the CBE jar into jars: One jar per package name (under
	Bug ID: 6307589: AlarmType enumeration should be integer

	Bug ID: 6294417 Use boolean instead of Boolean in interface
	Bug ID 6307648 Re-align the SID and CBE for SLA package
	Bug ID: 6308263 Invalid field description in javax.oss.cbe.p
	Bug ID 6312124: RFE: replacement of ThresholdInfo with Alar
	Bug ID 6267195: PerformanceMonitorValueImpl not initialized
	Bug ID: 6308261 Move TroubleTicketValue to CBE

	Rejected changes
	Bug ID 6309694: Missing get/setManagedObjectClass and Manage
	Bug ID 6310400: Breaks Key/Value pair paradigm to reduce the
	Deferred Changes from Common v1.1
	Relocation of the (JSR 130) activity package
	Improve Weakly Typed Arguments

