PUBLIC DRAFT

Web Services for J2EE, Version 1.1

Please send technical comments to: wsee-spec-comments@us.ibm.com
Please send business comments to: swolfe@us.ibm.com

Specification Leads:
Jim Knutson

Heather Kreger

Public Draft 2 October 10, 2002

PUBLIC DRAFT

You have chosen to download Web Services for J2EE Specification Public Draft 2
Web Services for J2EE Specification ("Specification")

Version: 1.1

Status: Public Draft 2

Specification Lead: IBM Corporation ("Specification Lead")

Release: 10 October 2002

Copyright © 2002IBM, Inc.

All rights reserved.

NOTICE

The Specification is protected by copyright and the information described therein may be protected by one or
more U.S. patents, foreign patents, or pending applications. Except as provided under the following license,
no part of the Specification may be reproduced in any form by any means without the prior written
authorization of the Specification Lead and its licensors, if any. Any use of the Specification and the
information described therein will be governed by the terms and conditions of this license, the Legal Terms as
set forth in the Specification Lead website and any applicable export control laws and regulations. By
viewing, downloading or otherwise copying the Specification, you agree that you have read, understood, and
will comply with all of the terms and conditions set forth herein.

Subject to the terms and conditions of this license, the Specification Lead hereby grants you a fully-paid, non-
exclusive, non-transferable, worldwide, limited license (without the right to sublicense) under Specification
Lead intellectual property rights to review the Specification internally for the purposes of evaluation only.
Other than this limited license, you acquire no right, title or interest in or to the Specification or any other
intellectual property of the Specification Lead. The Specification contains the proprietary and confidential
information of Specification Lead and may only be used in accordance with the license terms set forth herein.
This license will expire ninety (90) days from the date of Release listed above and will terminate immediately
without notice from Specification Lead if you fail to comply with any provision of this license. Upon
termination, you must cease use of or destroy the Specification.

TRADEMARKS

No right, title, or interest in or to any trademarks, service marks, or trade names of Sun or Sun’s licensors, the
Specification Lead or the Specification Lead’s licensors is granted hereunder. Sun, Sun Microsystems, the
Sun logo, Java, and the Java Coffee Cup logo are trademarks or registered trademarks of Sun Microsystems,
Inc. in the U.S. and other countries. IBM and the IBM eight bar logo are trademarks or registered trademarks
of International Business Machines Corporation in the United States and/or other countries. Other company,
product, and service names may be trademarks or service marks of others.

DISCLAIMER OF WARRANTIES

THE SPECIFICATION IS PROVIDED "AS IS" AND IS EXPERIMENTAL AND MAY CONTAIN
DEFECTS OR DEFICIENCIES WHICH CANNOT OR WILL NOT BE CORRECTED BY THE
SPECIFICATION LEAD. THE SPECIFICATION LEAD MAKES NO REPRESENTATIONS OR
WARRANTIES, EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO,
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NON-
INFRINGEMENT THAT THE CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY
PURPOSE OR THAT ANY PRACTICE OR IMPLEMENTATION OF SUCH CONTENTS WILL NOT
INFRINGE ANY THIRD PARTY PATENTS, COPYRIGHTS, TRADE SECRETS OR OTHER RIGHTS.
This document does not represent any commitment to release or implement any portion of the Specification
in any product.

THE SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL
ERRORS. CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION THEREIN; THESE

10/10/02 7:22 AM VERSION 1.1 PAGE 2 OF 87

PUBLIC DRAFT

CHANGES WILL BE INCORPORATED INTO NEW VERSIONS OF THE SPECIFICATION, IF ANY.
THE SPECIFICATION LEAD MAY MAKE IMPROVEMENTS AND/OR CHANGES TO THE
PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED IN THE SPECIFICATION AT ANY TIME.
Any use of such changes in the Specification will be governed by the then-current license for the applicable
version of the Specification.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL THE SPECIFICATION LEAD
OR ITS LICENSORS BE LIABLE FOR ANY DAMAGES, INCLUDING WITHOUT LIMITATION,
LOST REVENUE, PROFITS OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL,
INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE
THEORY OF LIABILITY, ARISING OUT OF OR RELATED TO ANY FURNISHING, PRACTICING,
MODIFYING OR ANY USE OF THE SPECIFICATION, EVEN IF THE SPECIFICATION LEAD
AND/OR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You will indemnify, hold harmless, and defend the Specification Lead and its licensors from any claims based
on your use of the Specification for any purposes other than those of internal evaluation, and from any claims
that later versions or releases of any Specification furnished to you are incompatible with the Specification
provided to you under this license.

RESTRICTED RIGHTS LEGEND

If this Software is being acquired by or on behalf of the U.S. Government or by a U.S. Government prime
contractor or subcontractor (at any tier), then the Government’s rights in the Software and accompanying
documentation shall be only as set forth in this license; this is in accordance with 48 C.F.R. 227.7201 through
227.7202-4 (for Department of Defense (DoD) acquisitions) and with 48 C.F.R. 2.101 and 12.212 (for non-
DoD acquisitions).

REPORT

You may wish to report any ambiguities, inconsistencies or inaccuracies you may find in connection with
your evaluation of the Specification ("Feedback"). To the extent that you provide the Specification Lead with
any Feedback, you hereby: (i) agree that such Feedback is provided on a non-proprietary and non-confidential
basis, and (ii) grant the Specification Lead a perpetual, non-exclusive, worldwide, fully paid-up, irrevocable
license, with the right to sublicense through multiple levels of sublicensees, to incorporate, disclose, and use
without limitation the Feedback for any purpose related to the Specification and future versions,
implementations, and test suites thereof.

10/10/02 7:22 AM VERSION 1.1 PAGE 3 OF 87

PUBLIC DRAFT

Table of Contents

T INEOAUCTION.....ceeieci e e e 9
1.1 Target AUAIENCE..........oocueeee e 9
1.2 Acknowledgements...........cooveieeie e 9
1.3 Specification Organization..............ccccceeeeeievevece e 9
14 Document CONVENLIONS.cccrirreerineeeereeere s 10

D O] o] = Tox ()= TSR SRRSO 11
211 Client Model GOalS.........cccoereirrieininiereeees e 11
2.1.2 Service Development Goals...........cocceeeeeeeceiecececeeie e 11
2.1.3 Service Deployment Goals...........cccceeeeeveieeeieeeesese e 12
214 Service Publication Goals............cccccveinneinncinnieceee 12
215 Web Services Registry Goalsccccceevveveieceiiecieciecesene 12

3 OVEIVIEBW. ..ottt 13
31 Web Services Architecture OVerviewccccoveevvneenneiinennee 13
3.2 WED SEIVICE ..ottt 13
3.3 Web Services for J2EE Overview.........c.cooccvveeniecnneseseneens 14
3.3.1 Web Service COMPOoNeNtsccccovererineneiesee e 15
3.3.2 Web Service Containers.........ocooevireneneeesee e 15
34 Platform ROIES..........coiieriie e 15
3.5 POMabIlitycovoveeeeeeiieeeeer s 16
3.6 Standard ServiCeS.........cviriirereire e 16
3.6.1 JAXARPC ...ttt 16
3.7 INteroperabilityccoireererereree s 16
3.8 RS Ter] TSRS 16
3.8.1 RS TeTo] o 1TSS 16
3.8.2 NOLIN SCOPE ...ttt 17
3.9 Web Service Client VIEW ..o 17

10/10/02 7:22 AM VERSION 1.1

PAGE 4 OF 87

PUBLIC DRAFT

3.10 Web Service Server VIEW..........cccvvveeeeieneee e seeneneens 18
Client Programming Model...........cocvoviriiinieee e 19
41 CONCEPLS ...ttt s b e nes 19
4.2 SPECIICALION ..ot e 20
421 SErviCe LOOKUPocveeieeeeeieeeeie ettt 20
422 Service INterface ..o 21
423 Port Stub and Dynamic ProXyccccceecvveveceeceecece e 23
424 JAX RPC Properti€sccocveeeeveereieieeseseeeesessesressesesnennens 24
425 JAX-RPC Custom Serializers / Deserializers..............coccvenne. 24
426 = Tor = o1 oo [P 24
Server Programming Model...........cccoeiieiieiiecieceeeeeeeeee e 25
5.1 B08IS ...t 25
5.2 L070] g Tet=T o) TS 25
5.3 Port Component Model Specificationcccccoeevvveverenceeiennnns 26
5.31 Service Endpoint Interfacecooeeeeveevevecicceeesesese s 27
5.3.2 Service Implementation Beanccccceceveeeiecieceecese e 27
5.3.3 Service Implementation Bean Life Cycle.........c.cccceovvrenennn. 29
534 JAX-RPC Custom Serializers / Deserializers............c.cccvuene.e. 30
54 Packaging.......cccoererriiiere e 30
54.1 EJB Module Packagingccocuveererenneneneeneneecsie e 30
54.2 Web App Module Packaging..........ccccoeeerinenerieneneicneneeeenns 30
543 Assembly within an EARfile.........cccooieinniniiee 30
5.5 TranNSACHONScceevireeeeeere e 31
5.6 Container Provider Responsibilitiescccvereiniinennenee. 31
HANAIETS ... 32
6.1 1070l gTo7= o] =TSSR 32
6.2 SPECIfICALION ... e 33

10/10/02 7:22 AM VERSION 1.1

PAGE 5 OF 87

PUBLIC DRAFT

6.2.1 SCENAMOS.ceivieieteereeiere ettt 33
6.2.2 Programming Modelccooeieoiecieecece e 33
6.2.3 Developer Responsibilitiescccocveceeeeececcee e 35
6.24 Container Provider Responsibilitiesccccceeveeeeccieniennee. 36
6.3 Packaging.......ccoeeeeiieiieseese e 36
6.4 Object Interaction Diagrams...........cccceeeveeveeseneceeeeceese e 37
6.4.1 Client Web service method access...........cccoveeererienenicrcneneenen. 38
6.4.2 EJB Web service method invocationccooeeeeeneneccnnenee 38
Deployment DESCHPIOrScoccuieiiieeceeeee e 40
7.1 Web Services Deployment Descriptor...........ccccevvveceeeecieseenene 40
711 OVEIVIEW.....onitiiieteertee ettt 40
7.1.2 Developer responsibilities............cccccevveviieieccieceece e 40
7.1.3 Assembler responsibilitiescccccereeeiieieceeerec e 41
714 Deployer responsibilities............cceeeeeveresiese e 41
7.1.5 Web Services Deployment Descriptor XML Schema............. 42
7.2 Service Reference Deployment Descriptor Information 50
7.21 OVEIVIEBW....c.tieeete ettt 50
722 Developer responsibilities............ccovverrnenerereseece 50
723 Assembler responsibilitiesoccoeirernirennee e 50
724 Deployer responsibilities............ccoceovereeneneneererecrerece 51
725 Web Services Client Service Reference XML Schema.......... 51
7.3 JAX-RPC Mapping Deployment Descriptorcccccveerereriennn 57
7.3.1 OVEIVIEBW....c.ieeeete et 57
7.3.2 Developer responsibilities. ..o 57
7.3.3 Assembler responsibilities ..o 59
734 Deployer responsibilities.............coerereirienennerere e 59
7.3.5 JAX-RPC Mapping DTD....cccoiririerereeeesee e 59

10/10/02 7:22 AM VERSION 1.1

PAGE 6 OF 87

PUBLIC DRAFT

8 DEPIOYMENT ...t 73
8.1 OVEIVIEW.....ouirieiiiete ittt 73
8.2 Container Provider requirements............cccccoceveeeeveecesecveeeen, 74
8.2.1 Deployment artifactscccceceeeeeececececeeeece e 74
8.2.2 Generate Web Service Implementation classes..................... 74
8.2.3 Generate deployed WSDLccooieveie v 75
8.24 Publishing the deployed WSDLcccccoeoevieeiecieciececeeee 75
8.2.5 Service and Generated Service Interface implementation..... 75
8.2.6 Static stub generationccooeeiiicevese e 75
8.2.7 TYPE MAPPINGS. .. eeueereieirietereeeeesteste e sreereseeeesses e sresresseesneneens 76
8.2.8 Mapping reqUIremMEeNts...........cccoeeeeeeecesese e 76
8.2.9 Deployment failure conditionsccccceeeveeeieeciecececeeee 76
8.3 Deployer responsibilities............cccceeeeveerecie i 76
S T 1Yot U) 78
9.1 LO70] g Tet=T o) TS 78
9.11 AUthentiCation...........cccoeiireic s 78
9.1.2 AULNOMIZALION........cotiiieceeee e 80
9.1.3 Integrity and Confidentialityccccooerriiieneiiiee 80
9.1.4 AUIE. .. 80
9.1.5 NON-Repudiationccvereerirere e 80
9.2 GOAIS ... e 80
9.2.1 ASSUMPLIONS ... e 81
9.3 SPECIfICALION ..o e 81
9.3.1 Authentication...........ccoi i 81
9.3.2 AULNOMIZALION. ...t 81
9.3.3 Integrity and Confidentiality ..o 81
Appendix A. Relationship to other Java Standards............ccccccevvnennene. 82

10/10/02 7:22 AM VERSION 1.1 PAGE 7 OF 87

PUBLIC DRAFT

Appendix B. Optional support for J2EE 1.3 platforms..........cccccceevenees 83
Appendix C. REFEIENCES ..o 84
Appendix D. ReVision HiStOryccccvveieeee e, 85
Appendix D.1. Version 1.1 Public Draftccccceeeieiiciieeiececee 85
Appendix D.2. Version 1.0 Final Release...........ccccoeeeevieceicecceecens 85
Appendix D.3. Version 0.95 Final Draftccccooveiiieieiecececeees 85
Appendix D.4. Version 0.94...........c.oooi e 85
Appendix D.5. Version 0.93..........ccooi i 85
Appendix D.6. Version 0.92..........cccooi i 85
Appendix D.7. Version 0.8.........cccooiiiiiiieese e 86
Appendix D.8. Version 0.7.......cccccoceiiieeeeiese et 86
Appendix D.9. Version 0.6.........cccccevieieeeiese e 86
Appendix D.10. Version 0.5........ccccevieieieeee e 86
Appendix D.11. Version 0.4 Expert Group Draft..........cccccecevvivreenenne 86

10/10/02 7:22 AM VERSION 1.1

PAGE 8 OF 87

PUBLIC DRAFT

1 Introduction

This specification defines the Web Services for J2EE architecture. This is a service architecture that leverages
the J2EE component architecture to provide a client and server programming model which is portable and
interoperable across application servers, provides a scalable secure environment, and yet is familiar to J2EE
developers.

1.1 Target Audience

This specification is intended to be used by:

e J2EE Vendors implementing support for Web services compliant with this specification

¢ Developers of Web service implementations to be deployed into J2EE application servers
» Developers of Web service clients to be deployed into J2EE application servers

* Developers of Web service clients that access Web service implementations deployed into J2EE
application servers

This specification assumes that the reader is familiar with the J2EE platform and specifications. It also
assumes that the reader is familiar with Web services, specifically the JAX-RPC Specification and WSDL
documents.

1.2 Acknowledgements

This specification’s origins are based on the vision of Donald F. Ferguson, IBM Fellow. It has been refined
by an industry wide expert group. The expert group included active representation from the following
companies: IBM, Sun, Oracle, BEA, Sonic Software, SAP, HP, Silverstream, IONA. We would like to thank
those companies along with other members of the JSR 109 expert group: EDS, Macromedia, Interwoven,
Rational Software, Developmentor, interKeel, Borland, Cisco Systems, ATG, WebGain, Sybase, Motorola,
and WebMethods. We particularly appreciate the amount of input and support provided by Mark Hapner
(Sun).

The JSR 109 expert group had to coordinate with other JSR expert groups in order to define a consistent
programming model for Web Service for J2EE. We would like to especially thank Rahul Sharma and the JSR
101 (JAX-RPC) expert group, Farukh Najmi and the JSR 093 (JAX-R) expert group, and Linda G.
DeMiichiel and the JSR 153 (EJB 2.1) expert group.

1.3 Specification Organization

The next two chapters of this specification outline the requirements and conceptual architecture for Web
services support in J2EE environments. Each of the major integration points for Web services in J2EE, the
client model, the server model, the deployment model, WSDL bindings, and security have their own chapter.
Each of these chapters consists of two topics: Concepts and Specification. The concepts section discusses
how Web services are used, issues, considerations, and the scenarios that are supported. The specification
section is normative and defines what implementers of this specification must support.

10/10/02 7:22 AM VERSION 1.1 PAGE 9 OF 87

PUBLIC DRAFT

1.4 Document conventions.

In the interest of consistency, this specification follows the document conventions used by the Enterprise
JavaBeans specification.

The regular Times font is used for information that is prescriptive by this specification.

The italic Times font is used for paragraphs that contain descriptive information, such as notes describing
typical use, or notes clarifying the text with prescriptive specification.

The Courier font is used for code exanpl es.

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",
"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are to be interpreted
as described in RFC 2119.

10/10/02 7:22 AM VERSION 1.1 PAGE 10 OF 87

PUBLIC DRAFT

2 Obyectives

This section lists the high level objectives of this specification.

2.1.1

Build on the evolving industry standards for Web services, specifically WSDL 1.1 and SOAP 1.1.
Leverage existing J2EE technology.

Ensure that programmers may implement and package Web services that properly deploy onto
application servers that comply with J2EE and this specification.

Ensure that vendor implementations of this specification inter-operate, i.e. a Web service client on
one vendor’s implementation must be able to interact with Web services executing on another
vendors implementation.

Define the minimal set of new concepts, interfaces, file formats, etc. necessary to support Web
services within J2EE.

Clearly and succinctly define functions that J2EE application server vendors need to provide.

Define the roles that this specification requires, the functions they perform and their mapping to
J2EE platform roles. Define the functions that a Web Services for J2EE product provider must
provide to support these roles.

Support a simple model for defining a new Web service and deploying this into a J2EE application
server.

Client Model Goals

The client programming model should be conformant and compatible with the client programming model
defined by JAX-RPC.

Additional goals for the client programming model are to ensure that:

2.1.2

Programmers can implement Web services client applications conforming to this specification that may
reside in a J2EE container (e.g. an EJB that uses a Web service), or a J2EE Client Container can call a
Web service running in a Web Services for J2EE container.

Client applications conforming to this specification can call any SOAP 1.1 based Web service through
the HTTP 1.1 or HTTPS SOAP Bindings.

Programmers using other client environments such as Java 2 Standard Edition environment can call a
Web service running in a Web Services for J2EE container. Programmers using languages other than
Java must be able to implement SOAP 1.1 compliant applications that can use Web services conforming
to this specification. Support the Client Development Scenarios described in Chapter 4.

Client developers must not have to be aware of how the service implementation is realized.
Java 2 Micro Edition clients, defined by JSR 172, should be able to interoperate using the transport
standards declared within WSDL and the JAX-RPC runtime with Web Services for J2EE applications.

Service Development Goals

The service development model defines how web service implementations are to be developed and deployed
into existing J2EE containers and includes the following specific goals:

10/10/02 7:22 AM VERSION 1.1 PAGE 11 OF 87

2.14

215

PUBLIC DRAFT

How the Web service has been implemented should be transparent to the Web service client. A
client should not have to know if the Web service has been deployed in a J2EE or non-J2EE
environment.

Because the Web service implementation must be deployed in a J2EE container, the class
implementing the service must conform to some defined requirements to ensure that it does not
compromise the integrity of the application server.

JAX-RPC defines three server side run time categories, J2SE based JAX-RPC Runtime, Servlet
Container Based JAX-RPC Runtime, and J2EE Container Based JAX-RPC Runtime. This
specification defines the J2EE container based (Web and EJB) runtime such that it is consistent
with the Servlet Container based model defined by the JAX-RPC specification.

Support mapping and dispatching SOAP 1.1 requests to methods on J2EE Stateless Session Beans.
Support mapping and dispatching SOAP 1.1 requests to methods on JAX-RPC Service Endpoint
classes in the Web Container.

Service Deployment Goals

Web service deployment is declarative. We do this through extending the J2EE model for
deployment descriptors and EAR file format. These changes are minimized, however.

Web service deployment is supported on J2EE 1.4 environments. It is optionally supported on top
of existing J2EE 1.3 environments.

Deployment requires that a service be representable by WSDL. Deployment requires a WSDL file.
The deployment of Web services must support:

* those who wish to deploy a Web service as the focus of the deployment

* those who wish to expose existing, deployed J2EE components as a Web service
Service Publication Goals

Service deployment may publish the WSDL to the appropriate service registry, repository (if required by
the Web service), File, or URL.

If a Web service needs to be published by the deployment tools, all of the data required to perform the
publication must be provided in the deployment package or during the deployment process.

If any publication to UDDI is performed, the WSDL must also be made available at a URL.

Web Services Registry Goals

The Web services registry API and programming model is out of the scope of this specification. The Web
service implementation, Web service client, or Web service deployment tool may use any registry API
including JAX-R. JAX-R does not support WSDL publication directly. It does support interaction with
UDDI directories. UDDI.org specifies how to publish a WSDL described service to a UDDI directory.

This specification defines the service publication responsibilities of the deployment tool.

Service definition discovery (finding the WSDL to be implemented) during development or deployment of a
service implementation is not defined.

Service discovery during development, deployment, or runtime of service clients is not defined.

10/10/02 7:22 AM VERSION 1.1 PAGE 12 OF 87

PUBLIC DRAFT

3 Overview

This chapter provides an overview of Web services in general and how Web Services for J2EE fits into the
J2EE platform.

3.1 Web Services Architecture Overview

Web services is a service oriented architecture which allows for creating an abstract definition of a service,
providing a concrete implementation of a service, publishing and finding a service, service instance selection,
and interoperable service use. In general a Web service implementation and client use may be decoupled in a
variety of ways. Client and server implementations can be decoupled in programming model. Concrete
implementations may be decoupled in logic and transport.

Service

Registry

Find
WSDL + UDDI

Publish
WSDL + UDDI

Service

Requestor

« Figure 1 Service oriented architecture

The service provider defines an abstract service description using the Web Services Description Language
(WSDL). A concrete Service is then created from the abstract service description yielding a concrete service
description in WSDL. The concrete service description can then be published to a registry such as Universal
Description, Discovery and Integration (UDDI). A service requestor can use a registry to locate a service
description and from that service description select and use a concrete implementation of the service.

The abstract service description is defined in a WSDL document as a PortType. A concrete Service instance
is defined by the combination of a PortType, transport & encoding binding and an address as a WSDL port.
Sets of ports are aggregated into a WSDL service.

3.2 Web Service

There is no commonly accepted definition for a Web service. For the purposes of this specification, a Web
service is defined as a component with the following characteristics:

e A service implementation implements the methods of an interface that is describable by WSDL.
The methods are implemented using a Stateless Session EJB or JAX-RPC web component.

10/10/02 7:22 AM VERSION 1.1 PAGE 13 OF 87

PUBLIC DRAFT

e A Web service may have its interface published in one or more registries for Web services during

deployment.

e A Web Service implementation, which uses only the functionality described by this specification,

can be deployed in any Web Services for J2EE compliant application server.

* A service instance, called a Port, is created and managed by a container.

* Run-time service requirements, such as security attributes, are separate from the service
implementation. Tools can define these requirements during assembly or deployment.

e A container mediates access to the service.

JAX-RPC defines a programming model mapping of a WSDL document to Java which provides a factory
(Service) for selecting which aggregated Port a client wishes to use. See Figure 2 for a logical diagram. In
general, the transport, encoding, and address of the Port are transparent to the client. The client only needs to
make method calls on the Service Endpoint Interface, as defined by JAX-RPC, (i.e. PortType) to access the

service. See Chapter 4 for more details.

Container

Port

Service

. Endpoint
Client rface

Interface

« Figure 2 Client view

3.3 Web Services for J2EE Overview

The Web Services for J2EE specification defines the required architectural relationships as shown in Figure 3.
This is a logical relationship and does not impose any requirements on a container provider for structuring
containers and processes. The additions to the J2EE platform include a port component that depends on
container functionality provided by the web and EJB containers, and the SOAP/HTTP transport.

10/10/02 7:22 AM VERSION 1.1

PAGE 14 OF 87

PUBLIC DRAFT

Applet Container

SOAP/HTTP, ...,
other bindinqs

Web Container EJB Container

.| €&
HTTP/SSL @ RMI/IIOP

EI
3| Mail

dolnnwy
[osar |

A
ol
a5l g
=|| @
Of| Of

o

J2EE Server Core

J2EE Server Core

J2EE Server Core
/)

RMI/IOP

« Figure 3 J2EE architecture diagram

Web Services for J2EE requires that a Port be referencable from the client, web, and EJB containers. This
specification does not require that a Port be accessible from the applet container.

This specification adds additional artifacts to those defined by JAX-RPC that may be used to implement Web
services, a role based development methodology, portable packaging and J2EE container services to the Web
services architecture. These are described in later sections.

33.1 Web Service Components

This specification defines two means for implementing a Web service, which runs in a J2EE environment, but
does not restrict Web service implementations to just those means. The first is a container based extension of
the JAX-RPC programming model which defines a Web service as a Java class running in the web container.
The second uses a constrained implementation of a stateless session EJB in the EJB container. Other service
implementations are possible, but are not defined by this specification.

3.3.2 Web Service Containers

The container provides for life cycle management of the service implementation, concurrency management of
method invocations, and security services. A container provides the services specific to supporting Web
services in a J2EE environment. This specification does not require that a new container be implemented.
Existing J2EE containers may be used and indeed are expected to be used to host Web services. Web service
instance life cycle and concurrency management is dependent on which container the service implementation
runs in. A JAX-RPC Service Endpoint implementation in a web container follows standard servlet life cycle
and concurrency requirements and an EJB implementation in an EJB container follows standard EJB life
cycle and concurrency requirements.

3.4 Platform Roles

This specification defines the responsibilities of the existing J2EE platform roles. There are no new roles
defined by this specification. There are two roles specific to Web Services for J2EE used within this
specification, but they can be mapped onto existing J2EE platform roles. The Web Services for J2EE product
provider role can be mapped to a J2EE product provider role and the Web services container provider role can
be mapped to a container provider role within the J2EE specification.

10/10/02 7:22 AM VERSION 1.1 PAGE 15 OF 87

PUBLIC DRAFT

In general, the developer role is responsible for the service definition, implementation, and packaging within a
J2EE module. The assembler role is responsible for assembling the module into an application, and the
deployer role is responsible for publishing the deployed services and resolving client references to services.
More details on role responsibilities can be found in later sections.

3.5 Portability

A standard packaging format, declarative deployment model, and standard run-time services provide
portability of applications developed using Web services. A Web services specific deployment descriptor
included in a standard J2EE module defines the Web service use of that module. More details on Web
services deployment descriptors can be found in later chapters. Deployment tools supporting Web Services
for J2EE are required to be able to deploy applications packaged according to this specification.

Web services container providers may provide support for additional service implementations and additional
transport and encoding bindings at the possible expense of application portability.

3.6 Standard Services

The J2EE platform defines a set of standard services a J2EE provider must supply. The Web Services for
J2EE specification identifies an additional set of run-time services that are required.

3.6.1 JAX-RPC

JAX-RPC provides run-time services for marshalling and demarshalling Java data and objects to and from
XML SOAP messages. In addition, JAX-RPC defines the WSDL to Java mappings for a Service Endpoint
Interface and a Service class.

3.7 Interoperability

This specification extends the interoperability requirements of the J2EE platform by defining interoperability
requirements for products that implement this specification on top of J2EE™. The interoperability
requirements rely on the interoperability of existing standards that this specification depends on.

The specification builds on the evolving work of the following JSRs and specifications:
e JSR 101, Java™ API for XML-based RPC (JAX-RPC)

e Java 2 Platform Enterprise Edition Specification

* Enterprise JavaBeans Specification

e Java Servlet Specification

3.8 Scope

The following sections define the scope of what is and what is not covered by this specification.

3.8.1 Scope

e The scope of this specification is limited to Web service standards that are widely documented and
accepted in the industry. These include:

e SOAP 1.1 and SOAP with Attachments

10/10/02 7:22 AM VERSION 1.1 PAGE 16 OF 87

3.8.2

PUBLIC DRAFT

« WSDL 1.1
« UDDI1.0

This specification is limited to defining support for SOAP over HTTP 1.1 or HTTPS protocols and
communication APIs for Web services (vendors are free to support additional transports).

These standards are expected to continue to change and evolve. Future versions of this
specification will accommodate and address future versions of these standards. In this
specification, all references to SOAP, WSDL, and UDDI are assumed to be the versions defined
above.

Not in Scope

The most glaring deficiency of SOAP over HTTP is basic reliable message semantics. Despite this
deficiency, this JSR does not consider Message Reliability or Message Integrity to be in scope.
Other JSRs, like the evolution and convergence of JAX-M and JMS, as well as activities in W3C
and other standard bodies will define these capabilities.

Persistence of XML data.
Workflow and data flow models.
Arbitrary XML transformation.

Client programming model for Web service clients that do not conform to this specification.

3.9 Web Service Client View

The client view of a Web service is quite similar to the client view of an Enterprise JavaBean. A client of a
Web service can be another Web service, a J2EE component, including a J2EE application client, or an
arbitrary Java application. A non-Java application or non-Web Services for J2EE application can also be a
client of Web service, but the client view for such applications is out of scope of this specification.

The Web service client view is remotable and provides local-remote transparency.

The Port provider and container together provide the client view of a Web service. This includes the
following:

Service interface

Service Endpoint interface

The JAX-RPC Handler interface is considered a container SPI and is therefore not part of the client view.

CIient

Container

Port

Service
Endpoint
Interface

Service

Figure 4 Web Service Client View

The Service Interface defines the methods a client may use to access a Port of a Web service. A client does
not create or remove a Port. It uses the Service Interface to obtain access to a Port. The Service interface is
defined by the JAX-RPC specification, but its behavior is defined by a WSDL document supplied by the Web

10/10/02 7:22 AM VERSION 1.1 PAGE 17 OF 87

PUBLIC DRAFT

service provider. The container’s deployment tools provide an implementation of the methods of the Service
Interface or the JAX-RPC Generated Service Interface.

A client locates a Service Interface by using JNDI APIs. This is explained further in Chapter 4.

A Web service implementation is accessed by the client using the Service Endpoint Interface. The Service
Endpoint Interface is specified by the service provider. The deployment tools and container run-time provide
server side classes which dispatch a SOAP request to a Web service implementation which implements the
methods of the Service Endpoint Interface. The Service Endpoint Interface extends the
j ava. rm . Renot e interface and is fully defined by the JAX-RPC specification.

A Port has no identity within the client view and is considered a stateless object.

3.10 Web Service Server View

Chapter 5 Server Programming Model defines the details of the server programming model. This section
defines the general requirements for the service provider.

The service provider defines the WSDL PortType, WSDL binding, and Service Endpoint Interface of a Web
service. The PortType and Service Endpoint Interface must follow the JAX-RPC rules for WSDL->Java and
Java->WSDL mapping.

The service provider defines the WSDL service and aggregation of ports in the WSDL document.
The business logic of a Web service is implemented by a service provider in one of two different ways:

1. A Stateless SessionBean: The service provider implements the Web service business logic by
creating a stateless session Bean that implements the methods of the Service Endpoint Interface
as described in the Enterprise JavaBeans 2.1 specification.

2. A Java class: The service provider implements the Web service business logic according to the
requirements defined by the JAX-RPC Servlet based service implementation model.

The life cycle management of a Web service is specific to the service implementation methodology.

The service provider implements the container callback methods specific to the service implementation
methodology used. See the JAX-RPC specification and Enterprise JavaBeans specification for details on the
container callback methods.

The container manages the run-time services required by the Web service, such as security. A Web service
does not execute under a global transaction context. If the client accesses a Port with a transaction context, it
will be suspended before the Port is accessed.

Service providers must avoid programming practices that interfere with container operation. These
restrictions are defined by the J2EE, Servlet, and EJB specifications.

Packaging of a Web service in a J2EE module is specific to the service implementation methodology, but
follows the J2EE requirements for an EJB-JAR file or WAR file. It contains the Java class files of the Service
Endpoint Interface and WSDL documents for the Web service. In addition it contains an XML deployment
descriptor which defines the Web service Ports and their structure. Packaging requirements are described in
Section 5.4 Packaging.

10/10/02 7:22 AM VERSION 1.1 PAGE 18 OF 87

PUBLIC DRAFT

4 Client Programming Model

This chapter defines the client programming model of Web Services for J2EE. In general, the client
programming model is covered in detail by the JAX-RPC specification. This specification covers the use of
the JAX-RPC client programming model in a J2EE environment.

Differences between this specification and the JAX-RPC specification will be noted in this style.

4.1 Concepts

Clients of Web services are not limited to clients defined within this specification, however the client
programming model for non-Web Services for J2EE clients is not specifically addressed by this specification.
In general, the WSDL definition of a Web service provides enough information for a non-Web Services for
J2EE client to be built and run, but the programming model for that is undefined. The rest of this chapter
covers the programming model for Web Services for J2EE clients. It makes no assumption on whether the
Web service implementation invoked by the client is hosted by a Web Services for J2EE run-time or some
external run-time.

A client uses the Web Services for J2EE run-time to access and invoke the methods of a Web service. A
client can be any of the following: J2EE application client, web component, EJB component, or another Web
service.

The client view of a Web service is a set of methods that perform business logic on behalf of the client. A
client cannot distinguish whether the methods are being performed locally or remotely, nor can the client
distinguish how the service is implemented. Lastly, a client must assume that the methods of a Web service
have no state that is persistent across multiple Web service method invocations. A client can treat the Web
service implementation as stateless.

A client accesses a Web service using a Service Endpoint Interface as defined by the JAX-RPC specification.
A reference to the Web service implementation should never be passed to another object. A client should
never access the Web service implementation directly. Doing so bypasses the container’s request processing
which may open security holes or cause anomalous behavior.

A client uses JNDI lookup to access a Service object that implements the Service Interface as defined by the
JAX-RPC specification. The Service object is a factory used by the client to get a stub or proxy that
implements the Service Endpoint Interface. The stub is the client representation of an instance of the Web
service.

The Service Interface can be a generic j avax. Xxm . r pc. Ser vi ce interface or a Generated Service
Interface, which extends j avax. xm . r pc. Ser vi ce, as defined by JAX-RPC. Further references in this
document to the Service Interface refer to either the generic or generated version, unless noted otherwise.

The client has no control over the life cycle of the Web service implementation on the server. A client does
not create or destroy instances of a Web service, which is referred to as a Port. The client only accesses the
Port. The life cycle of the Ports, or instances of a Web service implementation, are managed by the run-time
that hosts the Web service. A Port has no identity. This means that a client cannot compare a Port to other
Ports to see if they are the same or identical, nor can a client access a specific Port instance. A client cannot
tell if a server crashes and restarts if the crash and restart complete in between Web service access.

A client developer starts with the Service Endpoint Interface and Service Interface. How a developer obtains
these is out of scope, but includes having the Web service provider supply them or tools generate them from a
WSDL definition supplied by the Web service provider. These tools operate according to the JAX-RPC rules

10/10/02 7:22 AM VERSION 1.1 PAGE 19 OF 87

PUBLIC DRAFT

for WSDL->Java mapping. A client developer does not need to generate stubs during development, nor are
they encouraged to do so. The client should use the interfaces, and not the stubs. Stubs will be generated
during deployment and will be specific to the vendor’s run-time the client will run in.

Each client INDI lookup of a Web service is by a logical name. A client developer chooses the logical name
to be used in the client code and declares it along with the required Service Interface in a Web service client
deployment descriptor. The client should use the interfaces, and not the stubs.

The Service Interface methods can be categorized into two groups: stub/proxy and DII. The stub/proxy
methods provide both service specific (client requires WSDL knowledge) and service agnostic (does not
require WSDL knowledge) access to Ports. The DII methods are used when a client needs dynamic, non-stub
based communication with the Web service.

A client can use the stub/proxy methods of the Service Interface to get a Port stub or dynamic proxy. The
WSDL specific methods can be used when the full WSDL definition of the service is available to the client
developer. The WSDL agnostic methods must be used if the client developer has a partial WSDL definition
that only contains only the portType and bindings.

4.2 Specification

The following sections define the requirements for J2EE product providers that implement Web Services for
J2EE and developers for creating applications that run in such an environment.

421 Service Lookup

The client developer is required to define a logical JNDI name for the Web service called a service reference.
This name is specified in the deployment descriptor for the client. It is recommended, but not required that all
service reference logical names be organized under the ser vi ce subcontext of a JNDI name space. The
container must bind the Service Interface implementation under the client’s environment context,
j ava: conp/ env, using the logical name of the service reference. In the following examples, the
logical service name declared in the client deployment descriptor is Ser vi ce/ Addr essBookSer vi ce.

The container acts as a mediator on behalf of the client to ensure a Service Interface is available via a JNDI
lookup. More specifically, the container must ensure that an implementation of the required Service Interface
is bound at a location in the JNDI namespace of the client’s choosing as declared by the service reference in
the Web services client deployment descriptor. This is better illustrated in the following code segment:

Initial Context ic = new Initial Context ();
Service abf = (Service)ic.|ookup(
"j ava: conp/ env/ servi ce/ Addr essBookSer vi ce");

In the above example, the container must ensure that an implementation of the generic Service Interface,
javax. xm . rpc. Servi ce, is bound in the JNDI name space at a location specified by the developer. A
similar code fragment is used for access to an object that implements a Generated Service Interface such as
AddressBookService.

Initial Context ic = new Initial Context ();
Addr essBookSer vi ce abf = (AddressBookService)i c. | ookup(
"j ava: conp/ env/ servi ce/ Addr essBookServi ce");

A J2EE product provider is required to provide Service lookup support in the web, EJB, and application client
containers.

10/10/02 7:22 AM VERSION 1.1 PAGE 20 OF 87

PUBLIC DRAFT

4.2.2 Service Interface

The Service Interface is used by a client to get a stub or dynamic proxy or a DII Call object for a Port. A
container provider is required to support all methods of the Service interface except for the
getHandlerRegistry() and getTypeMappingRegistry() methods as described in sections 4.2.2.8 and 4.2.2.9.

A client developer must declare the Service Interface type used by the application in the client deployment
descriptor. The Service Interface represents the deployed WSDL of a service.

4221 Stub/proxy access

The client may use the following Service Interface methods to obtain a static stub or dynamic proxy for a
Web service:

java.rm . Renote get Port (Q\ane port Nane, d ass servi ceEndpoi nt | nt erface)
throws Servi ceExcepti on;

java.rm . Renote getPort (java.lang. d ass servi ceEndpoi nt | nt er f ace)
throws Servi ceExcepti on;

The client may also use the additional methods of the Generated Service Interface to obtain a static stub or
dynamic proxy for a Web service.

The container must provide at least one of static stub or dynamic proxy support for these methods as
described in section 4.2.3. The container must ensure the stub or dynamic proxy is fully configured for use by
the client, before it is returned to the client. The deployment time choice of whether a stub or dynamic proxy
is returned by the get Port or get <port nanme> methods is out of the scope of this specification.
Container providers are free to offer either one or both.

The container provider must provide Port resolution for the
get Port (java.l ang. d ass servi ceEndpoi ntInterface) method. This is useful for
resolving multiple WSDL ports that use the same binding or when ports are unknown at development time. A
client must declare its dependency on container Port resolution for a Service Endpoint Interface in the client
deployment descriptor. If a dependency for resolving the interface argument to a port is not declared in the
client deployment descriptor, the container may provide a default resolution capability or throw a
ServiceException.

4.2.2.2 Dynamic Port access

A client may use the following DII methods of a Service Interface located by a JNDI lookup of the client’s
environment to obtain a Call object:

Call createCall () throws ServiceException;

Cal| createCall (Q\arme portName) throws ServiceException;

Cal| createCall (Q\Narme portName, String operationNanme) throws
Ser vi ceExcept i on;

Cal | createCall (Q\ame portName, Q\ame operationNane) throws
Ser vi ceExcept i on;

Cal I[] getCalls(@\ame portNane) throws ServiceException;

A DII Call object may or may not be pre-configured for use depending on the method used to obtain it. See
the JAX-RPC specification for details.

10/10/02 7:22 AM VERSION 1.1 PAGE 21 OF 87

PUBLIC DRAFT

4.2.2.3 ServiceFactory

Use of the JAX-RPC Ser vi ceFact or y class is not recommended in a Web Services for J2EE product. A
Web Services for J2EE client must obtain a Service Interface using JNDI lookup as described in section 4.2.1.
Container providers are not required to support managed Service instances created from a ServiceFactory.

4224 Service method use with full WSDL

A client developer may use all methods of the Service Interface (except as described in sections 4.2.2.8 and
4.2.29) if a full WSDL description and JAX-RPC mapping file are declared in the client deployment
descriptor. The port address location attribute may be absent from the WSDL or may be a dummy value.

If a client developer uses the getPort(SEI) method of a Service Interface and the WSDL supports multiple
ports the SEI could be bound to, the developer can indicate to a deployer a binding order preference by
ordering the ports in the service-ref’s WSDL document.

4.2.2.5 Service method use with partial WSDL

A client developer may use the following methods of the Service Interface if a partial WSDL definition is
declared in the client deployment descriptor:

Call createCall () throws ServiceException;

java.rm . Renote getPort (java.lang. d ass servi ceEndpoi ntlnterface) throws
Ser vi ceExcept i on;

javax. xm . nanespace. QNane get Servi ceNane() ;

java.util.lterator getPorts() throws ServiceException;

java. net . URL get WSDLDocunent Locat i on()

A partial WSDL definition is defined as a fully specified WSDL document which contains no service or port
elements. The JAX-RPC mapping file specified by the developer will not include a service-
i nt erface-mappi ng in this case.

Use of other methods of the Service Interface is not recommended when a developer specifies a partial
WSDL definition. The behavior of the other methods is unspecified.

The container must provide access to all SEIs declared by the port - conponent - r ef elements of the
servi ce-ref through the getPort(SEI) method.

4226 Service method use with no WSDL

A client developer may use the following methods of the Service Interface if no WSDL definition is specified
in the client deployment descriptor:

Call createCall () throws ServiceException;

If the wsdl - fi | e is not specified in the deployment descriptor, the j axr pc- mappi ng-fi | € must not
be specified.

Use of other methods of the Service Interface is not recommended. Their behavior is unspecified.

4227 Service Interface method behavior

The following table summarizes the behavior of the methods of the Service Interface under various
deployment configurations.

10/10/02 7:22 AM VERSION 1.1 PAGE 22 OF 87

PUBLIC DRAFT

« Table 1 Service Interface method behavior

Method Full WSDL Partial WSDL ‘ No WSDL ‘
Call createCall() Normal Normal Normal
Call createCall(QName port) Normal Unspecified Unspecified
Call createCall(QName port, QName operation) Normal Unspecified Unspecified
Call createCall(QName port, String operation) Normal Unspecified Unspecified
Call[] getCalls(QName port) Normal Unspecified Unspecified
HandlerRegistry getHandlerRegistry() Exception’ Exception’ Exception'
Remote getPort(Class SEI) Normal Normal Unspecified
Remote getPort(QName port, Class SEI) Normal Unspecified Unspecified
Iterator getPorts() Bound ports Bound ports Unspecified
QName getServiceName() Bound service Bound service Unspecified
name name
TypeMappingRegistry getTypeMappingRegistry() Exception' Exception' Exception'
URL getWSDLDocumentLocation() Bound WSDL Bound WSDL Unspecified
location location

ISee sections 4.2.2.8 and 4.2.2.9.
4.2.2.8 Handlers

Components should not use the get Handl er Regi st ry() method. A container provider must throw a
java. |l ang. Unsupport edQper at i onExcept i on from the get Handl er Regi st ry() method
of the Service Interface. Handler support is documented in Chapter 6 Handlers.

4229 Type Mapping

Components should not use the get TypeMappi ngRegi st ry() method. A container provider must
throw a java.lang.UnsupportedOperationException from the get TypeMappi ngRegi st ry() method of
the Service Interface.

423 Port Stub and Dynamic Proxy

The following sections define the requirements for implementing and using static Stubs and Dynamic
Proxies.

4.2.3.1 |dentity

The Port Stub and Dynamic Proxy are a client’s representation of a Web service. The Port that a stub or proxy
communicates with has no identity within the client view. The equals() method cannot be used to compare
two stubs or proxy instances to determine if they represent the same Port. The results of the equal s() ,
hash(), and toString() methods for a stub are unspecified. There is no way for the client to ensure
that a Port Stub, Dynamic Proxy, or Call will access a particular Port instance or the same Port instance for
multiple invocations.

10/10/02 7:22 AM VERSION 1.1 PAGE 23 OF 87

PUBLIC DRAFT

4.2.3.2 Type narrowing

Although the stub and dynamic proxy classes are considered Remote objects, a client is not required to use
Port abl eRenot e(bj ect. narrow...). However, clients are encouraged to use
Por t abl eRenot eChj ect . nar r ow(...) to prevent confusion with client use of other Remote objects.

424 JAX RPC Properties

The J2EE container environment provides a broader set of operational characteristics and constraints for
supporting the Stub/proxy properties defined within JAX-RPC. While support of the JAX-RPC required
standard properties for Stub and Call objects is required, their use may not work in all cases in a J2EE
environment.

The following properties are not recommended for use in a managed context defined by this specification:
e javax.xm .rpc.security.auth.usernane

e javax.xm .rpc.security.auth. password

4241 Required properties

A container provider is required to support the j avax. xml . r pc. servi ce. endpoi nt . addr ess
property to allow components to dynamically redirect a Stub/proxy to a different URI.

4.2.5 JAX-RPC Custom Serializers / Deserializers

The use of JAX-RPC custom serializers / deserializers is out of scope for this version of the specification.
JAX-RPC customer serializers / deserializers are not portable across Web Services for J2EE providers and are
therefore not included as part of the portable deployment unit. It is expected that vendors will provide
proprietary solutions to this problem until it has been addressed by a future version of JAX-RPC.

4.2.6 Packaging

The developer is responsible for packaging, either by containment or reference (i.e. by using the MANIFEST
ClassPath to refer to other JAR files that contain the required classes), the class files for each Web service
including the: Service Endpoint Interface classes, Generated Service Interface class (if used), and their
dependent classes. The following files must also be packaged in the module: WSDL files, JAX-RPC
Mapping files, and a Web services client deployment descriptor in a J2EE module. The location of the Web
services client deployment descriptor in the module is module specific. WSDL files are located relative to the
root of the module and are typically co-located with the module’s deployment descriptor. JAX-RPC Mapping
Files are located relative to the root of the module and are typically co-located with the WSDL file. The
developer must not package generated stubs.

10/10/02 7:22 AM VERSION 1.1 PAGE 24 OF 87

PUBLIC DRAFT

5 Server Programming Model

This chapter defines the server programming model for Web Services for J2EE. A WSDL document defines
the interoperability of Web services and includes the specification of transport and wire format requirements.
In general, WSDL places no requirement on the programming model of the client or the server. Web Services
for J2EE defines two methods of implementing a Web service. It requires the JAX-RPC Servlet container
based Java class programming model for implementing Web services that run in the web container and it
requires the Stateless Session EJB programming model for implementing Web services that run in the EJB
container. These two implementation methods provide a means for defining a Port component to bring
portable applications into the Web Services programming paradigm. This specification also requires that a
developer be able to start simple and grow up to use more complex qualities of service. The following
sections define the requirements for Port components.

5.1 Goals

Port components address the following goals:
* Provide a portable Web services programming model

* Provide a server programming model which maintains a consistent client view. The client must
not be required to know how the service is implemented.

* Provide path to start simple and grow to more complex run-time service requirements
e Leverage existing J2EE container functionality

e Leverage familiar programming models

5.2 Concepts

A Port component (sometimes referred to as Port) defines the server view of a Web service. Each Port
services a location defined by the WSDL port address. A Port component services the operation requests
defined by a WSDL PortType. Every Port component has a Service Endpoint Interface and a Service
Implementation Bean. The Service Endpoint Interface is a Java mapping of the WSDL PortType and binding
associated with a WSDL port. The Service Implementation Bean can vary based on the container the Port is
deployed in, but in general it is a Java class which implements the methods defined by the Service Endpoint
Interface. WSDL ports, which differ only in address, are mapped to separate Port components, each with its
own potentially unique but probably shared Service Implementation Bean. Figure 5 illustrates this below.

10/10/02 7:22 AM VERSION 1.1 PAGE 25 OF 87

PUBLIC DRAFT

Container

/ Port Port \

Service
Endpoint
Interface

Service
Endpoint
Interface

Port

Service
Endpoint
Interface

o /

A Port’s life cycle is specific to and completely controlled by the container, but in general follows the same
life cycle of the container itself. A Port is created and initialized by the container before the first request
received at the WSDL port address can be serviced. A Port is destroyed by the container whenever the
container feels it is necessary to do so, such as when the container is shutting down.

« Figure 5 container

The implementation of a Port and the container it runs in are tied. A JAX-RPC Service Implementation Bean
always runs in a web container. An EJB Service Implementation Bean always runs in an EJB container.

The Port component associates a WSDL port address with a Service Implementation Bean. In general the
Port component defers container service requirement definition to the J2EE component’s deployment
descriptor. This is discussed further in Chapters 6.3 and 7.3. A container provides a listener for the WSDL
port address and a means of dispatching the request to the Service Implementation. A container also provides
run-time services such as security constraints and logical to physical mappings for references to distributed
objects and resources.

5.3 Port Component Model Specification

A Port component defines the programming model artifacts that make the Web Service a portable server
application. The association of a Port component with a WSDL port provides for interoperability. The
programming model artifacts include:

WSDL document — Although not strictly a programming model artifact, the WSDL document provides a
canonical description of a Web service that may be published to
third parties. A WSDL document and the Service Endpoint
Interface are related by the JAX-RPC WSDL<->Java mapping
rules.

Service Endpoint Interface (SEI) - This interface defines the methods that are implemented by the
Service Implementation Bean.

Service Implementation Bean - The Service Implementation Bean is a Java class that provides the
business logic of the Web service. In addition, it defines the Port
component contract for the container, which allows the business
logic to interact with container services. It implements the same
methods and signatures of the SEI, but is not required to
implement the SEI itself.

10/10/02 7:22 AM VERSION 1.1 PAGE 26 OF 87

PUBLIC DRAFT

Security Role References - The Port may declare logical role names in the deployment descriptor. These
logical role names are reconciled across the modules by the
assembler and mapped to physical roles at deployment time and
allow the service to provide instance level security checks.

A developer declares a Port component within a Web services deployment descriptor. The deployment
descriptor includes the WSDL document that describes the PortType and binding of the Web service. A
deployer and the deploy tool handles the mapping of the Port into a container.

5.3.1 Service Endpoint Interface

The Service Endpoint Interface (SEI) must follow the JAX-RPC rules for WSDL<->Java mapping. The SEI
is related to the WSDL PortType and WSDL bindings by these rules. The SEI is required for use by the
deployment tools and parallel client development. The Port component developer is responsible for providing
both the WSDL document with a minimum of the PortType and binding defined and the SEI and for keeping
the two in sync with each other.

5.3.2 Service Implementation Bean
There are two ways a Service Implementation Bean can be implemented. This includes a Stateless Session

EJB and JAX-RPC service endpoint as defined by Chapter 10 of the JAX-RPC specification. The two
programming models are fully defined in sections 5.3.2.1 and 5.3.2.2.

A container may use any bean instance to service a request.

5.3.2.1 EJB container programming model

A Stateless Session Bean, as defined by the Enterprise JavaBeans specification, can be used to implement a
Web service to be deployed in the EJB container.

A Stateless Session Bean does not have to worry about multi-threaded access. The EJB container is required
to serialize request flow through any particular instance of a Service Implementation Bean.

The requirements for creating a Service Implementation Bean as a Stateless Session EJB are repeated in part
here.

e The Service Implementation Bean must have a default public constructor.

e The Service Implementation Bean may implement the Service Endpoint Interface, but it is not
required to do so. The bean must implement all the method signatures of the SEI. The Service
Implementation Bean methods are not required to throw javax.rmi.RemoteException. The
business methods of the bean must be public and must not be final or static. It may implement
other methods in addition to those defined by the SEIL

¢ A Service Implementation Bean must be a stateless object. A Service Implementation Bean must
not save client specific state across method calls either within the bean instance’s data members or
external to the instance.

e The class must be public, must not be final and must not be abstract.
e The class must not define the f i nal i ze() method.

e Currently, it must implement the ej bCr eat e() and ej bRenpbve() methods which take no
arguments. This is a requirement of the EJB container, but generally can be stubbed out with an
empty implementation.

10/10/02 7:22 AM VERSION 1.1 PAGE 27 OF 87

PUBLIC DRAFT

5.3.2.1.1 The required SessionBean interface

Currently, a Stateless Session Bean must implement the j avax. ej b. Sessi onBean interface either
directly or indirectly.

This interface allows the container to notify the Service Implementation Bean of impending changes in its
state. The full requirements of this interface are defined in the Enterprise JavaBeans specification section
7.5.1.

5.3.2.1.2 Allowed access to container services
The Enterprise JavaBeans specification section 7.8.2 defines the allowed container service access

requirements.

5.3.2.2 Web container programming model

The term JAX-RPC Service Endpoint used within the JAX-RPC specification is somewhat confusing since
both Service Implementation Beans require the use of a JAX-RPC run time. However, in this case it refers to
the programming model defined within the JAX-RPC specification that is used to create Web services that
run within the web container. The requirements are repeated here with clarification. Changes from the JAX-
RPC defined programming model are required for running in a J2EE container-managed environment.

A JAX-RPC Service Endpoint can be single or multi-threaded. The concurrency requirement is declared as
part of the programming model. A JAX-RPC Service Endpoint must implement
j avax. servl et . Si ngl eThr eadMbdel if single threaded access is required by the component. A
container must serialize method requests for a Service Implementation Bean that implements the
Si ngl eThr eadModel interface.

The Service Implementation Bean must follow the Service Developer requirements outlined in the JAX-RPC
specification and are listed below except as noted.

e The Service Implementation Bean must have a default public constructor.

e The Service Implementation Bean may implement the Service Endpoint Interface as defined by the JAX-RPC
Servlet model. The bean must implement all the method signatures of the SEI. In addition, a Service
Implementation Bean may be implemented that does not implement the SEI. This additional requirement
provides the same SEI implementation flexibility as provided by EJB service endpoints. The business methods of
the bean must be public and must not be static. If the Service Implementation Bean does not implement the SEI,
the business methods must not be final. The Service Implementation Bean may implement other methods in
addition to those defined by the SEI, but only the SEI methods are exposed to the client.

* A Service Implementation must be a stateless object. A Service Implementation Bean must not
save client specific state across method calls either within the bean instance’s data members or
external to the instance. A container may use any bean instance to service a request.

e The class must be public, must not be final and must not be abstract.

e The class must not define the finalize() method.

5.3.2.2.1 The optional ServiceLifecycle Interface

A Service Implementation Bean for the web container may implement @ the
java. xm . rpc. server. Servi celLi f eCycl e interface:

10/10/02 7:22 AM VERSION 1.1 PAGE 28 OF 87

PUBLIC DRAFT

package javax.xnm .rpc. server;

public interface ServicelLifecycle {
void init(QObject context) throws Servi ceException;
voi d destroy();

}

The Ser vi ceLi f eCycl e interface allows the web container to notify a Service Implementation Bean
instance of impending changes in its state. The bean may use the notification to prepare its internal state for
the transition. If the bean implements the Ser vi ceLi f eCycl e interface, the container is required to call
thei ni t and dest r oy methods as described below.

The container must call the i ni t method before it can start dispatching requests to the SEI methods of the
bean. The i nit method parameter value provided by the container is described by the JAX-RPC
specification. The bean may use the container notification to ready its internal state for receiving requests.

The container must notify the bean of its intent to remove the bean instance from the container’s working set
by calling the dest r oy method. A container may not call the dest r oy method while a request is being
processed by the bean instance. The container may not dispatch additional requests to the SEI methods of the
bean after the dest r oy method is called.

5.3.2.2.2 Allowed access to container services

The container provides certain services based on the life cycle state of the Service Implementation Bean.
Access to services provided by a web container in a J2EE environment (e.g. transactions, JNDI access to the
component’s environment, etc.) must follow the requirements defined by the Servlet and J2EE specifications.
Access to a Servl et Endpoi nt Cont ext must meet the requirements defined by the JAX-RPC
specification section 10.1.3.

5.3.3 Service Implementation Bean Life Cycle

The life cycle of a Service Implementation Bean is controlled by the container and is illustrated in Figure 6.
The methods called by the container are container/bean specific, but in general are quite similar. Figure 6
illustrates the life cycle in the web container. The EJB container life cycle may be found in the Enterprise
JavaBeans specification section 7.8.1.

Does not
exist

1. newlInstance() destroy()
2. init()

Method

Ready SEI method()

« Figure 6 Service Implementation Bean life cycle in the web container

The container services requests defined by a WSDL port. It does this by creating a listener for the WSDL port
address, receiving requests and dispatching them on a Service Implementation Bean. Before a request can be
serviced, the container must instantiate a Service Implementation Bean and ready it for method requests.

A container readies a bean instance by first calling newl nst ance on the Service Implementation Bean
class to create an instance. The container then calls the life cycle methods on the Service Implementation

10/10/02 7:22 AM VERSION 1.1 PAGE 29 OF 87

PUBLIC DRAFT

Bean that are specific to the container. For the web container, it calls the i ni t method on the instance if the
Service Implementation Bean class implements the Ser vi ceLi f ecycl e interface. For the EJB container,
it calls the set Sessi onCont ext and ej bCr eat e methods.

A Service Implementation Bean instance has no identity.

A container may pool method ready instances of a Service Implementation Bean and dispatch a method
request on any instance in a method ready state.

The container notifies a Service Implementation Bean instance that it is about to be removed from Method
Ready state by calling container/bean specific life cycle methods on the instance. For the web container, the
dest r oy method is called. For the EJB container, the €] bRenove method is called.

534 JAX-RPC Custom Serializers / Deserializers

The use of JAX-RPC custom serializers / deserializers is out of scope for this version of the specification.
JAX-RPC customer serializers / deserializers are not portable across Web Services for J2EE providers and are
therefore not included as part of the portable deployment unit. It is expected that vendors will provide
proprietary solutions to this problem until it has been addressed by a future version of JAX-RPC.

5.4 Packaging

Port components may be packaged in a WAR file, or EJB JAR file. Port components packaged in a WAR
file must use a JAX-RPC Service Endpoint for the Service Implementation Bean. Port components packaged
in a EJB-JAR file must use a Stateless Session Bean for the Service Implementation Bean.

The developer is responsible for packaging, either by containment or reference, the WSDL file, Service
Endpoint Interface class, Service Implementation Bean class, and their dependent classes, JAX-RPC mapping
file along with a Web services deployment descriptor in a J2EE module. The location of the Web services
deployment descriptor in the module is module specific. WSDL files are located relative to the root of the
module and are typically co-located with the module deployment descriptor. Mapping files are located
relative to the root of the module and are typically co-located with the WSDL file.

54.1 EJB Module Packaging
Stateless Session EJB Service Implementation Beans are packaged in an EJB-JAR that contains the class files
and WSDL files. The packaging rules follow those defined by the Enterprise JavaBeans specification. In

addition, the Web services deployment descriptor location within the EJB-JAR file is META-
| NF/ webser vi ces. xm .

54.2 Web App Module Packaging
JAX-RPC Service Endpoints are packaged in a WAR file that contains the class files and WSDL files. The
packaging rules for the WAR file are those defined by the Servlet specification. A Web services deployment
descriptor is located in a WAR at WEB-INF/webservices.xml.

54.3 Assembly within an EAR file

Assembly of modules containing port components into an EAR file follows the requirements defined by the
J2EE specification.

10/10/02 7:22 AM VERSION 1.1 PAGE 30 OF 87

PUBLIC DRAFT

5.5 Transactions

The methods of a Service Implementation Bean run under a transaction context specific to the container. The web
container runs the methods under an unspecified transaction context. The EJB container runs the methods under
the transaction context defined by the cont ai ner -t r ansact i on element of the EJB deployment descriptor.

5.6 Container Provider Responsibilities

In addition to the container requirements described above a container provider must provide a JAX-RPC

runtime.

It is the responsibility of the container provider to support processing JAX-RPC compliant requests and
invoking Ports as described above. The application server must support deployment of these Ports. This
specification prescribes the use of the JAX-RPC Java<->WSDL and Java<->XML Serialization framework
for all XML Protocol based Web service bindings. For JAX-RPC inbound messages, the container will act as
the JAX-RPC server side runtime. It is responsible for:

L.

Listening on a well known port or on the URI of the Web service implementation (as defined in
the service’s WSDL after deployment) for SOAP/HTTP bindings.

Parsing the inbound message according to the Service binding.

Mapping the message to the implementation class and method according to the Service
deployment data.

Creating the appropriate Java objects from the SOAP envelope according to the JAX-RPC
specification.

Invoking the Service Implementation Bean handlers and instance method with the appropriate
Java parameters.

Capturing the response to the invocation if the style is request-response

Mapping the Java response objects into SOAP message according to the JAX-RPC
specification.

Creating the message envelope appropriate for the transport

Sending the message to the originating Web service client.

10/10/02 7:22 AM VERSION 1.1 PAGE 31 OF 87

PUBLIC DRAFT

6 Handlers

This chapter defines the programming model for handlers in Web Services for J2EE. Handlers define a means
for an application to access the raw SOAP message of a request. This access is provided on both the client
and server. Handlers are not part of the WSDL specification and are therefore not described in it. See chapter
6.3 for declaration of handlers within deployment descriptors. The JAX-RPC specification defines the
Handler APIs in chapter 12. This specification defines Handler use within a J2EE environment.

6.1 Concepts

A Handler can be likened to a Servlet Filter in that it is business logic that can examine and potentially modify
a request before it is processed by a Web Service component. It can also examine and potentially modify the
response after the component has processed the request. Handlers can also run on the client before the
request is sent to the remote host and after the client receives a response.

JAX-RPC Handlers are specific to SOAP requests only and cannot be used for other non-SOAP Web
services. Handlers may be transport independent. For instance, a Handler as defined by JAX-RPC may be
usable for SOAP/IMS in addition to SOAP/HTTP if a IMS protocol binding was available. Handlers for non-
SOAP encodings have not been defined yet.

Handlers are service specific and therefore associated with a particular Port component or port of a Service
interface. This association is defined in the deployment descriptors in section 7.1 and 7.2 respectively. They
are processed in an ordered fashion called a HandlerChain, which is defined by the deployment descriptors.

There are several scenarios for which Handlers may be considered. These include application specific SOAP
header processing, logging, and caching. A limited form of encryption is also possible. For application
specific SOAP header processing, it is important to note that the client and server must agree on the header
processing semantics without the aid of a WSDL description that declares the semantic requirements.
Encryption is limited to a doc/literal binding in which the SOAP message part maps to a SOAPElement. In
this case, a value within the SOAPElement may be encrypted as long as the encryption of that value does not
change the structure of the SOAPElement.

Some Handler scenarios described within the JAX-RPC specification on not supported by this specification.
For example, auditing cannot be fully supported because there is no means for a Handler to obtain the
Principal. The secure stock quote example cannot be supported as stated because encrypting the body would
prevent the container from determining which Port component the request should be directed to and therefore
which Handler should decrypt the body.

A Handler always runs under the execution context of the application logic. On the client side, the Stub/proxy
controls Handler execution. Client side Handlers run after the Stub/proxy has marshaled the message, but
before container services and the transport binding occurs. Server side Handlers run after container services
have run including method level authorization, but before demarshalling and dispatching the SOAP message
to the endpoint. Handlers can access the java:comp/env context for accessing resources and environment
entries defined by the Port component the Handler is associated with.

Handlers are constrained by the J2EE managed environment. Handlers are not able to re-target a request to a
different component. Handlers cannot change the WSDL operation nor can Handlers change the message
part types and number of parts. On the server, Handlers can only communicate with the business logic of the
component using the MessageContext. On the client, Handlers have no means of communicating with the
business logic of the client. There is no standard means for a Handler to access the security identity associated
with a request, therefore Handlers cannot portably perform processing based on security identity.

The life cycle of a Handler is controlled by the container.

10/10/02 7:22 AM VERSION 1.1 PAGE 32 OF 87

PUBLIC DRAFT

Handlers are associated with the Port component on the server and therefore run in both the web and EJB

containers.
6.2 Specification

This section defines the requirements for JAX-RPC Handlers running in Web Services for J2EE. Chapter 12
of the JAX-RPC specification defines the programming model requirements. Differences between this
specification and the JAX-RPC specification are noted in boxed paragraphs.

6.2.1 Scenarios

Handlers must be able to support the following scenarios:

Scenario 1: Handlers must be able to transform the SOAP header. One example is the addition of a SOAP
header for application specific information, like customerld, by the handler.

Scenario 2: Handlers must be able to transform just parts of the body. This might include changing part
values within the SOAP body. Encryption of some parameter values is an example of this scenario.

Scenario 3: Handlers must be able to just read a message where no additions, transformations, or modification
to the message is made. Common scenarios are logging, metering, and accounting.

6.2.2 Programming Model

A Web Services for J2EE provider is required to provide all interfaces and classes of the
javax. xm . rpc. handl er package.

The Handl er I nf o set Handl er Confi g() and get Handl er Confi g() methods do not affect the
container’s Handler request processing.

A Web Services for J2EE provider is not required to provide an implementation of Handl er Regi stry.
This functionality is specific to the container.

A Web Services for J2EE provider is required to provide an implementation of MessageCont ext .

A Web Services for J2EE provider is required to provide all the interfaces of the
javax. xm . rpc. handl er. soap package. The provider must also provide an implementation of the
SOQAPMessageCont ext interface.

The programming model of a Port component can be single-threaded or multi-threaded as defined in sections
5.3.2.1 and 5.3.2.2. The concurrency of a JAX-RPC Handler must match the concurrency of the business
logic it is associated with. Client handlers may need to support multi-threaded execution depending on the
business logic which is accessing the Port.

Handlers must be loaded using the same class loader the application code was loaded with. The class loading
rules follow the rules defined for the container the Handler is running in.

6.2.2.1 Handler Life Cycle

The life cycle of a Handler is controlled by the container and is illustrated in Figure 7.

10/10/02 7:22 AM VERSION 1.1 PAGE 33 OF 87

PUBLIC DRAFT

Does not
exist
1. newlnstance() destroy()
2.init()
Method handleRequest(),
Ready handleResponse(),

handleFault()
« Figure 7 Handler life cycle

Theinit and destroy nethods of the Handler interface allows the container to notify a Handler
instance of impending changes in its state. The Handler may use the notification to prepare its internal state
for the transition. The container is required to call the i ni t and dest r oy methods as described below.

The container must call the init method before it can start dispatching requests to the
handl eRequest (), handl eResponse(), and handl eFaul t () methods of the Handler. The
Handler may use the container notification to ready its internal state for receiving requests.

The container must notify the Handler of its intent to remove the instance from the container’s working set by
calling the dest r oy method. A container must not call the dest r oy method while a request is being
processed by the Handler instance. The container must not dispatch additional requests to the Handler
interface methods after the dest r oy method is called.

As defined by JAX-RPC, a Runt i meExcepti on (other than SOAPFaul t Except i on) thrown from
any method of the Handl er results in the dest r oy method being invoked and transition to the “Does
Not Exist” state.

Pooling of Handler instances is allowed, but is not required. If Handler instances are pooled, they must be
pooled by Port component. This is because Handlers may retain non-client specific state across method calls
that are specific to the Port component. For instance, a Handler may initialize internal data members with
Port component specific environment values. These values may not be consistent when a single Handler type
is associated with multiple Port components. Any pooled instance of a Port component’s Handler in a Method
Ready state may be used to service the handl eRequest (), handl eResponse(), and
handl eFaul t () methods. It is not required that the same Handler instance service both the
handl eRequest () and handl eResponse() or handl eFaul t () method invocations of any given
request.

6.2.2.2 Security

Handlers associated with a Port component run after authorization has occurred and before the business logic
method of the Service Implementation bean is dispatched to. For JAX-RPC Service endpoints, Handlers run
after the container has performed the security constraint checks associated with the servlet element that
defines the Port component. For EJB based service implementations, Handlers run after method level
authorization has occurred.

A Handler must not change the message in any way that would cause the previously executed authorization
check to execute differently. A Handl er. handl eRequest () method must not change the operation
name, number of parts in the message, or types of the message parts. A container must throw a SOAP fault
withaf aul t code of soap-env: Server (the namespace identifier for the namespace prefix, soap-
env:, is http://ww. w3. org/ 2001/ 09/ soap- envel ope) back to the client if the Handler
does this. Although, not strictly required for security reasons, a Handl er . handl eResponse() method

10/10/02 7:22 AM VERSION 1.1 PAGE 34 OF 87

http://www.w3.org/2001/09/soap-envelope

PUBLIC DRAFT

must not change the number of parts in the message, or types of the message parts. A container must throw a
SOAP fault with a faultcode of soap-env: Server back to the client if the Handler does
this. A container should log occurrences of these errors since the client may not be expecting a response (i.e. it
may be a one-way invocation).

A handler may perform programmatic authorization checks if the authorization is based solely on the
MessageContext and the component’s environment values. A Handler cannot perform role based
programmatic authorization checks nor can a Handler access the Principal associated with the request.

The Java 2 security permissions of a Handler follow the permissions defined by the container it runs in. The
application client, web, and EJB containers may have different permissions associated with them. If the
provider allows defining permissions on a per application basis, permissions granted to a Handler are defined
by the permissions granted to the application code it is packaged with. See section J2EE.6.2.3 of the J2EE
specification for more details.

6.2.2.3 Transactions

Handlers run under the transaction context of the component they are associated with.

Handlers must not demarcate transactions using the j avax.transacti on. User Transacti on
interface.

6.2.3 Developer Responsibilities

A developer is not required to implement a Handler. Handlers are another means of writing business logic
associated with processing a Web services request. A developer may implement zero or more Handlers that
are associated with a Port component and/or a Service reference. If a developer implements a Handler, they
must follow the requirements outlined in this section.

A Handler is implemented as a stateless instance. A Handler does not maintain any message processing
(client specific) related state in its instance variables across multiple invocations of the handle method.

A Handler class must implement the java.xml.rpc.handler.Handler interface.

A Handler.handle<action>() method may access the component’s environment entries by using JNDI lookup
of the “]J ava: conp/ env” contenxt and accessing the env- ent r y- nanes defined in the deployment
descriptor by performing a JNDI lookup. See chapter 20 of the Enterprise JavaBeans specification for details.
The container may throw a j ava. |l ang. || | egal St at eExcepti on if the environment is accessed
from any other Handler method and the environment is not available. In addition, the Handler may use
HandlerInfo.getHandlerConfig() method to access the Handler’s i ni t - par ans declared in the deployment
descriptor.

The Handler.init() method must retain the information defined by HandlerInfo.getHeaders().

A Handler implementation must implement the getHeaders() method to return the results of the
HandlerInfo.getHeaders() method. The headers that a Handler declares it will process (i.e. those returned by
the Handler.getHeaders() method must be defined in the WSDL definition of the service.

A Handler implementation should test the type of the MessageContext passed to the Handler in the
handle<action>() methods. Although this specification only requires support for SOAP messages and the
container will pass a SOAPMessageContext in this case, some providers may provide extensions that allow
other message types and MessageContext types to be used. A Handler implementation should be ready to
accept and ignore message types which it does not understand.

A Handler implementation must use the MessageContext to pass information to other Handler
implementations in the same Handler chain and, in the case of the JAX-RPC service endpoint, to the Service
Implementation Bean. A container is not required to use the same thread for invoking each Handler or for
invoking the Service Implementation Bean.

10/10/02 7:22 AM VERSION 1.1 PAGE 35 OF 87

PUBLIC DRAFT

A Handler may access the env- ent r ys of the component it is associated with by using JNDI to lookup an
appropriate subcontext of j ava: conp/ env. Access to the j ava: conp/ env contexts must be supported
from the i nit() and handl e<acti on>() methods. Access may not be supported within the
dest roy() method.

A Handler may access the complete SOAP message and can process both SOAP header blocks and body if
the handle<action>() method is passed a SOAPMessageContext.

A SOAPMessageContext Handler may add or remove headers from the SOAP message. A
SOAPMessageContext Handler may modify the header of a SOAP message if it is not mapped to a parameter
or if the modification does not change value type of the parameter if it is mapped to a parameter. A Handler
may modify part values of a message if the modification does not change the value type.

A Handler may access transactional resources in a local transaction mode.

Handlers that define application specific headers should declare the header schema in the WSDL document
for the component they are associated with, but are not required to do so.

6.24 Container Provider Responsibilities

A Handler chain is processed according to the JAX-RPC specification section 12.2.2. The process order
defaults to the order the handlers are defined in the deployment descriptor and follow the JAX-RPC
specification section 12.1.4 processing order.

A container is required to provide an instance of aj ava. ut i | . Map object in the Handl er | nf o instance.
The Handl er | nf 0. get Header s() method must return the set of soap- header s defined in the
deployment descriptor. The Map object must provide access to each of the Handler’s i ni t - par am
name/value pairs declared in the deployment descriptor as j ava. | ang. St ri ng values. The container
must provide a unique Handl er | nf o instance and Map config instance for each Handl er instance. A
unique Handler instance must be provided for each Port component declared in the deployment descriptor.

The container must call the i ni t () method within the context of a Port component’s environment. The
container must ensure the Port component’s env- ent r ys are setup for the i ni t method to access.

The container must provide a MessageCont ext type unique to the request type. For example, the
container must provide a SOAPMessageCont ext to the handl e<acti on>() methods of a Handler in
a handler chain when processing a SOAP request. The SOAPMessageCont ext must contain the complete
SOAP message.

The container must share the same MessageCont ext instance across all Handler instances and the target
endpoint that are invoked during a single request and response or fault processing on a specific node.

The container must setup the Port component’s execution environment before invoking the
handl e<act i on>() methods of a handler chain. Handlers run under the same execution environment as
the Port component’s business methods. This is required so that handlers have access to the Port component's
j ava: conp/ env context.

6.3 Packaging

A developer is required to package, either by containment or reference, the Handler class and its dependent
classes in the module with the deployment descriptor information that references the Handler classes. A
developer is responsible for defining the handler chain information in the deployment descriptor.

10/10/02 7:22 AM VERSION 1.1 PAGE 36 OF 87

PUBLIC DRAFT

6.4 Object Interaction Diagrams

This section contains object interaction diagrams for handler processing. In general, the interaction diagrams

are meant to be illustrative.

10/10/02 7:22 AM

VERSION 1.1

PAGE 37 OF 87

PUBLIC DRAFT

6.4.1 Client Web service method access

Clent Stub hbssage Handler Chain |[Handler | [SO0ePMessage | [Comainer| [Metwork | [50ePMessage

Context | |
getlastTradePrize() : new instanee : : : ' '
ew instance | : : : : :
(' 1 1 1 1 | |
handle Request() handk R quest H ' :
gethessage() ' ! !
H f H H . .
1] — : : :
*handle ContainerRequestly’ : : : ' '
: : HTTP POSTmessage : L:l : :
; T HTTF RESPONSE ; ; J :
: : hewinstarce | : 1 |
ethessage’ : : : : : t

handle ContainerRespanse()
handeResponsa() : :
: ! handleRiesponse() :

| gethkssager) : : :
[I gatHeadar | : :
W 1 1 1 1 1 | |

« Figure 8 Client method invoke handler OID

6.4.2 EJB Web service method invocation

HTTE Listener S0AP EJB Dbject SDAPMessage Message EJB Handler| | Handler Chain Serviee i SO0APMessage
TE Cantext Cantainer Bean
Y identify TIE | H H H H
handleHTTPRequest) U newinstance | : : H ; H H
new instance 1
sethd essagelt! LI 1 1 1 1 1 1
"handleTagergnosticSenices’ | |
: identify target EJB H u H ; ; ;
demarshal S0APMessage H H H H H H H
dispatech | . . . H H H H H
: container pre-inuokes (2.9, method level : : : : :
K : handleRequest) U : : : :
handleReques) H
- H ! gethess : :
MessageContext
attached ta thread : :
A H getHeadem :
H T -o L business method : H H
: new instance : L.l :
"setessa gl : : : ! : i
H handleResponsal) i H H 1 1
handleResponse() |
r

« Figure 9 EJB Web service method invocation handler processing part 1

10/10/02 7:22 AM VERSION 1.1 PAGE 38 OF 87

PUBLIC DRAFT

« Figure 10 EJB Web service method invocation handler processing part 2

10/10/02 7:22 AM

11

handleResponsed)

handleResponse()

gethlessagel |

L

7 ceensep

contain er post-invokes |

VERSION 1.1

PAGE 39 OF 87

PUBLIC DRAFT

7 Deployment Descriptors

This chapter describes the various deployment descriptors used for Web Services for J2EE and the roles
responsible for defining the information within the deployment descriptors.

7.1 Web Services Deployment Descriptor

This section defines the content of the webservices.xml file, location within modules, roles and
responsibilities, and the format.

7.1.1 Overview

The webser vi ces. xm deployment descriptor file defines the set of Web services that are to be deployed
in a Web Services for J2EE enabled container. The packaging of the webser vi ces. xm deployment
descriptor file is defined in sections 5.4.1 and 5.4.2. Web services are defined by WSDL documents as
described by section 3.2. The deployment descriptor defines the WSDL port to Port component relationship.
Port components are defined in Chapter 5.

7.1.2 Developer responsibilities

The developer is responsible not only for the implementation of a Web service, but also for declaring its
deployment characteristics. The deployment characteristics are defined in both the module specific
deployment descriptor and the webservices.xml deployment descriptor. Service Implementations using a
stateless session bean must be defined in the €] b-j ar . xm deployment descriptor file using the Sessi on
element. Service Implementations using a JAX-RPC Service Endpoint must be defined in the web. xm

deployment descriptor file using the ser vl et - ¢l ass element. See the Enterprise JavaBeans and Servlet
specifications for additional details on developer requirements for defining deployment descriptors. The
developer is also required to provide structural information that defines the Port components within the
webser vi ces. xm deployment descriptor file. The developer is responsible for providing the set of
WSDL documents that describe the Web services to be deployed, the Java classes that represent the Web
services, and the mapping that correlates the two.

The developer is responsible for providing the following information in the webservi ces. xmi
deployment descriptor:

¢ Port’s name. A logical name for the port must be specified by the developer using the port -
conponent - nanme element. This name bears no relationship to the WSDL port name. This
name must be unique amongst all port component names in a module.

e Port’s bean class. The developer declares the implementation of the Web service using the
servi ce-i npl - bean element of the deployment descriptor. The bean declared in this element
must refer to a class that implements the methods of the Port’s Service Endpoint Interface. This
element allows a choice of implementations. For a JAX-RPC Service Endpoint, the ser vl et -
I i nk element associates the port-conponent with a JAX-RPC Service Endpoint class
defined in the web. xm by the servl et-cl ass element. For a stateless session bean
implementation, the ej b-1 i nk element associates the port - conponent with a sessi on
element in the ej b-j ar. xm . The ej b-1 i nk element may not refer to a sessi on element
defined in another module. A servlet must only be linked to by a single port-component. A session
EJB must only be linked to by a single port-component.

* Port’s Service Endpoint Interface. The developer must specify the fully qualified class name of
the Service Endpoint Interface in the ser vi ce- endpoi nt - i nt er f ace element. The Service

10/10/02 7:22 AM VERSION 1.1 PAGE 40 OF 87

PUBLIC DRAFT

Endpoint Interface requirements may be found in section 5.3.1. If the Service Implementation is a
stateless session EJB, the developer must also specify the Service Endpoint Interface in the EJB
deployment descriptor using the ser vi ce- endpoi nt element. See the Enterprise JavaBeans
2.1 specification for more details.

Port’s WSDL definition. The wsdl - f i | e element specifies a location of the WSDL description
of a set of Web services. The location is relative to the root of the module and must be specified
by the developer.

Port’s QName. In addition to specifying the WSDL document, the developer must also specify
the WSDL port QName in the wsdl-port element for each Port defined in the deployment
descriptor.

JAX-RPC Mapping. The developer must specify the correlation of the WSDL definition to the
interfaces using the j axr pc-mappi ng-fil e element. The requirements for specifying
information in the j axr pc- mappi ng-fi | e are covered in section 7.3. The same mapping file
must be used for all interfaces associated with awsdl -fi | e.

Handlers. A developer may optionally specify handlers associated with the port - conponent
using the handl er element.

Servlet Mapping. A developer may optionally specify a ser vl et - mappi ng, inthe web. xmi

deployment descriptor, for a JAX-RPC Service Endpoint. No more than one servl et -

mappi ng may be specified for a ser vl et that is linked to by a por t - conponent . The ur | -

pat t er n of the ser vl et - mappi ng must be an exact match pattern (i.e. it must not contain an
asterisk (“*”)).

Note that if the WSDL specifies an address statement within the port, its URI address is ignored. This address
is generated and replaced during the deployment process in the deployed WSDL.

See also the developer requirements defined in section 7.2.2.

713

Assembler responsibilities

The assembler’s responsibilities for Web Services for J2EE are an extension of the assembler responsibilities
as defined by the Enterprise JavaBeans, Servlet, and J2EE specifications. The assembler creates a deployable
artifact by composing multiple modules, resolving cross-module dependencies, and producing an EAR file.

The assembler may modify any of the following information that has been specified by the developer in the
webser vi ces. xm deployment descriptor file:

Description fields. The assembler may change existing or create new descri pt i on elements.

Handlers. The assembler may change values of existing par am val ue elements, may add new
i nit-param elements, may change or add soap- header elements, may change or add
soap- r ol e elements, or may add new handl er elements.

See also the assembler responsibilities defined in section7.2.3.

7.14 Deployer responsibilities

The deployer responsibilities are defined by the J2EE, Enterprise JavaBeans, and Servlet specifications.

In addition, the deployer must resolve the following information:

where published WSDL definitions are placed. The deployer must publish every webser vi ce-
descripti onwsdl -fi | e with the correct port address attribute value to access the service.

the value of the port address attribute for deployed services.

10/10/02 7:22 AM VERSION 1.1 PAGE 41 OF 87

PUBLIC DRAFT

7.1.5 Web Services Deployment Descriptor XML Schema

This is the XML Schema for the Web service deployment descriptor:

<?xm version="1.0" encodi ng="UTF-8""?>

<xsd: schema xm ns="http://ww. w3. org/ 2001/ XM_Schena"
t ar get Nanespace="http://java. sun. conl xm / ns/j 2ee"
xm ns:j2ee="http://java. sun. conl xm / ns/j 2ee"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schenma"
el enent For nDef aul t =" qual i fi ed"
attri but eFor nDef aul t ="unqual i fi ed"
version="1.1">

<xsd: annot at i on>

<xsd: docunent at i on>

@+#)j2ee_ web services_1 1.xsds 1.10 09/30/02

</ xsd: docunent ati on>

</ xsd: annot ati on>

<xsd: annot ati on>
<xsd: docunent ati on>

Copyri ght 2002 Sun M crosystens, Inc., 901 San Antonio
Road, Palo Alto, California 94303, U S. A Al rights
reserved.

Sun M crosystens, Inc. has intellectual property rights
relating to technol ogy described in this docunment. In
particular, and without Iimtation, these intellectua
property rights may include one or nore of the U S. patents
listed at http://ww. sun. conf patents and one or nore
addi ti onal patents or pending patent applications in the
U.S. and other countries.

Thi s docunent and the technol ogy which it describes are

di stributed under licenses restricting their use, copying,
distribution, and deconpilation. No part of this docunent
may be reproduced in any formby any means w thout prior
witten authorization of Sun and its licensors, if any.

Third-party software, including font technology, is
copyrighted and licensed from Sun suppliers.

Sun, Sun M crosystens, the Sun |l ogo, Solaris, Java, J2EE
JavaServer Pages, Enterprise JavaBeans and the Java Coffee
Cup logo are trademarks or registered trademarks of Sun

M crosystens, Inc. in the U S. and other countries.

Federal Acquisitions: Comrercial Software - Governnent Users
Subj ect to Standard License Terns and Conditi ons.

</ xsd: docunent ati on>
</ xsd: annot ati on>

<xsd: annot ati on>
<xsd: docunent ati on>

(O Copyright International Business Machi nes Corporation 2002

</ xsd: docunent ati on>
</ xsd: annot ati on>

<xsd: annot ati on>

10/10/02 7:22 AM VERSION 1.1 PAGE 42 OF 87

PUBLIC DRAFT

<xsd: docunent ati on>
<! [CDATA[

The webservices elenent is the root elenment for the web services
depl oyrment descriptor. It specifies the set of web service
descriptions that are to be deployed into the J2EE Appli cation
Server and the dependenci es they have on contai ner resources and
services. The deploynment descriptor nust be naned

"META- | NF/ webservices.xm " in the web services' jar file.

Used i n: webservices. xn

Al |l webservices depl oynment descriptors nmust indicate the
webservi ces schema by using the J2EE nanespace:

http://java. sun.com xm / ns/j 2ee

and by indicating the version of the schema by using the version
el enent as shown bel ow

<webservi ces xm ns="http://java.sun.com xm /ns/j2ee"
xm ns: xsi ="http://ww. w3. org/ 2001/ XM_Schema- i nst ance"
Xxsi : schemalLocati on="http://] ava. sun. coni xm / ns/j 2ee
http://ww. i bm com webservi ces/ xsd/j2ee_web_services_1 1. xsd"
version="1.1">

</ webservi ces>

The instance docunents nmmy indicate the published version of the
schema using the xsi:schemalLocation attribute for the J2EE
nanespace with the follow ng | ocation:

http://ww. i bm com webservi ces/ xsd/j2ee_web_services_1 1. xsd

1>
</ xsd: docunent ati on>
</ xsd: annot ati on>

<xsd: annot ati on>
<xsd: docunent ati on>

The foll owi ng conventions apply to all J2EE
depl oynment descriptor el enents unl ess indicated otherw se.

- In elements that specify a pathname to a file within the
same JAR file, relative filenames (i.e., those not
starting with "/") are considered relative to the root of
the JAR file's namespace. Absolute filenanes (i.e., those
starting with "/") also specify names in the root of the
JAR file's namespace. |n general, relative nanes are
preferred. The exception is .war files where absolute
nanes are preferred for consistency with the Servlet API.

</ xsd: docunent ati on>
</ xsd: annot ati on>

<xsd:include schenmalLocation="j2ee_1 4.xsd"/>

<l oo kxkkkkkhkhkkhkrrdhkhdhkhh kb rrdhddhhhdhhrrdddddhhrrrrrrhdhr S

<xsd: el ement nane="webservi ces" type="j 2ee: webservi cesType" >
<xsd: annot ati on>

10/10/02 7:22 AM VERSION 1.1 PAGE 43 OF 87

PUBLIC DRAFT

<xsd: docunent ati on>

The webservices elenent is the root elenent for the web services

depl oynment descriptor. It specifies the set of web service

descriptions that are to be deployed into the J2EE Application
Server

and the dependenci es they have on contai ner resources and services.

Used i n: webservices. xni

</ xsd: docunent ati on>
</ xsd: annot ati on>

<xsd: key name="webservi ce-description-name-key">
<xsd: annot at i on>
<xsd: docunent ati on>

The webservi ce-description-nane identifies the collection of
port-conponents associated with a WoDL file and JAX- RPC mappi ng. The
nane nust be unique within the depl oynent descri ptor

</ xsd: docunent at i on>
</ xsd: annot at i on>
<xsd: sel ect or xpath="j 2ee: webservi ce-description"/>
<xsd: field xpat h="j 2ee: webservi ce-descri pti on- nane"/ >
</ xsd: key>
</ xsd: el enent >

<l oo Fhkkkkkkkkkkkkkkhhkhkkrhhhhdrhdhbrhhbbbbrrbbbrrrbbrrrrd _ 5

<xsd: conpl exType name="port-conponent Type" >
<xsd: annot ati on>
<xsd: docunent ati on>

The port-conponent el enent associates a WSDL port with a web service
interface and inplementation. It defines the name of the port as a
conponent, optional description, optional display nane, optiona
i conic
representations, WSDL port (Nanme, Service Endpoint Interface,
Service
| mpl enent ati on Bean.

</ xsd: docunent ati on>
</ xsd: annot at i on>

<xsd: sequence>
<xsd: el enent nane="description"
type="j 2ee: descri pti onType"
m nOccur s="0" maxCccurs="1"/>
<xsd: el enent nane="di spl ay- nane"
type="j 2ee: di spl ay- naneType"
m nOccur s="0" maxCccurs="1"/>
<xsd: el enent nane="icon"
type="j 2ee: i conType"
m nOccur s="0" maxCccurs="1"/>
<xsd: el enent nanme="port-conponent - nane"
type="j 2ee:string">
<xsd: annot at i on>
<xsd: docunent ati on>
<! [CDATA[

The port-conponent-nanme el enent specifies a port conponent's

nanme. This name is assigned by the nodul e producer to nane
the service inplenentation bean in the nodul e' s depl oynent

10/10/02 7:22 AM VERSION 1.1 PAGE 44 OF 87

PUBLIC DRAFT

descriptor. The name rmust be uni que anong the port conponent
nanes defined in the sane nodul e.

Used in: port-conponent

Exanpl e:
<port - conmponent - name>Enpl oyeeSer vi ce
</ port - conponent - nanme>

11>

</ xsd: docunent ati on>

</ xsd: annot at i on>

</ xsd: el enent >

<xsd: el enrent name="wsdl| - port™
type="j 2ee: xsd@Q\aneType" >

<xsd: annot ati on>

<xsd: docunent ati on>

Defi nes the nanme space and | ocal nane part of the WSDL port

ONane.

</ xsd: docunent at i on>

</ xsd: annot ati on>

</ xsd: el enent >

<xsd: el ement nanme="servi ce-endpoi nt-interface"
type="j 2ee: fully-qualified-classType">

<xsd: annot ati on>

<xsd: docunent ati on>

<! [CDATA[

The service-endpoint-interface el ement contains the
fully-qualified name of the port conponent's Service Endpoint
I nterface.

Used in: port-conponent

Exanpl e:
<r enot e>com worrbat . enpl . Enpl oyeeSer vi ce</ r enpt e>

11>
</ xsd: docunent ati on>
</ xsd: annot at i on>
</ xsd: el enent >
<xsd: el enent nane="service-inpl - bean"
type="j 2ee: servi ce-i npl - beanType"/ >

<xsd: el enent nane="handl er"
type="j 2ee: port - conponent _handl er Type"
m nCccur s="0" maxCccur s="unbounded"/ >
</ xsd: sequence>
<xsd:attribute name="id" type="xsd:ID'/>
</ xsd: conpl exType>

<|__ L R R e R R e Y

<xsd: conpl exType name="port-conponent handl er Type" >
<xsd: annot at i on>
<xsd: docunent at i on>

Decl ares the handl er for a port-conponent. Handl ers can access the
i ni t-param name/value pairs using the Handlerlnfo interface.

Used in: port-component

10/10/02 7:22 AM VERSION 1.1 PAGE 45 OF 87

t he

PUBLIC DRAFT

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: sequence>

<xsd: group ref="j2ee:descripti onGoup"/>

<xsd: el enent nane="handl er - nane"
type="j 2ee: string">

<xsd: annot ati on>

<xsd: docunent ati on>

Defines the nanme of the handler. The name nust be unique within
nodul e.

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >
<xsd: el enent nanme="handl er-cl ass"
type="j 2ee: fully-qualified-classType">
<xsd: annot ati on>
<xsd: docunent ati on>

Defines a fully qualified class nane for the handl er

i mpl ement ati on.

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >
<xsd: el emrent nanme="init - parani
type="j 2ee: par am val ueType"
m nCccur s="0" maxCccur s="unbounded"/ >

<xsd: el enent nane="soap- header"
type="j 2ee: xsdQ\aneType"
m nCccur s="0" maxCccur s="unbounded" >
<xsd: annot ati on>
<xsd: docunent ati on>

Defines the QNane of a SOAP header that will be processed by the
handl er.

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >
<xsd: el enent nane="soap-rol e"
type="j 2ee: string"
m nCccur s="0" maxQccur s="unbounded" >
<xsd: annot ati on>
<xsd: docunent ati on>

The soap-role el enent contains a SOAP actor definition that the
Handler will play as a role.

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >

</ xsd: sequence>
<xsd:attribute name="id" type="xsd:ID'/>

</ xsd: conpl exType>

<I--

L R R R Y

<xsd: conpl exType nanme="servi ce-i npl - beanType" >

<xsd: annot ati on>
<xsd: docunent ati on>

10/10/02 7:22 AM VERSION 1.1 PAGE 46 OF 87

PUBLIC DRAFT

The service-inpl-bean el enent defines the web service
i mpl enent ati on.
A service inplenmentation can be an EJB bean class or JAX- RPC web
conponent. Existing EJB inplenentations are exposed as a web
service
usi ng an ej b-1ink.

Used in: port-conponent

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: choi ce>
<xsd: el enent nanme="ej b-1ink"
type="j 2ee: ej b-1i nkType"/ >
<xsd: el enment nanme="servl et-1link"
type="j 2ee: servlet-linkType"/>
</ xsd: choi ce>
<xsd:attribute name="id" type="xsd:ID'/>
</ xsd: conpl exType>

<l oo kxkkkkhkhkhkkkhkrdhkhkdhkhh kb rrdhddhhhhhrrrdddbhdbrrrxrrhhdr S

<xsd: conpl exType nane="servlet-|inkType">
<xsd: annot ati on>
<xsd: docunent ati on>
<! [CDATA[

The servlet-link element is used in the service-inpl-bean el enent
to specify that a Service Inplenentation Bean is defined as a
JAX- RPC Servi ce Endpoint.

The value of the servlet-link el enent nust be the servlet-nanme of
a JAX-RPC Service Endpoint in the same WAR file.

Used in: service-inpl-bean

Exanpl e:
<servl et-link>St ockQuot eServi ce</servlet-1link>

11>
</ xsd: docunent at i on>
</ xsd: annot at i on>
<xsd: si npl eCont ent >
<xsd:restriction base="j2ee:string"/>
</ xsd: si npl eCont ent >
</ xsd: conpl exType>

<l oo Fhkkkkkkkkkhhkkdhhhhkkdhhhhdrhdhhrhhhbbbrrhbbrrrhbrrrrs _ _ S

<xsd: conpl exType name="webservi ce-descri pti onType">
<xsd: annot at i on>
<xsd: docunent ati on>

The webservi ce-description el ement defines a WSDL docunent file
and the set of Port conponents associated with the WSDL ports
defined in the WSDL docunment. There may be multiple

webservi ce-descriptions defined within a nodul e.

Al WSDL file ports nust have a correspondi ng port-conponent el enent
defi ned.

Used i n: webservices

10/10/02 7:22 AM VERSION 1.1 PAGE 47 OF 87

PUBLIC DRAFT

</ xsd: docunent ati on>
</ xsd: annot ati on>

<xsd: sequence>
<xsd: el emrent name="descri ption"
type="j 2ee: descri pti onType"
m nOccur s="0" maxCccurs="1"/>
<xsd: el enent nanme="di spl ay- nanme"
type="j 2ee: di spl ay- naneType"
m nOccur s="0" maxCccurs="1"/>
<xsd: el ement nane="icon"
type="j 2ee: i conType"
m nOccur s="0" maxCccurs="1"/>
<xsd: el ement nane="webservi ce-descri ption-nane”
type="j 2ee: string">
<xsd: annot at i on>
<xsd: docunent at i on>

The webservi ce-description-nane identifies the collection of

port-conponents associated with a WDL file and JAX- RPC

mappi ng. The nane nust be uni que within the depl oynent
descriptor.

</ xsd: docunent ati on>

</ xsd: annot ati on>

</ xsd: el enent >

<xsd: el enent nanme="wsdl -file"
type="j 2ee: pat hType" >

<xsd: annot ati on>

<xsd: docunent ati on>

The wsdl -file element contains the nane of a WBDL file in the
nodule. The file nane is a relative path within the nodul e.

</ xsd: docunent ati on>

</ xsd: annot ati on>

</ xsd: el enent >

<xsd: el enent nane="j axrpc- mappi ng-file"
type="j 2ee: pat hType" >

<xsd: annot ati on>

<xsd: docunent ati on>

The jaxrpc-mapping-file el enent contains the nanme of a file that
descri bes the JAX- RPC nappi ng between the Java interaces used by
the application and the WSDL description in the wsdl-file. The
file name is a relative path within the nodul e.

</ xsd: docunent ati on>

</ xsd: annot ati on>

</ xsd: el enent >

<xsd: el ement nane="port-conponent"”

type="j 2ee: port - component Type"

m nCccur s="1" maxCccur s="unbounded" >
<xsd: key nanme="port-conponent handl er - nane- key" >
<xsd: annot ati on>
<xsd: docunent ati on>

Defines the nanme of the handler. The nane nust be unique
within the
nmodul e.

</ xsd: docunent ati on>

</ xsd: annot at i on>
<xsd: sel ect or xpat h="j 2ee: handl er"/>

10/10/02 7:22 AM VERSION 1.1 PAGE 48 OF 87

PUBLIC DRAFT

<xsd:field xpat h="j 2ee: handl er - nane"/ >
</ xsd: key>
</ xsd: el enent >
</ xsd: sequence>
<xsd:attribute nane="id" type="xsd:ID'/>
</ xsd: conpl exType>

<l oo Fhkkkkkkhkkkhhhkkdhhhhkdrhhhhdrhhhbrhhbbbrrbbbrrrbbrrrrs | _ S

<xsd: conpl exType name="webservi cesType" >
<xsd: sequence>
<xsd: group ref="j2ee: descripti onGoup"/>
<xsd: el emrent nanme="webservi ce-description”
type="] 2ee: webservi ce-descri pti onType"
m nOccur s="1" maxCccur s="unbounded" >
<xsd: key nanme="port-conponent - nane- key" >
<xsd: annot at i on>
<xsd: docunent ati on>
<! [CDATA[

The port-component-nane el ement specifies a port
component's nane. This nanme is assigned by the nodul e
producer to nane the service inplenentation bean in the
nodul e' s depl oynent descriptor. The name nust be uni que
anong the port conponent names defined in the sanme nodul e.

Used in: port-conponent

Exanpl e:
<port - conmponent - nanme>Enpl oyeeSer vi ce
</ port - conponent - nane>

11>

</ xsd: docunent ati on>

</ xsd: annot at i on>
<xsd: sel ect or xpat h="j 2ee: port-conponent"/ >
<xsd: field xpat h="j 2ee: port - conponent - nane"/ >

</ xsd: key>

</ xsd: el enent >
</ xsd: sequence>

<xsd:attribute name="versi on"
type="j 2ee: dewey- ver si onType"
fixed="1.1"
use="required">

<xsd: annot ati on>

<xsd: docunent ati on>

The required value for the version is 1.1.

</ xsd: docunent at i on>

</ xsd: annot at i on>

</xsd:attribute>

<xsd:attribute name="id" type="xsd:ID'/>
</ xsd: conpl exType>

</ xsd: schema>

10/10/02 7:22 AM VERSION 1.1 PAGE 49 OF 87

PUBLIC DRAFT

7.2 Service Reference Deployment Descriptor Information

This section defines the function of the Service Reference XML schema file, its use within modules, the
platform roles and responsibilities for definining instance data, and the format.

7.2.1

Overview

The Service Reference XML schema defines the schema for service reference entries. These entries declare
references to Web services used by a J2EE component in the web, EJB, or application client container. If the
Web services client is a J2EE component, then it uses a logical name for the Web service called a service
reference to look up the service. Any component that uses a Web service reference must declare a
dependency on the Web service reference in a module’s deployment descriptor file.

7.2.2

Developer responsibilities

The developer is responsible for defining a ser vi ce-r ef for each Web service a component within the
module wants to reference. This includes the following information:

Service Reference Name. This defines a logical name for the reference that is used in the client
source code. It is recommended, but not required that the name begin with ser vi ce/ .

Service type: The ser vi ce-i nt er f ace element defines the fully qualified name of the JAX-
RPC Service Interface class returned by the JNDI lookup.

Ports. The developer declares requirements for container managed port resolution using the port-
conponent - r ef element. The port-conponent - r ef elements are resolved to a WSDL
port by the container. See Chapter 4 for a discussion of container managed port access.

The developer may specify the following information:

7.2.3

WSDL definition. The wsdl - f i | e element specifies a location of the WSDL description of the
service. The location is relative to the root of the module. The WSDL description may be a partial
WSDL, but must at least include the portType and binding elements. The WSDL description
provided by the developer is considered a template that must be preserved by the
assembly/deployment process. In other words, the WSDL description contains a declaration of the
application’s dependency on portTypes, bindings, and QNames. The WSDL document must be
fully specified, including the service and port elements, if the application is dependent on port
QNames (e.g. uses the Servi ce. get Port (QNane, O ass) method). The developer must
specify the wsdl - f i | e if any of the Service methods declared in section 4.2.2.4 or 4.2.2.5 are
used.

Service Port. If the specified wsdl - f i | e has more than one ser vi ce element, the developer
must specify the ser vi ce- gnane.

JAX-RPC Mapping. The developer specifies the correlation of the WSDL definition to the
interfaces using the j axr pc- mappi ng-fi | e element. The location is relative to the root of the
module. The same mapping file must be used for all interfaces associated with a wsdl -fi | e.
The developer must specify the j axr pc- mappi ng-fi | e ifthewsdl -fi | e is specified.

Handlers. A developer may optionally specify handlers associated with the ser vi ce- r ef using
the handl er element.

Assembler responsibilities

In addition to the responsibilities defined within the J2EE specification, the assembler may define the
following information:

10/10/02 7:22 AM VERSION 1.1 PAGE 50 OF 87

PUBLIC DRAFT

¢ Binding of service references. The assembler may link a Web service reference to a component
within the J2EE application unit using the port-conponent-1ink element. It is the
assembler’s responsibility to ensure there are no detailed differences in the SEI and target bindings
that would cause stub generation or runtime problems.

The assembler may modify any of the following information that has been specified by the developer in the
servi ce-ref element of the modul €’ s deployment descriptor file:

¢ Description fields. The assembler may change existing or create new descri pti on elements.

¢ Handlers. The assembler may change values of existing par am val ue elements, may add new
i ni t-param elements, may change or add soap- header elements, may change or add
soap- r ol e elements, or may add new handl er elements.

e WSDL definition. The assembler may replace the WSDL definition with a new WSDL that
resolves missing service and port elements or missing port address attributes. The assembler may
update the port address attribute.

7.24 Deployer responsibilities

In addition to the normal duties a J2EE deployer platform role has, the deployer must also provide deploy
time binding information to resolve the WSDL document to be used for each ser vi ce-r ef . If a partial
WSDL document was specified and ser vi ce and port elements are needed by a vendor to resolve the
binding, they may be generated. The deployer is also responsible for providing deploy time binding
information to resolve port access declared by the por t - conponent - r ef element.

7.2.5 Web Services Client Service Reference XIML Schema

This section defines the XML Schema for the service-ref. This schema is imported into the common
J2EE 1.4 schema and is used by the application client, web, and EJB module deployment descriptor
schemas to declare service-refs. See the Java 2 Enterprise Edition 1.4, Servlet 1.4, and Enterprise
JavaBeans 2.1 specifications for more details on specifying a servi ce-ref in the deployment
descriptors.

<?xm version="1.0" encodi ng="UTF-8""?>
<xsd: schema xm ns="http://ww. w3. or g/ 2001/ XM_Schena"
t ar get Namespace="http://java. sun. com xm / ns/j 2ee"
xm ns:j2ee="http://java. sun. com xm / ns/| 2ee"
xm ns: xsd="http://ww. w3. org/ 2001/ XM_Schera"
el enent For mDef aul t =" qual i fi ed"
attri but eFor nDef aul t ="unqual i fi ed"
version="1.1">
<xsd: annot ati on>
<xsd: docunent ati on>
@#)j2ee_web_services_client_1_1.xsds 1.9 10/04/02
</ xsd: docunent at i on>
</ xsd: annot at i on>

<xsd: annot ati on>
<xsd: docunent ati on>

Copyright 2002 Sun M crosystens, Inc., 901 San Antonio
Road, Palo Alto, California 94303, U S A Al rights
reserved.

Sun M crosystens, Inc. has intellectual property rights
relating to technol ogy described in this docunment. In
particular, and without limtation, these intellectua
property rights may include one or nore of the U S. patents
listed at http://ww. sun. com patents and one or nore

10/10/02 7:22 AM VERSION 1.1 PAGE 51 OF 87

PUBLIC DRAFT

additi onal patents or pending patent applications in the
U.S. and other countries.

Thi s docunent and the technol ogy which it describes are
distributed under licenses restricting their use, copying,
di stribution, and deconpilation. No part of this docunent
may be reproduced in any formby any nmeans without prior
witten authorization of Sun and its licensors, if any.

Third-party software, including font technol ogy, is
copyrighted and |icensed from Sun suppliers.

Sun, Sun M crosystens, the Sun logo, Solaris, Java, J2EE
JavaServer Pages, Enterprise JavaBeans and the Java Cof fee
Cup logo are trademarks or registered trademarks of Sun

M crosystens, Inc. in the U S. and other countries.

Federal Acquisitions: Comrercial Software - Governnent Users
Subj ect to Standard License Terns and Conditi ons.

</ xsd: docunent ati on>
</ xsd: annot ati on>

<xsd: annot ati on>
<xsd: docunent ati on>

(C Copyright International Business Machi nes Corporation 2002

</ xsd: docunent ati on>
</ xsd: annot ati on>

P i o R o o Y

<xsd: conpl exType name="port-conponent -ref Type" >
<xsd: annot at i on>
<xsd: docunent at i on>

The port-conponent-ref elenment declares a client dependency
on the container for resolving a Service Endpoint Interface
to a WoDL port. It optionally associates the Service Endpoint
Interface with a particular port-conponent. This is only used
by the container for a Service.getPort(C ass) nethod call

</ xsd: docunent ati on>
</ xsd: annot ati on>

<xsd: sequence>
<xsd: el ement nanme="servi ce-endpoi nt-interface”
type="j 2ee: fully-qualified-classType">
<xsd: annot at i on>
<xsd: docunent at i on>

The service-endpoint-interface el ement defines a fully qualified
Java cl ass that represents the Service Endpoint Interface of a
WEDL port.

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >

<xsd: el enent nane="port-conponent-|ink"

type="j 2ee: string"
m nOccur s="0" maxCccurs="1">

10/10/02 7:22 AM VERSION 1.1 PAGE 52 OF 87

PUBLIC DRAFT

<xsd: annot ati on>
<xsd: docunent ati on>

The port-conponent-link elenent |links a port-conponent-ref to a
speci fic port-conmponent required to be made avail able by a

service
r ef erence.

The val ue of a port-conponent-Ilink nust be the port-conponent-

name

of a port-conmponent in the same nodul e or another nodule in the
same

application unit. The syntax for specification follows the
synt ax

defined for ejb-link in the EIJB 2.0 specification

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >
</ xsd: sequence>
<xsd:attribute name="id" type="xsd:ID'/>
</ xsd: conpl exType>

I R

<xsd: group nanme="servi ce-ref G oup">
<xsd: sequence>
<xsd: el enent nanme="service-ref"

type="j 2ee: servi ce-ref Type"

m nCccur s="0" maxCccur s="unbounded" >
<xsd: key nanme="servi ce-ref _handl er-nane- key" >
<xsd: annot ati on>
<xsd: docunent ati on>

->

Defines the nane of the handl er. The nane nust be uni que

within the
nodul e.

</ xsd: docunent at i on>

</ xsd: annot at i on>
<xsd: sel ect or xpath="j2ee: handl er"/>
<xsd:field xpat h="j 2ee: handl er - nane"/ >

</ xsd: key>

</ xsd: el ement >
</ xsd: sequence>
</ xsd: gr oup>

P o R R R R

<xsd: conpl exType nanme="service-ref Type">
<xsd: annot at i on>
<xsd: docunent at i on>

The service-ref element declares a reference to a Wb

service. It contains optional description, display name and

icons, a declaration of the required Service interface,

an optional WSDL document | ocation, an optional set

of JAX- RPC mappi ngs, an optional QNane for the service el enent,
an optional set of Service Endpoint Interfaces to be resolved
by the container to a WoDL port, and an optional set of handlers.

</ xsd: docunent ati on>
</ xsd: annot ati on>

10/10/02 7:22 AM VERSION 1.1

PAGE 53 OF 87

RPC

The

PUBLIC DRAFT

<xsd: sequence>

<xsd: group ref="j2ee:descripti onGoup"/>

<xsd: el enment name="service-ref-nanme"
type="j 2ee: j ndi - naneType" >

<xsd: annot ati on>

<xsd: docunent ati on>

The service-ref-nane el enent declares |ogical nane that the
conmponents in the nodule use to | ook up the Wb service. It
is reconmmended that all service reference nanes start with

"servicel"

</ xsd: docunent at i on>
</ xsd: annot ati on>
</ xsd: el enent >

<xsd: el enent nane="service-interface"

type="j 2ee: fully-qualified-classType">
<xsd: annot ati on>
<xsd: docunent ati on>

The service-interface el enent declares the fully qualified class
nanme of the JAX-RPC Service interface the client depends on.
In nost cases the value will be javax.xm .rpc. Service. A JAX-

generated Service Interface class may al so be specified.

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >

<xsd: el enent name="wsdl -file"
type="j 2ee: xsdAnyURI Type"
m nCccur s="0" maxQccurs="1">
<xsd: annot ati on>
<xsd: docunent ati on>

The wsdl -file elenent contains the URI |ocation of a WBDL file.
| ocation is relative to the root of the nodul e.

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >

<xsd: el ement nanme="j axrpc-nmappi ng-file"
type="| 2ee: pat hType"
m nCccurs="0" maxCccurs="1">
<xsd: annot ati on>
<xsd: docunent ati on>

The jaxrpc-mapping-file el enent contains the nanme of a file that
descri bes the JAX- RPC nappi hg between the Java interaces used by
the application and the WSDL description in the wsdl-file. The
file name is a relative path within the nodule file.

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >

<xsd: el enent nane="servi ce-gnang"
type="j 2ee: xsdQ\aneType"
m nCccur s="0" maxCccurs="1">
<xsd: annot ati on>

10/10/02 7:22 AM VERSION 1.1 PAGE 54 OF 87

t he

PUBLIC DRAFT

<xsd: docunent ati on>

The service-gnanme el ement decl ares the specific WSDL service
elenent that is being refered to. It is not specified if no

wsdl -file is decl ared.

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >

<xsd: el ement name="port-conponent-ref”

type="j 2ee: port - conponent - r ef Type"

m nCccur s="0" maxCccur s="unbounded" >
<xsd: annot ati on>
<xsd: docunent ati on>

The port-conmponent-ref el enment declares a client dependency
on the container for resolving a Service Endpoint Interface
to a WeDL port. It optionally associates the Service Endpoint
Interface with a particular port-conponent. This is only used
by the container for a Service.getPort(C ass) nethod call.

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >

<xsd: el enent nanme="handl er"
type="j 2ee: servi ce-ref handl er Type"
m nCccur s="0" maxCccur s="unbounded" >
<xsd: annot ati on>
<xsd: docunent ati on>

Decl ares the handl er for a port-conponent. Handl ers can

access

i nit-param nane/value pairs using the Handlerlnfo interface. If
port-nane is not specified, the handler is assunmed to be
associ at ed

with all ports of the service.

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >
</ xsd: sequence>
<xsd:attribute nane="id" type="xsd:ID'/>

</ xsd: conpl exType>

<I--

dhkhkkkkdhhkhhdhhhhhdhrhrhdbhrhrdbbrrddbdrrddbrrrddrxr __ >

<xsd: conpl exType nanme="servi ce-ref _handl er Type" >

<xsd: annot ati on>
<xsd: docunent ati on>

Decl ares the handler for a port-conponent. Handlers can access the

i nit-param nane/value pairs using the Handlerlnfo interface.

| f

port-nane is not specified, the handler is assuned to be associ ated

with all ports of the service.
Used in: service-ref

</ xsd: docunent ati on>

</ xsd: annot ati on>

<xsd: sequence>
<xsd: group ref="j2ee:descripti onGoup"/>
<xsd: el enent nanme="handl er - nane"

10/10/02 7:22 AM VERSION 1.1

PAGE 55 OF 87

t he

PUBLIC DRAFT

type="j 2ee: string">
<xsd: annot ati on>
<xsd: docunent ati on>

Defines the nanme of the handler. The name nust be unique within
nodul e.

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >
<xsd: el enent name="handl er-cl ass"
type="j 2ee: fully-qualified-classType">
<xsd: annot ati on>
<xsd: docunent ati on>

Defines a fully qualified class nane for the handl er

i mpl enent ati on.

</ xsd: docunent ati on>
</ xsd: annot at i on>
</ xsd: el enent >
<xsd: el enent nane="init-parant
type="j 2ee: param val ueType"
m nCccur s="0" maxQccur s="unbounded"/ >

<xsd: el ement nane="soap- header"
type="j 2ee: xsdQ\aneType"
m nCccur s="0" maxCccur s="unbounded" >
<xsd: annot ati on>
<xsd: docunent ati on>

Defi nes the QNane of a SOAP header that will be processed by the
handl er.

</ xsd: docunent at i on>
</ xsd: annot ati on>
</ xsd: el enent >

<xsd: el emrent name="soap-rol e"

type="j 2ee: string"

m nCccur s="0" maxCccur s="unbounded" >
<xsd: annot ati on>
<xsd: docunent ati on>

The soap-role el enent contains a SOAP actor definition that the
Handler will play as a role.

</ xsd: docunent ati on>
</ xsd: annot at i on>
</ xsd: el enent >

<xsd: el enent name="port-nane"

type="j 2ee: string"

m nCccur s="0" nmaxQccur s="unbounded" >
<xsd: annot ati on>
<xsd: docunent ati on>

The port-nane el enent defines the WSDL port-name that a handl er
shoul d be associated with.

</ xsd: docunent ati on>

</ xsd: annot ati on>
</ xsd: el enent >

10/10/02 7:22 AM VERSION 1.1 PAGE 56 OF 87

PUBLIC DRAFT

</ xsd: sequence>
<xsd:attribute nane="id" type="xsd:ID'/>
</ xsd: conpl exType>

</ xsd: schema>

7.3 JAX-RPC Mapping Deployment Descriptor

This section defines the content of the JAX-RPC mapping file, location within modules, roles and
responsibilities, and the format.

73.1 Overview

The JAX-RPC mapping deployment descriptor has no standard file name, though it is recommended that the
file use a .xml suffix. There is a 1-1 correspondence between WSDL files and mapping files within a module.
The JAX-RPC mapping deployment descriptor contains information that correlates the mapping between the
Java interfaces and WSDL definition. A deployment tool uses this information along with the WSDL file to
generate stubs and TIEs for the deployed services and service-refs.

7.3.2 Developer responsibilities
A developer creates the mapping file at the same time that the WSDL and/or Java interfaces are created. A
developer may specify only the package-mapping if the following conditions are met:
¢ The WSDL file must contain exactly one Ser vi ce element.
e The servi ce element must define exactly one port .

e The set of servi ce name, bi ndi ng name, port Type name, and all root WSDL type (e.g.
conpl exType, si npl eType, etc.) names must be unique.

e The port’s bi ndi ng must be a soap 1.1 binding with st yl e="r pc"; all its operations must
specify use="encoded", encodi ngStyl e=" <the SOAP 1.1 encoding>" for their input,
output, and fault messages and either omit the parts attribute or include it such that all the parts of
both the input and output message are mapped to the soap body. Also, no soap headers or header
faults can be specified in the bi ndi ng.

e Each oper ati on must:

e Have a unique name (in the context of the portType it belongs to) that follows the
Java conventions for method names.

* Have exactly one input message.
e Have at most one output nessage.
e Have zero or more f aul t messages.

e FEither have no parameterOrder attribute or the value of that attribute must be a
complete listing of all parts in the input message in the order they appear therein.

e Faults must map to an exception such that it:

e Directly or indirectly inherits from j ava. | ang. Except i on, but must not inherit
from Runt i meExcept i on nor Renot eExcepti on.

10/10/02 7:22 AM VERSION 1.1 PAGE 57 OF 87

PUBLIC DRAFT

e Has at most a single property called “message” of type j ava. | ang. Stri ng
with corresponding single St r i ng argument constructor.

e Must be SOAP encoded.
e Each input nessage may have 0 or more part s

e FEach output message must have either 0 or 1 parts. If present, the part must have a name
different from that of any parts in the input message.

¢ Each part must be of this form:
<part name="..." type="T'[l>

e Each type T must be one of the following valid types:
e A simple type defined in table 4-1, section 4.2.1 of the JAX-RPC specification.
* A complex type using either the sequence compositor:

<xsd: conpl exType name="T">
<xsd: sequence>
<xsd: el ement name="..." type="Tprinme"/>
</ xsd: sequence>
</ xsd: conpl exType>

Or the all compositor:

<xsd: conpl exType nane="T">
<xsd:al | >
<xsd: el enent name="..." type="Tprinme"/>
</xsd:all >
</ xsd: conpl exType>

In either case, the element declarations can appear one or more times and each type
Tprime must be valid. All element names are mapped as JavaBeans properties and
element names follow the standard JavaBeans property name convention of lower
case for the first character and the complexType name follows the Java standard class
name conventions of upper case first letter.

* A SOAP array of the form:

<xsd: conpl exType name="...">
<xsd: restriction base="soapenc: Array"/>
<xsd:attribute ref="soapenc: arrayType"
wsdl : arrayType="Tprine[]"/>
</xsd:restriction>
</ xsd: conpl exType>

where Tprime is a valid type and is not a SOAP array type.

If the conditions are not met, a full mapping must be specified. There must be a j ava- xnm -t ype-
mappi ng for every root WSDL type. An except i on- mappi ng must be created for each WSDL fault.
There must be a servi ce-i nt er f ace- mappi ng for every ser vi ce element in the WSDL file that
has a Generated Service Interface used by the developer. There must be a servi ce- endpoi nt -
i nt er f ace- mappi ng for every combination of portType and binding in the WSDL file. There must be a
package- mappi ng for every namespace defined in the WSDL file.

10/10/02 7:22 AM VERSION 1.1 PAGE 58 OF 87

PUBLIC DRAFT

Web Services for J2EE providers may support partial mapping specifications (e.g. not providing a net hod-
par am part s- mappi ng for every method) regardless of the WSDL content by using standard JAX-RPC
WSDL to Java mapping rules to resolve the mappings. If mappings are specified, they take precedence over
the mapping rules. Such partial mappings are vendor specific and therefore are non-portable.

For INOUT parameters, only the mapping for the input message is required.

The developer must define the j axr pc- mappi ng-fil e element of the webservices.xml or module
deployment descriptor (if a ser vi ce- r ef isused) to be the location of the mapping file.

The developer must package the mapping file in the module with the WSDL file.
7.3.3 Assembler responsibilities

The assembler must not change the JAX-RPC Mapping file.
7.3.4 Deployer responsibilities

The deployer uses deployment tools to deploy the services and service-refs contained inside a module. The
deployment tool must use the JAX-RPC mapping file to generate stubs and TIEs for the services and service-
refs.

7.3.5 JAX-RPC Mapping DTD

<?xm version="1.0" encodi ng="UTF-8"?>

<xsd: schema xm ns="http://ww. w3. org/ 2001/ XM_Schena"
t ar get Nanmespace="http://java. sun. coml xm / ns/j 2ee"
xm ns:j2ee="http://java. sun. conl xm / ns/j 2ee"
xm ns: xsd="http://ww. w3. or g/ 2001/ XM_Schena"
el ement For nDef aul t =" qual i fi ed"
attri but eFor nDef aul t ="unqual i fi ed"
version="1.1">

<xsd: annot at i on>

<xsd: docunent ati on>

@ +#)j 2ee_jaxrpc_mapping_1 1. xsds 1.9 10/01/02

Based on j2ee jaxrpc_mapping_1 0.dtd, Last updated: 09/19/2002 10: 26
</ xsd: docunent ati on>
</ xsd: annot at i on>

<xsd: annot ati on>
<xsd: docunent ati on>

Copyri ght 2002 Sun M crosystens, Inc., 901 San Antonio
Road, Palo Alto, California 94303, U S A Al rights
reserved.

Sun M crosystenms, Inc. has intellectual property rights
relating to technol ogy described in this docunment. In
particular, and without Iimtation, these intellectua
property rights may include one or nore of the U S. patents
listed at http://ww. sun. com patents and one or nore
addi ti onal patents or pending patent applications in the
U.S. and other countri es.

Thi s docunent and the technol ogy which it describes are

di stributed under |icenses restricting their use, copying,
distribution, and deconpilation. No part of this docunent
may be reproduced in any form by any means w thout prior
witten authorization of Sun and its licensors, if any.

10/10/02 7:22 AM VERSION 1.1 PAGE 59 OF 87

PUBLIC DRAFT

Third-party software, including font technol ogy, is
copyrighted and |icensed from Sun suppliers.

Sun, Sun M crosystens, the Sun logo, Solaris, Java, J2EE
JavaServer Pages, Enterprise JavaBeans and the Java Cof fee
Cup logo are trademarks or registered trademarks of Sun

M crosystens, Inc. in the U S. and other countries.

Federal Acquisitions: Comrercial Software - Governnent Users
Subj ect to Standard License Terns and Conditi ons.

</ xsd: docunent ati on>
</ xsd: annot ati on>

<xsd: annot ati on>
<xsd: docunent ati on>

(C Copyright International Business Machi nes Corporation 2002

</ xsd: docunent ati on>
</ xsd: annot ati on>

<xsd: annot at i on>
<xsd: docunent ati on>
<! [CDATA[

The el ement describes the Java mapping to a known WSDL docunent.

It contains the nmappi ng bet ween package nanmes and XM. nanespaces
WBDL root types and Java artifacts, and the set of mappings for
servi ces.

Al'l java-wsdl - mappi ng depl oynment descriptors nust indicate the schema by
usi ng the J2EE nanespace:

http://java. sun.conm xm / ns/j 2ee

and by indicating the version of the schema by using the version el enent
as
shown bel ow.

<j ava-wsdl - mappi ng xm ns="http://java. sun. comi xm / ns/| 2ee"
xm ns: xsi ="http://ww. w3. or g/ 2001/ XM_Schena- i nst ance"
xsi : schemalLocati on="http://]ava. sun. conl xm / ns/j 2ee
http://ww. i bm com webservi ces/ xsd/j2ee_j axrpc_nmapping_1 1.xsd"
version="1.1">

</jéVa-m5dI-napping>
The instance docunents nmy indicate the published version of
the schenmm using the xsi:schenaLocation attribute for J2EE
nanespace with the follow ng | ocation:

http://ww. i bm com webservi ces/ xsd/j 2ee_j axrpc_nmapping_1 1.xsd

11>
</ xsd: docunent ati on>
</ xsd: annot at i on>

<xsd: annot ati on>
<xsd: docunent ati on>

The foll owi ng conventions apply to all J2EE
depl oyment descriptor el enents unless indicated otherw se.

10/10/02 7:22 AM VERSION 1.1 PAGE 60 OF 87

PUBLIC DRAFT

In elenents that specify a pathnanme to a file within the
sane JAR file, relative filenanes (i.e., those not
starting with "/") are considered relative to the root of
the JAR file's nanespace. Absolute filenanes (i.e., those
starting with "/") also specify names in the root of the
JAR file's namespace. |In general, relative nanes are
preferred. The exception is .war files where absolute
nanmes are preferred for consistency with the Servlet AP

</ xsd: docunent ati on>
</ xsd: annot at i on>

<xsd:include schenmaLocation="j2ee_1 4.xsd"/>

<l oo Fhkkkkkkkkkhhkkdhhhhkkrhhhhdrhdhhrhhbbbrrdbbhrrrbbdrrrs | _ S

<xsd: el enent

<xsd: annot ati on>
<xsd: docunent ati on>

nane="j ava- wsdl - mappi ng" type="j 2ee:j ava- wsdl - mappi ngType" >

This is the root of the java-wsdl - mappi ng depl oynent descri ptor.

</ xsd: docunent ati on>
</ xsd: annot at i on>

</ xsd: el enent >

<l oo kxkkkkhkhkkkhrrdhkhkdhhhhhrrdddhhhhdhhrrddddhhhdrrrrrdddr | S

<xsd: conpl exType name="construct or- par amnet er - or der Type" >

<xsd: annot ati on>
<xsd: docunent ati on>

The constructor-paraneter-order el enent defines the order
that conpl exType el enent val ues are applied to a Java

exception constructor. Elenment nanes are specified for each

paraneter of the constructor, including el ement names of
inherited types if necessary.

Used in: exception-mappi ng

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el enent nane="el enent - nane"
type="j 2ee: string”
m nCccur s="1" maxCccur s="unbounded" >
<xsd: annot ati on>
<xsd: docunent ati on>

The el ement - nane el ement defines the name of a conpl exType

el enrent nane attri bute val ue.

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >
</ xsd: sequence>
<xsd:attribute name="id" type="xsd:ID'/>

</ xsd: conpl exType>

<l oo Fhkkkkkkkkkkhkkkhhhhkkrhhbhdhhdbbbrrdbbbrrbbbrrrbbrrrrs __ 5

10/10/02 7:22 AM VERSION 1.1

PAGE 61 OF 87

PUBLIC DRAFT

<xsd: conpl exType nanme="excepti on- mappi ngType" >
<xsd: annot ati on>
<xsd: docunent ati on>

The exception-mapping el ement defines the nmapping between the
service specific exception types and the wsdl faults.

This el ement should be interpreted with respect to the
mappi ng between a nethod and an operation which provides the
mappi hg cont ext.

Used in: service-endpoint-nmet hod- mappi ng

</ xsd: docunent at i on>
</ xsd: annot at i on>
<xsd: sequence>
<xsd: el ement nane="exception-type"
type="j 2ee: fully-qualified-classType">
<xsd: annot at i on>
<xsd: docunent ati on>

The exception-type el enent defines Java type of the exception
It may be a service specific exception.

It nust be a fully qualified class nane.

</ xsd: docunent ati on>
</ xsd: annot at i on>
</ xsd: el enent >
<xsd: el enment nanme="wsdl - nessage"
type="j 2ee: wsdl - nessageType"/ >
<xsd: el ement nanme="constructor-paraneter-order"
type="j 2ee: construct or - par anet er - or der Type"
m nCccur s="0" maxCccurs="1"/>
</ xsd: sequence>
<xsd:attribute nane="id" type="xsd:ID'/>
</ xsd: conmpl exType>

<l oo Fhkkkkkkkkkhhhkkdhhhhkkrhhhhkrrhhhhrhhbhrrrhbbrrrhbrrrrdr | _ S

<xsd: conpl exType nanme="j ava- wsdl - mappi ngType" >
<xsd: annot at i on>
<xsd: docunent ati on>

The el ement describes the Java mapping to a known WSDL docunent.

It contains the mappi hg between package nanes and XM. nanespaces,
WBDL root types and Java artifacts, and the set of mappings for
servi ces.

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el enent nanme="package- mappi ng"
type="| 2ee: package- mappi ngType"
m nOccur s="1" maxCccur s="unbounded"/ >
<xsd: el enent nane="j ava-xnm -t ype- nappi ng"
type="j 2ee: j ava- xnl -t ype- mappi ngType"
m nCccur s="0" maxCccur s="unbounded"/ >
<xsd: el enent nane="excepti on- mappi ng"
type="j 2ee: excepti on- mappi ngType"
m nCccur s="0" maxCccur s="unbounded"/ >
<xsd: sequence m nCccurs="0" nmaxQccur s="unbounded" >

10/10/02 7:22 AM VERSION 1.1 PAGE 62 OF 87

PUBLIC DRAFT

<xsd: el ement nane="service-interface-mappi ng"
type="j 2ee: servi ce-interface-mappi ngType
m nCccurs="0" maxCccurs="1"/>
<xsd: el ement nane="servi ce-endpoi nt-i nterface-nappi ng
type="j 2ee: servi ce- endpoi nt-interface-

mappi ngType"
m nCccurs="1" maxCccur s="unbounded"/ >
</ xsd: sequence>
</ xsd: sequence>

<xsd:attribute name="versi on"
type="j 2ee: dewey- ver si onType"
fixed="1.1"
use="required">

<xsd: annot ati on>

<xsd: docunent ati on>

The required value for the version is 1.1.

</ xsd: docunent ati on>

</ xsd: annot at i on>

</ xsd:attri bute>

<xsd:attribute name="id" type="xsd:ID'/>
</ xsd: conpl exType>

<l oo Fhkkkkkkkkkkhkkkhhhkkrhhhhdrhhbbhrhhbhbrrbbbrrrbbbrrrs _ 5

<xsd: conpl exType nanme="j ava- xml -t ype- mappi ngType" >
<xsd: annot ati on>
<xsd: docunent ati on>

The java-xnl -type-nmappi ng el emrent contains a class-type that is the
fully qualified name of the Java class, QNanme of the XML root type,
the WSDL type scope the QName applies to and the set of variable
mappi ngs for each public variable within the Java cl ass.

Used in: java-wsdl - mappi ng

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el emrent nanme="cl ass-type"
type="j 2ee: fully-qualified-classType">
<xsd: annot ati on>
<xsd: docunent ati on>

The class-type elenent is the fully qualified class nane of
a Java cl ass.

</ xsd: docunent ati on>

</ xsd: annot ati on>

</ xsd: el enent >

<xsd: el enent name="r oot -t ype- gnane"
type="j 2ee: xsdQ\anmeType" >

<xsd: annot ati on>

<xsd: docunent ati on>

The root-type-gnane identifies the WBDL QNanme of an XM type.

</ xsd: docunent ati on>
</ xsd: annot at i on>
</ xsd: el enent >
<xsd: el emrent nanme="gnane-scope"
type="j 2ee: gnane- scopeType"/ >

10/10/02 7:22 AM VERSION 1.1 PAGE 63 OF 87

PUBLIC DRAFT

<xsd: el ement nane="vari abl e- mappi ng"
type="j 2ee: vari abl e- mappi ngType"
m nCccur s="0" maxOccur s="unbounded"/ >
</ xsd: sequence>
<xsd:attribute nane="id" type="xsd:ID'/>
</ xsd: conpl exType>

<l oo Fhkkkkkkhkkkhhhkkdhhhhkdrhhhhdrhhhbrhhbbbrrbbbrrrbbrrrrs | _ S

<xsd: conpl exType name="net hod- param part s- mappi ngType" >
<xsd: annot at i on>
<xsd: docunent at i on>

The net hod- param parts-mappi ng el ement defines the mappi ng between a
Java nethod paraneters and a wsdl - nessage.

Used in: service-endpoi nt-net hod- mappi ng

</ xsd: docunent ati on>
</ xsd: annot at i on>
<xsd: sequence>
<xsd: el ement nane="param position”
type="j 2ee: xsdNonNegat i vel nt eger Type" >
<xsd: annot at i on>
<xsd: docunent at i on>

The param position el enent defines the position of a paraneter
wi thin
a Java nethod. It nust be an integer starting fromO.

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >
<xsd: el ement nanme="paramtype"
type="j 2ee: fully-qualified-classType">
<xsd: annot ati on>
<xsd: docunent ati on>

The paramtype el enent defines the Java type of a paraneter
within a

Java nmethod. It nust be defined by a fully qualified nane of a
cl ass.

</ xsd: docunent at i on>
</ xsd: annot at i on>
</ xsd: el enent >
<xsd: el enent nane="wsdl - nressage- nappi ng"
type="j 2ee: wsdl - nessage- nappi ngType"/ >
</ xsd: sequence>
<xsd:attribute nane="id" type="xsd:ID'/>
</ xsd: conpl exType>

<l oo Fhkkkkkkkkkkkkkkhhdhhrhhhhdrbdbdhrrhbddbrrdbdbrrrddbrrrd _ 5

<xsd: conpl exType nanme="package- mappi ngType" >
<xsd: annot ati on>
<xsd: docunent ati on>

The package- mappi ng i ndi cates the mappi ng between java- package- nane
and XM. nanespace in the WSDL docunent.

Used in: java-wsdl - mappi ng

</ xsd: docunent ati on>

10/10/02 7:22 AM VERSION 1.1 PAGE 64 OF 87

PUBLIC DRAFT

</ xsd: annot at i on>
<xsd: sequence>
<xsd: el enent nane="package-type"
type="j 2ee: fully-qualified-classType">
<xsd: annot at i on>
<xsd: docunent ati on>

The package-type indicates the Java package nane. It nmust be a
fully
qual i fied name.

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >
<xsd: el ement nanme="nanmespaceURl "
type="j 2ee: xsdAnyURI Type" >
<xsd: annot ati on>
<xsd: docunent ati on>

The nanespaceURl el enment indicates a URI.

</ xsd: docunent ati on>
</ xsd: annot at i on>
</ xsd: el enent >
</ xsd: sequence>
<xsd:attribute nanme="id" type="xsd:ID'/>
</ xsd: conpl exType>

<l oo Fhkkkkkkkkkkkkkkhhkhkkrhhhhdrhdhbrhhbbbbrrbbbrrrbbrrrrd _ 5

<xsd: conpl exType name="par anet er - nndeType" >
<xsd: annot ati on>
<xsd: docunent ati on>

The paraneter-node el enent defines the node of the paraneter.
It can have only three values, IN, OUT, | NQOUT.

Used in: java-xnl -type-mappi ng

</ xsd: docunent ati on>
</ xsd: annot at i on>
<xsd: si npl eCont ent >
<xsd:restriction base="j2ee:string">
<xsd: enuneration val ue="IN'/>
<xsd: enuneration val ue="QUT"/ >
<xsd: enunerati on val ue="1NoUT"/ >
</ xsd:restriction>
</ xsd: si mpl eCont ent >
</ xsd: conpl exType>

<|__ ER R R R R I I R O R I S R SRR S S -

<xsd: conpl exType nanme="port-nmappi ngType" >
<xsd: annot at i on>
<xsd: docunent ati on>

The port-nmappi ng defines the mappi ng of the WSDL port nane attribute
to the Java name used to generate the Generated Service Interface
net hod get{j ava- nane}.

Used in: service-interface-nmapping

</ xsd: docunent ati on>
</ xsd: annot ati on>

10/10/02 7:22 AM VERSION 1.1 PAGE 65 OF 87

PUBLIC DRAFT

<xsd: sequence>
<xsd: el emrent name="port - nane"
type="j 2ee: string">
<xsd: annot at i on>
<xsd: docunent at i on>

The port-nmappi ng defines the mappi ng of the WSDL port nane
attribute

to the Java nane used to generate the Generated Service
Interface

met hod get {j ava- nane}.

</ xsd: docunent at i on>

</ xsd: annot ati on>

</ xsd: el enent >

<xsd: el emrent name="j ava- port - nane"
type="j 2ee: string">

<xsd: annot ati on>

<xsd: docunent ati on>

The java-port-nanme elenent is the string to use as the port nane

Java. It is used in generating the Generated Service Interface
met hod
get{j ava- port - nane}.

</ xsd: docunent ati on>
</ xsd: annot at i on>
</ xsd: el enent >
</ xsd: sequence>
<xsd:attribute nane="id" type="xsd:ID'/>
</ xsd: conpl exType>

<l oo kxkkkdhkhkhkhkhrrdhddhhhhhrrdddhhhhhrrrrddddhhdrrrrrdhhr | S

<xsd: conpl exType name="qgnane-scopeType" >
<xsd: annot ati on>
<xsd: docunent ati on>

The qgname-scope el ements scopes the reference of a QNane to the WSDL
el ement type it applies to. The val ue of gnane-scope may be
si mpl eType, conpl exType, or el enment.

Used in: java-xm -type-nmappi ng

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: si npl eCont ent >
<xsd:restriction base="j2ee:string">
<xsd: enunerati on val ue="si npl eType"/ >
<xsd: enuneration val ue="conpl exType"/ >
<xsd: enuner ati on val ue="el enent"/>
</ xsd:restriction>
</ xsd: si mpl eCont ent >
</ xsd: conpl exType>

<|__ L R R R Y

<xsd: conpl exType nanme="servi ce-endpoi nt-interface-nmappi ngType" >
<xsd: annot at i on>
<xsd: docunent at i on>

The servi ce-endpoi nt-interface-mappi ng defines a tuple
to specify Service Endpoint Interfaces to

10/10/02 7:22 AM VERSION 1.1 PAGE 66 OF 87

PUBLIC DRAFT

WEDL port types and WSDL bi ndi ngs.

An interface may be mapped to a port-type and binding nultiple
times. This happens rarely.

Used in: java-wsdl - mappi ng

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el ement nanme="servi ce-endpoi nt-interface”
type="j 2ee: fully-qualified-classType">
<xsd: annot at i on>
<xsd: docunent at i on>

The service-endpoint-interface el enent defines the Java type for
t he

endpoi nt interface. The nane nust be a fully qualified class
nane.

</ xsd: docunent ati on>

</ xsd: annot ati on>

</ xsd: el enent >

<xsd: el ement nane="wsdl - port-type"
type="j 2ee: xsdQ\anmeType" >

<xsd: annot ati on>

<xsd: docunent ati on>

The wsdl -port-type el enent defines the wsdl port type
by a QNAME whi ch uniquely identifies the port type.

</ xsd: docunent ati on>

</ xsd: annot ati on>

</ xsd: el enent >

<xsd: el enent nane="wsdl - bi ndi ng"
type="j 2ee: xsdQ\anmeType" >

<xsd: annot ati on>

<xsd: docunent ati on>

The wsdl - bi ndi ng el enent defines the wsdl binding
by a QNAME whi ch uniquely identifies the binding.

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >
<xsd: el ement nanme="servi ce-endpoi nt - net hod- mappi ng"
type="j 2ee: servi ce- endpoi nt - mret hod- mappi ngType"
m nOccur s="0" maxCccur s="unbounded"/ >
</ xsd: sequence>
<xsd:attribute nane="id" type="xsd:ID'/>
</ xsd: conpl exType>

<!__ ER R S S S S S S I I O S S I S S - >
<xsd: conpl exType name="ser vi ce- endpoi nt - met hod- mappi ngType" >

<xsd: annot ati on>
<xsd: docunent ati on>

The servi ce- endpoi nt - met hod- mappi ng el enent defi nes the mappi ng of
Java methods to operations (which are not uniquely qualified by
gnamnes) .

The wsdl -operation should be interpreted with respect to the
port Type and binding in which this definition is enbedded wi thin.

10/10/02 7:22 AM VERSION 1.1 PAGE 67 OF 87

PUBLIC DRAFT

See the definitions for service-endpoint-interface-mappi ng
service-interface-nmapping to acquire the proper context.
wr apped- el ement indicator should only be specified when a
nmessage wraps an el ement type. The wsdl -return-val ue- mapp
not specified for one-way operations.

Used in: service-endpoint-interface-nmapping

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el ement nane="j ava- et hod- nane"
type="j 2ee: string">
<xsd: annot ati on>
<xsd: docunent ati on>

The j ava- met hod- nane el enent defines the nane of a Jav
within an interface.

</ xsd: docunent ati on>

</ xsd: annot at i on>

</ xsd: el enent >

<xsd: el enent nane="wsdl| - operation”
type="j 2ee: string">

<xsd: annot ati on>

<xsd: docunent ati on>

The wsdl -operation el enent defines an operation within
docunent. It nust be interpreted with respect to a po

</ xsd: docunent ati on>

</ xsd: annot ati on>

</ xsd: el enent >

<xsd: el ement nanme="w apped- el enent "
type="j 2ee: enpt yType"
m nQccur s="0"
maxCQccur s="1">

<xsd: annot ati on>

<xsd: docunent ati on>

The wrapped-el enent el enent is defined when a WBDL nes
with a single part is used to wap an el enment type and
el ement’'s name mat ches the operation nane.

</ xsd: docunent ati on>

</ xsd: annot at i on>

</ xsd: el ement >

<xsd: el ement nane="rmet hod- param part s- mappi ng"
type="j 2ee: net hod- par am part s- mappi ngType
m nCccur s="0"
maxQOccur s="unbounded"/ >

<xsd: el enrent name="wsdl - r et ur n-val ue- mappi ng"
type="j 2ee: wsdl - r et ur n- val ue- mappi ngType
m nQccur s="0"/ >

</ xsd: sequence>
<xsd:attribute nane="id" type="xsd:ID'/>
</ xsd: conpl exType>

<l oo Fkkkkkkdkkkkkkkkhkhhkrhhdhbrhhbhrrdbddbrrdddrrrdbbrrrdr _ 5

<xsd: conpl exType nane="service-interface-nmappi ngType">
<xsd: annot ati on>
<xsd: docunent at i on>

10/10/02 7:22 AM VERSION 1.1

and
The
WEDL
ing is

a net hod

a WSDL
rt type.

sage
t he

PAGE 68 OF 87

PUBLIC DRAFT

The service-interface-nappi ng el enment defines how a Java type for
the service interface maps to a WSEDL servi ce.

Used in: java-wsdl - mappi ng

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el enent name="service-interface"
type="j 2ee: fully-qualified-classType">
<xsd: annot ati on>
<xsd: docunent ati on>

The service-interface el enent defines the Java type for the
servi ce.

For static services, it is javax.xnl .rpc. Service interface. For

generated service, it would be the generated interface nane.

The nane nust be a fully qualified class nane.

</ xsd: docunent ati on>

</ xsd: annot ati on>

</ xsd: el enent >

<xsd: el enment name="wsdl - servi ce- nane"
type="j 2ee: xsdQ\anmeType" >

<xsd: annot ati on>

<xsd: docunent ati on>

The wsdl -servi ce-nanme el enent defines the wsdl service name
by a QNAME whi ch uniquely identifies the service.

</ xsd: docunent at i on>
</ xsd: annot at i on>
</ xsd: el enent >
<xsd: el enent nane="port - nmappi ng"
type="| 2ee: port - mappi ngType"
m nOccur s="0" maxCccur s="unbounded"/ >
</ xsd: sequence>
<xsd:attribute name="id" type="xsd:ID'/>
</ xsd: conpl exType>

P R R A

<xsd: conpl exType nanme="vari abl e- mappi ngType" >
<xsd: annot at i on>
<xsd: docunent at i on>

The vari abl e- mappi ng el enent defines the correlati on between a
Java cl ass data nenber or JavaBeans property to an XM el enent
nane of an XML root type. If the data-nenber elenent is present,
the Java variable name is a public data nenber. |f data-nmenber
is not present, the Java variable nane is a JavaBeans property.

Used in: java-xnl-type-nmapping

</ xsd: docunent at i on>
</ xsd: annot at i on>
<xsd: sequence>
<xsd: el enent nane="j ava-vari abl e- nang"
type="j 2ee: string">
<xsd: annot at i on>
<xsd: docunent ati on>

10/10/02 7:22 AM VERSION 1.1 PAGE 69 OF 87

or

</ xs

<l--

<xsd

head

only

PUBLIC DRAFT

The java-vari abl e-nane defines the nane of a public data nenber
JavaBeans property within a Java cl ass.

</ xsd: docunent ati on>

</ xsd: annot at i on>

</ xsd: el enent >

<xsd: el enent nanme="dat a- nenber"
type="j 2ee: enpt yType"
m nCccur s="0" maxQccurs="1">

<xsd: annot ati on>

<xsd: docunent ati on>

The dat a-nenber elenent is a bool ean indicator that a Java
variable is a public data menber and not a JavaBeans property.

</ xsd: docunent ati on>

</ xsd: annot at i on>

</ xsd: el enent >

<xsd: el enent nanme="xnl - el enent - nane"
type="j 2ee: string">

<xsd: annot ati on>

<xsd: docunent ati on>

The xnl - el ement - nare el emrent defi nes nane attri bute val ue of a
el enent within a root type.

</ xsd: docunent at i on>

</ xsd: annot at i on>

</ xsd: el enent >
</ xsd: sequence>
<xsd:attribute name="id" type="xsd:ID'/>
d: conpl exType>

LR S R T Y

cconpl exType nanme="wsdl - nessage- mappi ngType" >
<xsd: annot at i on>
<xsd: docunent at i on>

The wsdl - nessage- mappi ng el ement defines the mapping to a specific
nmessage and its part. Together they define uniquely the mapping for
a specific paraneter. Parts within a nessage context are uniquely
identified with their names.

The paraneter-node is defined by the mapping to indicate whether
the mapping will be IN, OQUT, or INOQUT.. The presence of the soap-
er

el ement indicates that the parameter is mapped to a soap header
Wen absent, it nmeans that the wsdl-nmessage is mapped to a Java
paraneter. The soap headers are interpreted in the order they are
provided in the mapping.

Used in: nethod-param parts-mappi ng

</ xsd: docunent at i on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el enent nane="wsdl - nessage"
type="j 2ee: wsdl - nessageType"/ >
<xsd: el emrent nanme="wsdl - nessage- part - nane"
type="j 2ee: wsdl - nessage- part - naneType"/ >

10/10/02 7:22 AM VERSION 1.1 PAGE 70 OF 87

PUBLIC DRAFT

<xsd: el emrent nane="par anet er - node"
type="j 2ee: par anet er - nodeType"/ >
<xsd: el ement nane="soap- header"
type="j 2ee: enpt yType"
m nCccur s="0" maxCccurs="1">
<xsd: annot ati on>
<xsd: docunent at i on>

The soap-header element is a bool ean el ement indicating that
a paraneter is mapped to a SOAP header

</ xsd: docunent at i on>
</ xsd: annot at i on>
</ xsd: el enent >
</ xsd: sequence>
<xsd:attribute name="id" type="xsd:ID'/>
</ xsd: conpl exType>

<|__ L R R R R e Y

<xsd: conpl exType nanme="wsdl - nessage- part - naneType" >
<xsd: annot at i on>
<xsd: docunent ati on>

Interpretation of the wsdl-nmessage-part-nane el ement depends on
whet her or not w apped-el enent has been defined in the

servi ce- endpoi nt - net hod- mappi ng. | f wapped-el enent is not
speci fi ed, wsdl-nessage-part-nane defines a WSDL nessage part. It
shoul d al ways be interpreted with respect to a wsdl - nessage
element. |f wapped-elenent is specified, wsdl-nmessage-part-nane
refers to an el ement nane of the el enent type.

Used in: wsdl - message- mappi ng, wsdl -return-val ue- mappi ng

</ xsd: docunent at i on>
</ xsd: annot at i on>
<xsd: si npl eCont ent >
<xsd:restriction base="j2ee:string"/>
</ xsd: si mpl eCont ent >
</ xsd: conpl exType>

P R R A

<xsd: conpl exType nanme="wsdl - nessageType" >
<xsd: annot ati on>
<xsd: docunent ati on>

The wsdl - nessage el enment defines a WBDL nessage by a QNAME

Used in: wsdl - nessage- mappi ng, wsdl -return-val ue- mappi ng, exception-
mappi ng

</ xsd: docunent at i on>
</ xsd: annot at i on>
<xsd: si npl eCont ent >
<xsd:restriction base="j2ee: xsdQaneType"/ >
</ xsd: si mpl eCont ent >
</ xsd: conpl exType>

<l oo kxkkkkkhkhkkhkrrdhkhdhkhh kb rrdhddhhhdhhrrdddddhhrrrrrrhdhr S

<xsd: conpl exType nanme="wsdl -ret urn-val ue- mappi ngType" >
<xsd: annot at i on>
<xsd: docunent ati on>

10/10/02 7:22 AM VERSION 1.1 PAGE 71 OF 87

nane

</ xs

</ xs

PUBLIC DRAFT

The wsdl -return-val ue-mappi ng el ement defines the mapping for the
nethod's return value. It defines the mapping to a specific nessage
and its part. Together they define uniquely the mapping for a
specific paranmeter. Parts within a nessage context are uniquely
identified with their names. The wsdl - mressage-part-name i s not
specified if there is no return value or OUT paraneters.

Used in: service-endpoi nt-met hod- mappi ng

</ xsd: docunent ati on>
</ xsd: annot ati on>
<xsd: sequence>
<xsd: el enent nane="net hod-r et ur n-val ue"
type="j 2ee: fully-qualified-classType">
<xsd: annot ati on>
<xsd: docunent ati on>

The nethod-return-value elenment defines a fully qualified class
or void type for the nethod's return val ue type.

</ xsd: docunent ati on>
</ xsd: annot at i on>
</ xsd: el enent >
<xsd: el enent nane="wsdl - nessage"
type="j 2ee: wsdl - nessageType"/ >
<xsd: el emrent nanme="wsdl - nessage"
type="j 2ee: enpt yType"
m nQccur s="0">
<xsd: annot at i on>
<xsd: docunent ati on>

The dat a-nmenber elenment is a boolean indicator that a Java
variable is a public data nenber and not a JavaBeans property.

</ xsd: docunent ati on>
</ xsd: annot ati on>
</ xsd: el enent >
<xsd: el enrent nanme="wsdl - nessage- part - nane"
type="j 2ee: wsdl - nessage- part - naneType"
m nQccur s="0"/ >
</ xsd: sequence>
<xsd:attribute nane="id" type="xsd:ID'/>
d: conpl exType>

d: schema>

10/10/02 7:22 AM VERSION 1.1 PAGE 72 OF 87

PUBLIC DRAFT

8 Deployment

This chapter defines the deployment process requirements and responsibilities. Deployment tasks are handled
by the J2EE deployer platform role using tools typically provided by the Web Services for J2EE product
provider. This includes the generation of container specific classes for the Web services and Web service
references, configuration of the server’s SOAP request listeners for each port, publication and location of
Web services, as well as the normal responsibilities defined by the J2EE specification.

8.1 Overview

This section describes an illustrative process of deployment for Web Services for J2EE. The process itself is
not required, but there are certain requirements that deployment must meet which are detailed in later sections
of this chapter. This process assumes that there are two general phases for deployment. The first phase maps
Web services into standard J2EE artifacts and the second phase is standard J2EE deployment.

Deployment starts with a service enabled application or module. The deployer uses a deployment tool to start
the deployment process. In general, the deployment tool validates the content as a correctly assembled
deployment artifact, collects binding information from the deployer, deploys the components and Web
services defined within the modules, publishes the WSDL documents representing the deployed Web
services, deploys any clients using Web services, configures the server and starts the application.

The deployment tool starts the deployment process by examining the deployable artifact and determining
which modules are Web service enabled by looking for a webservices.xml deployment descriptor file
contained within the module. Deployment of services occurs before resolution of service references. This is
done to allow deployment to update the WSDL port addresses before the service references to them are
processed.

Validation of the artifact packaging is performed to ensure that:

e Every port in every WSDL defined in the Web services deployment descriptor has a
corresponding por t - conmponent element.

e If the Service Implementation Bean is an EJB, the transaction attributes for the methods defined
by the SEI do not include Mandatory.

e JAX-RPC service components are only packaged within a WAR file.
* Stateless session bean Web services are only packaged within an EJB-JAR file.

e The WSDL bindings used by the WSDL ports are supported by the Web Services for J2EE
runtime. Bindings that are not supported may be declared within the WSDL if no port uses them.

Deployment of each por t - conponent is dependent upon the service implementation and container used.
Deployment of a JAX-RPC Service Endpoint requires different handling than deployment of a session bean
service.

If the implementation is a JAX-RPC Service Endpoint, a servlet is generated to handle parsing the incoming
SOAP request and dispatch it to an instance of the JAX-RPC service component. The generated servlet class
is dependent on threading model of the JAX-RPC Service Endpoint. The web. xm deployment descriptor is
updated to replace the JAX-RPC Service Endpoint class with the generated servlet class. If the JAX-RPC
Service Endpoint was specified without a corresponding ser vl et - mappi ng, the deployment tool
generates one. The WSDL port address for the Port component is the combination of the web app
context-root and servlet url-pattern. If the implementation is a stateless session bean, the
deployment tool has a variety of options available to it. In general, the deployment tool generates a servlet to
handle parsing the incoming SOAP request, the servlet obtains a reference to an instance of an appropriate
EJBObject and dispatches the request to the stateless session EJB. How the request is dispatched to the

10/10/02 7:22 AM VERSION 1.1 PAGE 73 OF 87

PUBLIC DRAFT

Service Implementation Bean is dependent on the deployment tool and deploy time binding information
supplied by the deployer.

The deployment tool must deploy and publish all the ports of all WSDL documents described in the Web
services deployment descriptor. The deployment tool updates or generates the WSDL port address for each
deployed port - conponent . The updated WSDL documents are then published to a location determined
by the deployer. It could be as simple as publishing to a file in the modules containing the deployed services,
a URL location representing the deployed services of the server, a UDDI or ebXML registry, or a
combination of these. This is required for the next step, which is resolving references to Web services.

For each service reference described in the Web services client deployment descriptors, the deployment tool
ensures that the client code can access the Web service. The deployment tool examines the information
provided in the client deployment descriptor (the Service interface class, the Service Endpoint Interface class,
and WSDL ports the client wants to access) as well as the JAX-RPC mapping information. In general the
procedure includes providing an implementation of the JAX-RPC Service interface class declared in the
deployment descriptor service reference, generating stubs for all the ser vi ce- endpoi nt -i nt er f ace
declarations (if generated Stubs are supported and the deployer decides to use them), and binding the Service
class implementation into a JNDI namespace. The specifics depend on whether or not the service is declared
as a client managed or container managed access.

When client managed port access is used, the deployment tool must provide generated stubs or dynamic
proxy access to every port declared within the Web services client deployment descriptor. The choice of
generated stub or dynamic proxy is deploy time binding information. The container must provide an
implementation for a Generated Service Interface if declared within the deployment descriptor.

When container managed port access to a service is used, the container must provide generated stubs or
dynamic proxy access to every port declared within the deployment descriptor. The choice of generated stub
or dynamic proxy is deploy time binding information. The deployment descriptor may contain a port -

conponent - | i nk to associate the reference not only with the Service Endpoint Implementation, but with
the WSDL that defines it.

Once the Web services enabled deployable artifact has been converted into a J2EE deployable artifact, the
deployment process continues using normal deployment processes.

8.2 Container Provider requirements

This section details the requirements of the container provider. This includes both the container runtime and
the deployment tooling.

8.2.1 Deployment artifacts

A deployment tool must be capable of deploying an EAR file (containing WARs and/or EJB-JARs), WAR
file, or EJIB-JAR containing Web services and/or Web services references.

8.2.2 Generate Web Service Implementation classes

Generation of any run-time classes the container requires to support a JAX-RPC Service Endpoint or
Stateless Session Bean Service Implementation is provider specific. The behavior of the run-time classes
must match the deployment descriptor settings of the component. A JAX-RPC Service Endpoint must match
the behavior defined by the <ser vl et > element in the web. xm deployment descriptor. A Stateless
Session Bean Service Implementation must match the behavior defined by the <sessi on> element and the
<assenbl y-descri pt or > inthe ej b-j ar. xm deployment descriptor.

10/10/02 7:22 AM VERSION 1.1 PAGE 74 OF 87

PUBLIC DRAFT

823 Generate deployed WSDL

The container must update and/or generate a deployed WSDL document for each declared wsdl -fil e
element in the Web services deployment descriptor (webservices.xml). If multiple wsdl - fi | € elements
refer to the same location, a separate WSDL document must be generated for each.

The WSDL document described by the wsdl - fi | e element must contain service and port elements and
every port - conponent in the deployment descriptor must have a corresponding WSDL port and vice
versa. The deployment tool must update the WSDL port address element to produce a deployed WSDL
document. The generated port address information is deployment time binding information. In the case of a
port - conponent within a web module, the address is partially constrained by the cont ext - r oot of
the web application and partially constructed from the ser vl et - mappi ng (if specified).

824 Publishing the deployed WSDL

The deployment tool must publish every deployed WSDL document. The deployed WSDL document may be
published to a file, URL, or registry. File and URL publication must be supported by the provider. File
publication includes within the generated artifacts of the application. Publication to a registry, such as UDDI
or ebXML, is encouraged but is not required.

If publication to a location other than file or URL is supported, then location of a WSDL document
containing a service from that location must also be supported. As an example, a Web services deployment
descriptor declares a wsdl -file StockQuoteDescription.xm and a port-conponent
which declares a port QName within the WSDL document. When deployed, the port address in
St ockQuot eDescri pti on. xm is updated to the deployed location. This is published to a UDDI
registry location. In the same application, a ser vi ce-r ef uses a port - conponent -1 i nk to refer to
the deployed port - conponent . The provider must support locating the deployed WSDL for that port
component from the registry it was published to. This support must be available to a deployed client that is
not bundled with the application containing the service.

Publishing to at least one location is required. Publishing to multiple locations is allowed, but not required.
The choice of where (both location and how many places) to publish is deployment time binding information.

8.2.5 Service and Generated Service Interface implementation

The container must provide an implementation of the JAX-RPC Service Interface. There is no requirement
for a Service Implementation to be created during deployment. The container may substitute a Generated
Service Interface Implementation for a generic Service Interface Implementation.

The container must provide an implementation of the JAX-RPC Generated Service Interface if the Web
services client deployment descriptor defines one. A Generated Service Interface Implementation will
typically be provided during deployment.

The Service Interface Implementation must provide a static stub and/or dynamic proxy for all ports declared
by the service element in the WSDL description. A container provider must support at least one of static stubs
or dynamic proxies, but may provide support for both.

The container must make the required Service Interface Implementation available at the JNDI namespace
location j ava: conp/ env/ service-ref-name where service-ref-name is the name declared within the Web
services client deployment descriptor using the ser vi ce-r ef - nanme element.

8.2.6 Static stub generation
A deployment tool may support generation of static stubs. A container provider must support static stub
generation if dynamic proxies are not supported. Static stubs are provider specific and, in general, a

developer should avoid packaging them with the application.

10/10/02 7:22 AM VERSION 1.1 PAGE 75 OF 87

PUBLIC DRAFT

Static stubs (and dynamic proxies) must conform to the JAX-RPC specification sections 8.2.1 and 8.2.2.

The container is required to support credential propagation as defined in section 4.2.4 without client code
intervention. Whether or not the stub/proxy directly supports this or another part of the container does is out
of the scope of this specification.

8.2.7 Type mappings

Support for type mappings is provider specific. There is no means for creating portable type mappings and
therefore no means for declaring them or deploying them required by this specification.

8.2.8 Mapping requirements

The deployment tool must use the mapping meta-data requirements defined by the j axr pc- mappi ng-
fil e. All mappings must be applied before default rules are applied.

8.2.9 Deployment failure conditions

Deployment may fail if:
e The webservices.xml deployment descriptor is invalid
e The WSDL file, JAX-RPC mapping file and deployment descriptor conflict
e The implementation methods and operations conflict
e Any Port component cannot be deployed

e Every port in every WSDL defined in the Web services deployment descriptor doesn’t have a
corresponding por t - conponent element.

e If the Service Implementation Bean is an EJB, the transaction attributes for the methods defined
by the SEI include Mandatory.

¢ JAX-RPC service components are not packaged within a WAR file.
* Stateless session bean Web services are not packaged within an EJB-JAR file.

e The WSDL bindings used by the WSDL ports are not supported by the Web Services for J2EE
runtime. However, bindings that are not supported may be declared within the WSDL if no port
uses them.

e The header QNames returned by a Handler.getHeaders() method are not defined in the WSDL for
the port-component the Handler is executing on behalf of.

8.3 Deployer responsibilities

The deployer role is responsible for specifying the deployment time binding information. This may include
deployed WSDL port addresses and credential information for requests that do not use a CallbackHandler.

If a service-ref contains a port-conponent -ref that contains a port-conponent -1 i nk, the
deployer should bind the container managed Port for the SEI to the deployed port address of the port -
conponent referred to by the port - conponent - | i nk. For example, given a webser vi ces. xm file
containing:

<webservi ces>
<webser vi ce-descri pti on>
<webser vi ce- descri pti on- name>JoesSer vi ces</ webser vi ce- descri pti on- nane>

10/10/02 7:22 AM VERSION 1.1 PAGE 76 OF 87

PUBLIC DRAFT

<wsdl -fil e>META- I NF/ j oe. wsdl </ wsdl -file>
<j axr pc- mappi ng-fi | e>META- | NF/ j oes_mappi ngs. xm </ j axr pc- mappi ng-fil e>
<por t - conponent >

<por t - conponent - nane>JoePor t </ por t - conponent - nanme>

<servi ce-i npl - bean>
<ej b-1ink>JoeEJB</ ej b-1i nk>
</ servi ce-i npl - bean>
</ port - conponent >
</ webser vi ce-descri pti on>
</ webser vi ces>

and a module’s deployment descriptor containing:

<servi ce-ref>
<servi ce-ref - name>ser vi ce/ Joe</ servi ce-r ef - nane>
<servi ce-interface>j avax. xm . rpc. Servi ce</ service-interface>
<wsdl -fil e>VEB- | NF/ j oe. wsdl </ wsdl -fil e>

<port-conponent -r ef >
<servi ce-endpoi nt -i nt er f ace>sanpl e. Joe</ servi ce-endpoi nt-i nterface>
<port - conponent - | i nk>JoePort </ port - conponent - | i nk>
</ port - conponent - r ef >
</ service-ref>

During deployment, the deployer must provide a binding for the port address of the JoePort port-component.
This port address must be defined in the published WSDL for JoesServices. The deployer must also provide a
binding for container managed port access to the sample.Joe Service Endpoint Interface. This should be the
same binding used for the port address of the JoePort port-component.

When providing a binding for a port - conponent -r ef , the deployer must ensure that the port -
conponent - r ef is compatible with the Port being bound to.

10/10/02 7:22 AM VERSION 1.1 PAGE 77 OF 87

PUBLIC DRAFT

This section defines the security requirements for Web Services for J2EE. A conceptual overview of security
and how it applies to Web services is covered in the Concepts section. The Goals section defines what this
specification attempts to address and the Specification section covers the requirements.

9.1 Concepts

The Web services security challenge is to understand and assess the risk involved in securing a web based
service today and at the same time to track emerging standards and understand how they will be deployed to
offset the risk in the future. Any security model must illustrate how data can flow through an application and
network topology to meet the requirements defined by the business without exposing the data to undue risk.
A Web services security model should support protocol independent declarative security policies that Web
Service for J2EE providers can enforce, and descriptive security policies attached to the service definitions
that clients can use in order to securely access the service.

The five security requirements that need to be addressed to assure the safety of information exchange are:

* Authentication — the verification of the claimant’s entitlements to use the claimed identity and/or
privilege set.

* Authorization — the granting of authority to an identity to perform certain actions on resources
* Integrity — the assurance that the message was not modified accidentally or deliberately in transit.

¢ Confidentiality — the guarantee that the contents of the message are not disclosed to unauthorized
individuals.

¢ Non-repudiation — the guarantee that the sender of the message cannot deny that the sender has
sent it. This request also implies message origin authentication.

The risks associated with these requirements can be avoided with a combination of various existing and
emerging technologies and standards in J2EE environments. There are fundamental business reasons
underlying the existence of various security mechanisms to mitigate the various security risks outlined above.
The authentication of the entity is necessary. This helps provide access based on the identity of the caller of
the Web service. The business reason for data integrity is so that each party in a transaction can have
confidence in the business transaction. It’s also a business-legal issue to have an audit trail and some
evidence of non-repudiation to address liability issues. And more and more businesses are becoming aware of
the internal threats to their applications by employees or others inside the firewall. =~ Some business
transactions require that confidentiality be provided on a service invocation or its data (like credit card
numbers). There is also the need for businesses on the Internet to protect themselves from denial of service
attacks being mounted. This is the environment in which we need to assert a security service model.

9.1.1 Authentication

Since the Web services architecture builds on existing component technologies, intra-enterprise
authentication is no different than today’s approaches. In order for two or more parties to communicate
securely they may need to exchange security credentials. Web service’s security is used to exchange many
different types of credentials. A credential represents the authenticity of the identity it is associated with e.g.,
Kerberos ticket. A credential can be validated to verify the authenticity and the identity can then be inferred
from the credential.

When two parties communicate, it is also important for the sender to understand the security requirements of
the target service. This helps the sender to provide necessary credentials along with the request. Alternatively,

10/10/02 7:22 AM VERSION 1.1 PAGE 78 OF 87

PUBLIC DRAFT

the target may challenge the sender for necessary credential (similar to how HTTP servers challenge the
HTTP clients).

In the future, it is expected that message level security mechanisms will be supported. Using that approach,
credentials can be propagated along with a message and independent of the underlying transport protocols.
Similarly, confidentiality and integrity of a message can be ensured using message level protection. Message
level security support would help address end-to-end security requirements so that requests can traverse
through multiple network layers, topologies and intermediaries in a secure fashion independent of the
underlying protocol.

In the future, it is also anticipated that in order for client applications to determine the level of security
expected by a Web service and the expected type of credential, the information about the authentication
policy will be included in or available through the service definition (WSDL). Based on that service
definition, a client provides appropriate credentials. If the container has policies for the service, then they must
be referenced and used.

« Figure 11 security flow overview

[Security Application]

Registry

Consider a scenario where incoming SOAP/WSDL messages flow over HTTP(S). The figure above provides
a simple overview of the security flow. Enterprise Web sites rely on the J2EE Server support for the
authentication models. The site also relies on a Proxy Server’s support for security. In these scenarios,
authentication occurs before the J2EE Server receives the request. In these cases, a Proxy Server or Web
Server forwards authentication credentials into the J2EE Application Server. The J2EE application server
handles the request similar to how it handles other HTTP requests. J2EE application server can handle the
request similar to how it handles other HTTP requests.

Two forms of authentication are available for use within Web Services for J2EE based on existing J2EE
functionality. These are HTTP BASIC-AUTH and Symmetric HTTP, which are defined by the Servlet
specification.

Using the authentication models above, the container can also perform a credential mapping of incoming
credentials at any point along the execution path. The mapping converts the external user credentials into a
credential used within a specific security domain, for example by using Kerberos or other imbedded third
party model.

In addition to J2EE security model for credential propagation, it may be beneficial to carry identity
information within SOAP message itself (e.g., as a SOAP header). This can help address situations where
Web services need to be supported where inherent security support of underlying transport and protocols may
not be sufficient (e.g., IMS). JSR109 does not require any support for credential propagation within SOAP
messages and considers this functionality as future work.

10/10/02 7:22 AM VERSION 1.1 PAGE 79 OF 87

PUBLIC DRAFT

9.1.2 Authorization

In an enterprise security model, each application server and middleware element performs authorization for
its resources (EJBs, Servlets, Queues, Tables, etc.). The J2EE authentication/delegation model ensures that
the user identity is available when requests are processed .

On successful authentication, identity of the authenticated user is associated with the request. Based on the
identity of the user, authorization decisions are made. This is performed by the J2EE Servers based on the
J2EE security model to only allow authorized access to the methods of EJBs and Servlets/JSPs. Authorization
to Web services implemented as JAX-RPC Service Endpoints will be based on the servlet/JSP security
model.

9.1.3 Integrity and Confidentiality

In general, integrity and confidentiality are based on existing J2EE support such as HTTPS.

Message senders may also want to ensure that a message or parts of a message remain confidential and that it
is not modified during transit. When a message requires confidentiality, the sender of the message may
encrypt those portions of the message that are to be kept private using XML Encryption. When the integrity
of a message is required to be guaranteed, the sender of the message may use XML Digital Signature to
ensure that the message is not modified during transit. This specification recommends that J2EE servers use
XML Encryption for confidentiality, and XML Digital Signature for integrity but defers to future work to
standardize the format and APIs.

914 Audit

J2EE Servers can optionally write implicit and explicit audit records when processing requests. The
middleware flows the user credentials and a correlation ID in an implicit context on all operations.
Management tools can gather the multiple logs, merge them and use the correlation information to see all
records emitted processing an incoming Web service request. It is recommended that J2EE servers implement
support for audit records, but defers to the J2EE to standardize the record formats and APIs to support audit
logs.

9.1.5 Non-Repudiation

The combination of Basic Authentication over HTTP/S is widely used in the industry today to ensure
confidentiality, authentication and integrity. However, it fails to assure non-repudiation.

It is recommended that J2EE servers implement support for non-repudiation logging, but does not define a
standard mechanism to define and support it.

9.2 Goals

The security model for Web services in J2EE application servers should be simple to design and use,
ubiquitous, cost effective, based on open standards, extensible, and flexible. The base functionality needs to
be able to be used for the construction of a wide variety of security models, security authentication
credentials, multiple trust domains and multiple encryption technologies. Therefore, the goals for security
include the following:

¢ Should support protecting Web services using J2EE authorization model.

e Should support propagating authentication information over the protocol binding through which a
Web service request is submitted.

10/10/02 7:22 AM VERSION 1.1 PAGE 80 OF 87

9.2.1

PUBLIC DRAFT

Should support transport level security to ensure confidentiality and integrity of a message
request.

Should be firewall friendly; be able to traverse firewalls without requiring the invention of special
protocols.

Assumptions

The following assumptions apply to this chapter:

The server relies on the security infrastructure of the J2EE Application Server.

The Quality of Service (QoS) of a secure Web service container is based on the QoS requirements and
functionality of the underlying J2EE application server itself (e.g., integrity).

The server relies on HTTPS and RMI-IIOP over SSL for hop-by-hop confidentiality and integrity .

9.3 Specification

The following sections define the requirements for implementing security for Web Services for J2EE.

9.3.1

Authentication

There are few authentication models to authenticate message senders that are adopted or proposed as
standards. Form based login requires html processing capability so it is not included in this list. Web Services
for J2EE product providers must support the following:

9.3.2

BASIC-AUTH: J2EE servers support basic auth information in the HTTP header that carries the
SOAP request. The J2EE server must be able to verify the user ID and password using the
authentication mechanism specific to the server. Typically, user ID and password are authenticated
against a user registry. To ensure confidentiality of the password information, the user ID and
password are sent over an SSL connection (i.e., HTTPS). See the Servlet specification for details
on how BASIC-AUTH must be supported by J2EE servers and how a HTTP Digest authentication
can be optionally supported. Client container specification of authentication data is described by
the J2EE specification section 3.4.4. The EJB and web containers must support deploy time
configuration of credential information to use for Web services requests using BASIC-AUTH. The
means for this is provider specific though it is typically handled using the generated static stub or
dynamic proxy implementation.

Symmetric HTTPS: J2EE servers currently support authentication through symmetric SSL, when
both the requestor and the server can authenticate each other using digital certificates. For the
HTTP clients (i.e., SOAP/HTTP), the model is based on the Servlet specification.

Authorization

Web Services for J2EE relies on the authorization support provided by the J2EE containers and is described
in the J2EE specification section 3.5.

JAX-RPC Service Endpoint authorization must be defined using the ht t p- met hod element value of
PCST.

933

Integrity and Confidentiality

A Web Services for J2EE server provider must support HTTPS for hop-by-hop confidentiality and integrity.
The WSDL port address may use ht t ps: to specify the client requirements.

10/10/02 7:22 AM VERSION 1.1 PAGE 81 OF 87

PUBLIC DRAFT

Appendix A. Relationship to other Java Standards

Java APIs for XML

The only required API from this list is JAX-RPC. The rest are listed as being of potential interest. These APIs
may become required in a future specification.

JAX-M (JSR 00067) focuses on XML messaging and the Java language.

JAX-R (JSR 00093) defines the Java interfaces to XML registries, like INDI, ebXML and UDDI. These
interfaces provide the mechanism through which -client
applications find Web services and Web services (and servers)
publish their interfaces.

JAX-P (JSR 00005 and 00063) defines APIs for parsing XML

JAX-RPC (JSR 00101) focuses on XML RPC and the Java language, including
representing XML based interface definitions in Java, Java

definitions in XML based interface definition languages (e.g.
SOAP) and marshalling.

XML Trust (JSR00104) defines APIs and protocol for a “Trust Service” to minimize the complexity
required for using XML Signatures.

XML Digital Signature (JSR 00105) defines the APIs for XML digital signature services.
XML Digital Encryption (JSR 00106) defines the APIs for encrypting XML fragments.
Java APIs for WSDL (JSR00110) defines the APIs for manipulating WSDL documents.

J2EE APIs

Enterprise JavaBeans 2.1 defines the programming model for implementing Web services which run in the
EJB container.

Servlet 2.4 defines the packaging and container service model for implementing Web services which run in
the servlet container.

10/10/02 7:22 AM VERSION 1.1 PAGE 82 OF 87

PUBLIC DRAFT

Appendix B. Optional support for J2EE 1.3 platforms

Web Services for J2EE Version 1.1 does not require support for applications built according to the Web
Services for J2EE Version 1.0 specification. A vendor may optionally support Web Services for J2EE 1.0 by
implementing that version of the specification. See the Web Services Version 1.0 Change Log for more
details on the differences between the two specifications.

10/10/02 7:22 AM VERSION 1.1 PAGE 83 OF 87

PUBLIC DRAFT

Appendix C. References

JAX-RPC 1.0 Specification. 2002. http://java.sun.com/xml/

JAX-R Specification. 2002. http://java.sun.com/xml/

SOAP 1.1 W3C Note. 2000. http://www.w3.0rg/TR/2000/NOTE-SOAP-20000508
WSDL 1.1 W3C Note. 2001. http://www.w3.0rg/TR/2001/NOTE-wsdl-20010315
Servlet 2.3 Specification. 2000. http:/java.sun.com/j2ee/

J2EFE 1.3 Specification. 2001. http://java.sun.com/j2ee/

EJB 2.0 Specification. 2001. http://java.sun.com/j2ee/

10/10/02 7:22 AM VERSION 1.1 PAGE 84 OF 87

http://java.sun.com/xml/
http://www.w3.org/TR/2000/NOTE-SOAP-20000508

PUBLIC DRAFT

Appendix D. Revision History

Appendix D.1. Version 1.1 Public Draft

¢ Removed J2EE 1.3 deployment requirements. Appendix B added describing optional support for
J2EE 1.3 based deployment.

¢ Replaced DTD deployment descriptors with XML schema deployment descriptors.

Appendix D.2. Version 1.0 Final Release

e Updated JAX-RPC mapping DTD to support doc/lit wrapped element.

Appendix D.3. Version 0.95 Final Draft

e Updated license to be the required Specification License Agreement
e Clarified package by reference to be MANIFEST ClassPath use.

e Clarified developer responsibilities for setting the ser vl et - mappi ng are for the web.xml
descriptor. Described deployment tool responsibility for generating one if it doesn’t exist

e Clarified container requirements for credential configuration of a service reference.

e Minor editorial changes.

Appendix DA4. Version 0.94

* Clarified binding preference order for container resolution of Port.
* Clarified the Service Interface to be a view of the deployed WSDL the service is bound to.

* JAX-RPC mapping deployment descriptor updated to address void return methods and one-way
operations.

* Recommend .xml suffix for mapping deployment descriptor file name.

Appendix D.5. Version 0.93

e Aligned Stub property support with JAX-RPC requirements.
e Clarified port-component to service-impl-bean relationship cardinality is 1-1.

e Clarified requirement for deployment to honor servl et - mappi ng for JAX-RPC Service
Endpoint.

e C(Clarified publishing of deployed WSDL requirements.

Appendix D.6. Version 0.92

* Removed requirement for not providing HandlerChain class.

10/10/02 7:22 AM VERSION 1.1 PAGE 85 OF 87

PUBLIC DRAFT

Clarified exception thrown to client if Handler inappropriately changes message.
Clarified use of java:comp/env in Handler methods.

Clarified use of container services in the web container endpoint.

DTD DOCTYPEs corrected.

Editorial cleanup

Appendix D.7. Version 0.8

Updated JAX-RPC mapping file format

Appendix D.8. Version 0.7

Completely revised JAX-RPC mapping file to handle missing mapping cases. Support minimal
mappings crafted by developed.

Appendix D.9. Version 0.6

Consolidated client access modes to a modeless Service object. Updated chapter 4 to reflect this
and chapter 7 client deployment descriptor.

Revised platform role responsibilities of chapter 7 for client deployment descriptor to clarify
partial WSDL use.

Added requirements in chapter 6 and 8 for Headers to be defined in the WSDL if they are declared
as handled by a Handler.

Changed the exception thrown if a Handler modifies the request in a way that it shouldn’t.

Clarified use of custom serializers / deserializers as out of scope for this version.

Appendix D.10. Version 0.5

Added JAX-RPC Mapping deployment descriptor
Clarified platform role responsibilities

Clarified deployment

Terminology changes to sync up with JAX-RPC

Appendix D.11. Version 0.4 Expert Group Draft

Clarified service development goals.

Clarified Web services registry goals.

Clarified container requirements for providing a stub/proxy to the client.

Changed HandlerRegistry and TypeMappingRegistry access from optional to not supported.
Clarified use of JAX-RPC Stub properties.

10/10/02 7:22 AM VERSION 1.1 PAGE 86 OF 87

PUBLIC DRAFT

e Added client packaging requirements.
¢ Strengthened the requirements for exposing an EJB as a Web service.

¢ Added Handler chapter.

10/10/02 7:22 AM VERSION 1.1 PAGE 87 OF 87

	Introduction
	Target Audience
	Acknowledgements
	Specification Organization
	Document conventions.

	Objectives
	
	Client Model Goals
	Service Development Goals
	Service Deployment Goals
	Service Publication Goals
	Web Services Registry Goals

	Overview
	Web Services Architecture Overview
	Web Service
	Web Services for J2EE Overview
	Web Service Components
	Web Service Containers

	Platform Roles
	Portability
	Standard Services
	JAX-RPC

	Interoperability
	Scope
	Scope
	Not in Scope

	Web Service Client View
	Web Service Server View

	Client Programming Model
	Concepts
	Specification
	Service Lookup
	Service Interface
	Stub/proxy access
	Dynamic Port access
	ServiceFactory
	Service method use with full WSDL
	Service method use with partial WSDL
	Service method use with no WSDL
	Service Interface method behavior
	Handlers
	Type Mapping

	Port Stub and Dynamic Proxy
	Identity
	Type narrowing

	JAX_RPC Properties
	Required properties

	JAX-RPC Custom Serializers / Deserializers
	Packaging

	Server Programming Model
	Goals
	Concepts
	Port Component Model Specification
	Service Endpoint Interface
	Service Implementation Bean
	EJB container programming model
	The required SessionBean interface
	Allowed access to container services

	Web container programming model
	The optional ServiceLifecycle Interface
	Allowed access to container services

	Service Implementation Bean Life Cycle
	JAX-RPC Custom Serializers / Deserializers

	Packaging
	EJB Module Packaging
	Web App Module Packaging
	Assembly within an EAR file

	Transactions
	Container Provider Responsibilities

	Handlers
	Concepts
	Specification
	Scenarios
	Programming Model
	Handler Life Cycle
	Security
	Transactions

	Developer Responsibilities
	Container Provider Responsibilities

	Packaging
	Object Interaction Diagrams
	Client Web service method access
	EJB Web service method invocation

	Deployment Descriptors
	Web Services Deployment Descriptor
	Overview
	Developer responsibilities
	Assembler responsibilities
	Deployer responsibilities
	Web Services Deployment Descriptor XML Schema

	Service Reference Deployment Descriptor Information
	Overview
	Developer responsibilities
	Assembler responsibilities
	Deployer responsibilities
	Web Services Client Service Reference XML Schema

	JAX-RPC Mapping Deployment Descriptor
	Overview
	Developer responsibilities
	Assembler responsibilities
	Deployer responsibilities
	JAX-RPC Mapping DTD

	Deployment
	Overview
	Container Provider requirements
	Deployment artifacts
	Generate Web Service Implementation classes
	Generate deployed WSDL
	Publishing the deployed WSDL
	Service and Generated Service Interface implementation
	Static stub generation
	Type mappings
	Mapping requirements
	Deployment failure conditions

	Deployer responsibilities

	Security
	Concepts
	Authentication
	Authorization
	Integrity and Confidentiality
	Audit
	Non-Repudiation

	Goals
	Assumptions

	Specification
	Authentication
	Authorization
	Integrity and Confidentiality

