
JSR-170 1.0.1 Maintenance Release
Proposed Changes
Issue number and summary refer to the internal expert group issue tracker records.

 # Issue Summary Proposed Resolution
20 Forward-Fit 1.0.1 Issue -

NamespaceRegistry: Prefix
Reassignment

6.3.3 Session Namespace Remapping
Session.setNamespacePrefix javadoc

Replace

Within the scope of this Session, remaps a persistently registered
namespace URI to the new prefix. The remapping only affects
operations done through this session. To clear all remappings, the
client must acquire a new Session.

A prefix that is currently already mapped to some URI (either
persistently in the repository NamespaceRegistry or transiently within
this Session) cannot be remapped to a new URI using this method,
since this would make any content stored using the old URI
unreadable. An attempt to do this will throw a NamespaceException.

As well, a NamespaceException will be thrown if an attempt is made
to remap an existing namespace URI to a prefix beginning with the
characters “xml” (in any combination of case).

A NamespaceException will also be thrown if the specified uri is not
among those registered in the NamespaceRegistry.

with

If existingUri is not registered in the NamespaceRegistry a
NamespaceException will be thrown.

If newPrefix is already locally mapped to existingUri (i.e., within this
Session, by virtue of an earlier setNamespaceRegistry call) then this
method returns silently and has no effect.

If newPrefix is already locally mapped to a URI other than existingUri,
then that URI reverts to its globally mapped prefix (as set in the
NamespaceRegistry) and newPrefix is locally mapped to existingUri.

If newPrefix is already assigned in the global NamespaceRegistry to
otheruri (which differs from existingUri) and otherUri has not been
locally mapped to another prefix which differs from newPrefix, then a
NamespaceException will be thrown. In order to successfully locally
map newPrefix to existingUri, otherUri must first be locally mapped to
another prefix.

7.2 Adding and Deleting Namespaces
NamespaceRegistry.registerNamespace javadoc
bullet 2

Replace

• Attempting to re-assign a prefix that is currently assigned to a URI
that is present in content (either within an item name or within the
value of a NAME or PATH property) will throw a

NamespaceException. This includes prefixes in use within in-content
node type definitions.

with

• Attempting to re-assign a prefix that is currently assigned to an “in-
use” URI, i.e., one that is present in content, will throw a
NamespaceException. This applies to URIs in use within item names
and those within the values of NAME or PATH properties (including
those in in-content node type definitions). However, one can change
the prefix for an existing URI to any available new unique prefix, thus
replacing the existing shorthand for that URI.

21 Forward-Fit 1.0.1 Issue 700
- Name/Path Grammar:
Remove Duplication

6.2.5.3 Path

Replace redundant name production with reference to name production
already stated in 6.2.5.2 Name

23 Forward-Fit 1.0.1 Issue 697
- Escaping of Names
Inconsistency (submitted by
David Pitfield)

6.4.3 Escaping of Names

Replace

So, for example,
• “My Documents” is converted to “My_x0020_Documents”,
• "My_Documents” is not encoded,
• “My_x0020Documents” is not encoded either,
• but “My_x0020_Documents” is encoded as
“My_x005f_x0020_Documents”.

with
So, for example,
• “My Documents” is encoded as “My_x0020_Documents”.
• “My_Documents” is not encoded.
• “My_x0020Documents” is encoded as
“My_x005f_x0020Documents”.
• “My_x0020_Documents” is encoded as
“My_x005f_x0020_Documents”.
• “My_x0020 Documents” is encoded as
“My_x005f_x0020_x0020_Documents”.

29 According to BNF "/" is not a

valid path. It should be.
4.6 Path Syntax, 6.2.5.2 Name and 6.2.5.3 Path

Fixed BNF

30 According to BNF paths
terminating in "/" are valid.
RI considers them invalid.

4.6 Path Syntax, 6.2.5.2 Name and 6.2.5.3 Path

Fixed BNF

31 Clarify definition of "name"

4.6.1 Names vs. Paths

Replace

A “name” in this specification is a path element without any square-
bracket index.

with

A “name” is valid if satisfies the above name production. It can be
thought of, informally, as a single path element without any square-
bracket index (and not including the '.' and '..').

32 Correct Name BNF wrt ".."

and "."
4.6 Path Syntax and 6.2.5.2 Name

Fixed BNF

39 Clarify why "required node
types" (plural) makes sense

6.7.4 Primary and Mixin Node Types

Replace

In a content repository, every node has one and only one primary
node type. This node type defines, as mentioned, a set of restrictions
on the child items of the node.

with

In a content repository, every node has one and only one declared
primary node type. This node type defines, as mentioned, a set of
restrictions on the child items of the node. Note that because node
types may inherit characteristics from supertypes, a particular node
may be of more than one primary node type by virtue of type
inheritance. For example if X is a supertype of Y and node N is of
type Y, then N is also of type X. Nonetheless, this does not change
the fact that any particular node still has exactly one declared node
type.

6.7.7 Child Node Definitions
bullet 2

Added

A child node definition may, for example, specify required node types
X and Y. This does not mean that the node specified will have more
than one declared primary node type, but rather that its primary node
type (whatever else it may be) must be at least a subtype of both
node types X and Y. Of course, inheritance is also respected in the
simpler case where this attribute specifies only one primary node
type. If it specifies, for example, type T, this means that the child
node must be of type T or a subtype of type T. Finally, it should be
clear that the subtype relationship between the required type (or
types) and the actual type of the child node must be an explicit one,
that is, it must arise be by virtue of a chain of declared superclass
attributes

40 Clarify semantics of node

type inheritance

6.7.8 Inheritance Among Node Types

Replace

A node type may have one (or in some implementations, more than
one) supertype. A subtype inherits the property and child node
definitions of its supertype(s) (and possibly other attributes) and may
declare further property or child node definitions.

with

The semantics of inheritance follow the usual rules:

• The supertype relation is, as one would expect, transitive. In other
words if T1 is a supertype of T2 and T2 is a supertype of T3 then T1
is a supertype of T3.

• The subtype relation is, of course, the converse of supertype: T1 is

a subtype of T2 if and only if T2 is a supertype of T1. Hence, subtype
is also a transitive relation.

• The ‘is of type’ relation which holds between node instances and
node types (as in, node N is of type T) is itself transitive across the
subtype relation. In other words, if T2 is a subtype of T1 and N is of
type T2 then N is also of type T1. This predicate appears in the API
as the method Node.isNodeType. Note that this relation is also the
one that is relevant in the child node definition attribute required
primary node types.

• The supertype relation always and only stems from explicit
Supertypes attribute declarations within the set of node types. For
example, just because the property and child node definitions of T2
happen to be a superset of those of T1 does not make T1 a
supertype of T2. For that to be the case, T2 must declare T1 as its
supertype.

• Similarly, the ‘is of type’ relation always and only stems from an
explicit assignment of a node type to a node. Just because node N
happens to have the properties and child nodes declared by node
type T does not necessarily mean that N is of type T. For that to be
the case, N must have been explicitly assigned the type T, or a
subtype of T.

Management of the hierarchy of node types available within a
particular repository is outside the scope of this specification.
However, the requirement of preserving the ‘is of type’ relation
across subtyping, as mentioned above, does imply certain things
about inheritance. The requirement can be restated as:

• If T2 is a subtype of T1, then any instance of T2 must also be a
valid instance of T1.

Note that an implementation can meet this requirement in a number
of ways, ranging from the most coarse-grained to the most fine-
grained. A coarse-grained approach would be to say that a subtype
can never override the property of child node definition of a
supertype (that is, declare a definition with the same name as one in
the supertype). A more fine-grained approach would allow such
overrides, but only in cases where an instance of the subtype would
still be a valid instance of the supertype. For example, if a supertype
declares a property definition called A of type UNDEFINED, a
subtype would may override that with a property definition A of type
STRING. However, the reverse would not be allowed.

For purposes of the above, the notion of two definitions having the
same name does not apply to two residual definitions. Two (or more)
residual property or child node definitions with differing sub-attributes
must be permitted to co-exist in the same effective node type. They
are interpreted as disjunctive (ORed) options.

Apart from the issue of how inheritance affects the set of property
and child node definitions, there is also the issue of the top-level
node type attributes mixin-status, orderable-status and primary item.
The specification implies only one requirement with regard to these

attributes: that a mixin node-type is capable of being a supertype of a
primary node type, and therefore that a mixin-status of primary in the
subtype overrides a mixin-status of mixin in the supertype (See,
6.7.22.2 Additions to the Hierarchy).

Other than this, the specification does not define how conflicts
between multiple supertypes are resolved or how these three top
level attributes are inherited. For example, the question of whether
the orderable child nodes setting of a node type is inherited by its
subtypes is left up to the particular implementation.

44 Inaccurate to say that direct

methods "do a save". They
do not.

Added new section
7.1.3.7 Save vs Direct

The direct-to-workspace methods should not be thought of
automatically “doing a save”. The effect of a directly-persistent
method happens one level deeper and is therefore not necessarily
equivalent to making the same change transiently and then
immediately calling save. For example:

Following A.addNode("B") we have:

A (transient state differs from persistent because of B)
|
|--B (transient)

If we now import C as child of A (using the importXML method,
though this would apply to any direct-to-workspace child addition) we
have:

A (transient state still differs from persistent because | of B)
|
|--B (transient)
|
|--C (persistent)

If we now do an A.save we get an InvalidItemStateException
because A's state on the persistent layer has changed due to the
import. We would now have to do an A.refresh(false), discarding the
effect of the A.addNode("B") and reverting the situation to:

A (persistent)
|
|--C (persistent)

At this point we could do the A.addNode("B") again and, as long as
we saved it before making an further direct-to-workspace changes to
A, the save would succeed.

8.2.14.1 Node Versioning Methods
Node.checkin javadoc

Replace

If checkin succeeds, the change to the jcr:checkedOut property is
automatically saved (there is no need to do an additional save).

with

If checkin succeeds, the change to the jcr:checkedOut property is
automatically persisted (there is no need to do an additional save).

45 Fix versioning explanation

8.2.4 Initializing the Version History
bullet 4

Replace

• V0 is the root version of VH. This root version does not contain any
state information about N other than the node type and UUID
information in the jcr:frozenPrimaryType, jcr:frozenMixinTypes, and
jcr:frozenUuid. It is a dummy version.

with

• V0 is the root version of VH. It is a dummy version that serves as
the starting point of the version graph. Like all version nodes, it has a
subnode called jcr:frozenNode. But, in this case that frozen node
does not contain any state information about N (other than the node
type and UUID information found in the properties
jcr:frozenPrimaryType, jcr:frozenMixinTypes, and jcr:frozenUuid).

46 Typo

6.2.3 Read Methods
Replace reference to

7.1.2.1 Re-using Item Objects.

with reference to

7.1.3.1 Re-using Item Objects.

47 Inaccurate definition of
'prefix'

4.6 Path Syntax and 6.2.5.2 Name
BNF

Replace

XML Name

with

XML NCName

49 getPrimaryItem can be
ambiguous in cases where
the specified item is a node
with same-name-siblings.

6.2.3 Read Methods
Node.getPrimaryItem javadoc

Added

In cases where the primary child item specifies the name of a set of
same-name sibling child nodes, the node returned will be the one
among the same-name siblings with index [1].

50 Lock should not apply to

new unsaved node

8.4.11 Locking Methods
Node.lock javadoc

Added

If this node does not have a persistent state (has never been saved),
a LockException is thrown.

54 What happens when a
registered namespace is
"hidden" by a later

6.3.3.3 Internal Storage of Names and Paths

Section renamed to

registration

6.3.3.3 Conflict between Session Remapping and Namespace
Registry

and the following added before the existing text in that section
There are two circumstances in which a potential conflict may arise
between a session namespace mapping and the repository-wide
namespace registry.

The first case occurs when an attempt is made to locally map prefix
P to URI U where P is already globally mapped to URI U' (not equal
to U) and there is no local mapping of some prefix P' (not equal to P)
to U'. As described above, an exception is thrown in this case. To
successfully locally map P to U, U' must first be locally mapped to
some P'.

The second case occurs when a mapping of P to U is added to the
global namespace registry while P is locally mapped to some U' (not
equal to U) in at least one active session S. How this conflict is
handled is left up to the implementation, since in any case, the
mechanism for making changes to the global namespace registry is
beyond the scope of this specification.

56 Clarify that NS changes are

not within transaction

Added new section
6.3.4 Transactions and Namespaces

In repositories that support transactions, both changes to the
namespace registry and Session namespace remappings must be
non-transactional.

57 'IN' SQL operand, does it
exist or not?
[Answer: No]

8.5.3 SQL EBNF

Fixed BNF

58 Throws clause of
Session.itemExists should
be aligned with that of
Session.getItem

6.2.1 Session Read Methods
Session.itemExists javadoc

Replace

Returns true if an item exists at absPath and this Session has read
access to it; otherwise returns false. Also returns false if the specified
absPath is malformed.

A RepositoryException is thrown if an error occurs.

with

Returns true if an item exists at absPath and this Session has read
access to it; otherwise returns false.

A RepositoryException is thrown if absPath is not a well-formed
absolute path.

60 Remapping the default

namespace and prefix

6.3.3 Session Namespace Remapping

Replace

Any registered namespace can be temporarily remapped to a new
prefix within the scope of a particular Session.

with

Any registered namespace (other than the empty namespace or one
beginning with "xml") can be temporarily remapped to a new prefix
within the scope of a particular Session.

61 Invalid characters in string

properties

6.4.1 System View XML Mapping
point 7

Added

In addition, if the string form of a value contains characters which
cannot appear in XML documents at all (neither as literals nor as
character references) then the value is also Base64 encoded, the
attribute xsi:type="xsd:base64Binary" is added to the <sv:value>
element, and the namespace mappings for xsi and xsd are added to
the topmost XML element (i.e.,
xmlns:xsd="http://www.w3.org/2001/XMLSchema" and
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"). Note
that since BINARY values are always Base64 encoded, the
xsi:type="xsd:base64Binary" attribute is considered the default in
those cases and therefore is omitted.

and added new section

6.4.2.6 Invalid Characters in Values

If the string form of the value of property P contains characters which
cannot appear in XML documents at all (neither as literals nor as
character references) then the attribute P is simply excluded from
the document view serialization and does not appear at all.

63 Clarify that a child node and
property of a given node
cannot have the same
name.

4 The Repository Model

Replace

Any item in the hierarchy can be identified by an absolute path.

with

Every item in a workspace apart from the root node has a non-empty
name. The root node always has the empty string as its name.

A property and node with the same parent cannot have the same
name. Two or more nodes with the same parent may in some
circumstances have the same name, in which case they are
distinguished by index (see 4.3 Same-Name Siblings for more
details).

The chain of names from the root to any item defines the absolute
path of that item.

66 Clarify how to set NAME

and PATH properties

7.1.5 Adding and Writing Properties
setProperty javadoc (the last entry; with multiple signatures listed)

Replace

To create a property of PropertyType.NAME or PropertyType.PATH
an explicit type must be specified using a three-argument signature.

with

A property of type PropertyType.NAME or PropertyType.PATH may
be created either by explicitly specifying the property type using a

three-argument setProperty signature, or by using ValueFactory to
create a property of the desired type and then calling
setProperty(String, Value).

73 Item.isSame: clarify what

constitutes "sameness"
6.2.8 Item Read Methods
Item.isSame javadoc

Added

Two Item objects represent the same repository item if all the
following are true:

• Both objects were acquired through Session objects that were
created by the same Repository object.

• Both objects were acquired through Session objects bound to the
same repository workspace.

• The objects are either both Node objects or both Property objects.

• If they are Node objects, they have the same correspondence
identifier (see 4.10.2 Multiple Workspaces and Corresponding
Nodes).

• If they are Property objects they have identical names and their
parent nodes have the same correspondence identifiers.

75 jcr:mergeFailed should be
constrained to be nt:version

6.7.21.3 mix:versionable and 8.2.1 Versionable Nodes
mix:versionable node type definition

Added value constraint

77 Move or copy semantics of
"." and ".." from 4 to 4.6

Added new section
4.6.2 Current Item and Parent Item

The syntax of paths includes the segments “.” and “..” indicating
current item and parent item, respectively. These can be used within
JCR paths just as they can in Unix-like file system paths. For
example, /a/b/../c is equivalent to /a/c while /a/b/./c is equivalent to
/a/b/c.

78 Various typos in the spec

6.7.21.3 mix:versionable, 8.2.1 Versionable Nodes, 8.2.2.3 nt:versionHistory
and 8.2.10.1 Merge Algorithm

Fixed typos

82 Wildcard in XPath syntax
should be required

6.6.6.2 Non-Terminals
production 56

Removed strikethrough

83 Session.removeLockToken()
should fail on a session-
scoped lock

8.4.7 Session-scoped and Open-scoped Locks

Added

Additionally, since a session-scoped lock is always tied to the
session that created it, it does not make sense to move the token of
session-scoped lock from its originating session to some other
session. Consequently, Session.removeLockToken(token) will

always fail when token specifies a session-scoped lock (see 8.4.13
Session Methods Related to the Lock Token).

8.4.13 Session Methods Related to the Lock Token
Session.removeLockToken javadoc

Added

A LockException is thrown if the lock associated with the specified
lock token is session-scoped.

A RepositoryException is thrown if another error occurs.

84 Session.addLockToken
should fail if that lock token
is currently held by another
session

8.4.13 Session Methods Related to the Lock Token
Session.addLockToken javadoc

Added

A LockException is thrown if the specified lock token is already held
by another Session.

A RepositoryException is thrown if another error occurs.

85 Errors in SQL examples

6.6.3.5 Ordering Specifier
Examples table

Replace

SELECT * FROM my:type WHERE CONTAINS(., 'jcr')

with

SELECT * FROM my:type WHERE CONTAINS(*, 'jcr')

8.2.2.2 Searching and Traversing Version Storage

Replace

SELECT * FROM nt:version
WHERE productName = "Car"
AND price > "30000"
AND jcr:path LIKE
"/jcr:system/jcr:versionStorage/%"

with

SELECT * FROM nt:version
WHERE productName = 'Car'
AND price > 30000
AND jcr:path LIKE
'/jcr:system/jcr:versionStorage/%'

86 Missing terminal for jcr:path

join

8.5.3 SQL EBNF

Fixed BNF

87 Typo: comments delimiters
in BNF inconsistent

4.6 Path Syntax and 6.2.5.2 Name

Fixed BNF

88 Binary values to Base64 in
Doc View

6.4.2.1 General Structure
point 6

Replace

6. The value of each property P is converted to string form according
to the standard conversion (see 6.2.6 Property Type Conversion) and
becomes the value of the XML attribute P. Entity references are used
to escape characters which should not be included as literals within
attribute values (see 6.4.4 Escaping of Values).

with

6. If P is a non-BINARY property its value is converted to string form
according to the standard conversion (see 6.2.6 Property Type
Conversion). If P is a BINARY property its value is Base64 encoded.
The resulting string becomes the value of the XML attribute P. Entity
references are used to escape characters which should not be
included as literals within attribute values (see 6.4.4 Escaping of
Values).

91 Version number and Date
are wrong

0 Title page, 1 Preface

Version number incremented to 1.0.1, date changed, mention made in
Preface of status as Maintenance Release.

92 Explanation of transient
storage fails to mention
basics

7.1.1.1 Writing to Transient Storage

Added

To persist any change that involves the addition, removal or re-
ordering of nodes or the addition or removal of properties, the scope
of the save must include the parent node affected.

To persist a change that involves only a change to the value of an
existing property, only that property itself needs to be within the
scope of the save.

Note that this means that the minimal scope required to persist the
effect of Node.setProperty depends on whether the property in
question already exists or not. If it does not, then the parent node
must be saved. If it does, then only the property itself needs to be
saved.

