
1-1

APPENDIX 1

Introduction to Java 2 Micro Edition 
and KVM

1.1 Introduction to Java 2 Platform 
Micro Edition
Recognizing that one size doesn't fit all, Sun has recently regrouped its Java™ 
technologies into three editions: Java 2 Platform Enterprise Edition (J2EE), Java 2 
Platform Standard Edition (J2SE), and Java 2 Platform Micro Edition (J2ME). Each of 
these editions is aimed at a specific market segment:

• Java 2 Enterprise Edition. For enterprises needing to serve their customers, 
suppliers, and employees with solid, complete, and scalable Internet business 
server solutions.

• Java 2 Standard Edition. For the well-established desktop market.

• Java 2 Micro Edition. For consumer and embedded device manufacturers who 
build a diversity of information devices, service providers who wish to deliver 
content to their customers over those devices, and content creators who want to 
make compelling content for small, resource-constrained devices.

Each edition defines a set of tools and supplies that can be used with a particular 
product: 

• Java virtual machines that fit inside a wide range of computing devices,

• libraries and APIs that are specialized for each kind of computing device,

• tools for deployment and device configuration.

FIGURE 1-1 illustrates the target markets of each Java edition.



1- 2 Connected, Limited Device Configuration • April 24, 2000

Java 2 Micro Edition (J2ME or Java 2 ME) specifically addresses the large, rapidly 
growing consumer space, which covers the range of tiny commodities such as pagers 
all the way up to the set-top box, an appliance almost as powerful as a desktop 
computer. Like the larger Java editions, Java 2 Micro Edition aims at maintaining the 
qualities that Java technology has become known for: 

• built-in consistency across products in terms of running anywhere, any time, on 
any device,

• the power of a high-level object-oriented programming language with a large 
developer base,

• portability of code,

• safe network delivery,

• upward scalability with J2SE and J2EE.

With J2ME, Sun aims to provide a complete end-to-end solution for creating 
dynamically extensible, networked products and applications for the consumer and 
embedded market. J2ME enables device manufacturers, service providers, and 
content creators to gain a competitive advantage and capitalize on new revenue 
streams by developing and deploying compelling new applications and services to 
their customers worldwide.

FIGURE 1-1 Java 2 editions and their target markets

HotSpot JVM KVM Card VM

Java Language 

Java 2
Enterprise

Edition
Java 2

Standard
Edition

VHUYHU

ZRUNVWDWLRQ

3&� ODSWRS

1&

VHW�WRS ER[�

QHW 79

FRPPXQLFDWRU

VFUHHQ�

SKRQH

3'$

VPDUWSKRQH
FHOO SKRQH

SDJHU

326

FDUG

0HPRU\� ��0% �0% ���N% ��N%

� ELW�� ELW�� ELW�� ELW

Java 2 Micro Edition

CLDCCLDCCDCCDC



Appendix 1 Introduction to Java 2 Micro Edition and KVM 1-3

At the high level, J2ME is targeted at two distinct groups of products (see 
FIGURE 1-1):

• Personal, mobile, connected information devices. Cell phones, pagers and organizers 
are the best examples of devices in this class. These devices have very simple user 
interfaces compared to desktop computer systems, total memory budget in the 
range of 128 to 512 kilobytes, and low bandwidth, intermittent connection to a 
network. Network communications in this group of products are not necessarily 
based on the TCP/IP protocol suite. 

• Shared, fixed, connected information devices. Typical examples of devices in this 
category include set-top boxes, Internet TVs, Internet-enabled screenphones, high-
end communicators and car entertainment/navigation systems. These devices 
have a larger range of user interface capabilities, total memory budget in the 
range of 2 to 16 megabytes, and persistent, high bandwidth, TCP/IP connection 
to a network. 

It must be emphasized that the line between these two product groups is fluid. As a 
result of the ongoing technological convergence in the computer, telecommunication, 
consumer electronics and entertainment industries, the distinction between more 
general-purpose computers, personal communication devices, consumer electronics 
devices and entertainment devices is becoming blurry. Also, it can be anticipated 
that in the future devices will increasingly use wireless connectivity instead of 
traditional fixed networks. In practice, the line between the two groups is defined 
more by the total memory budget and the physical screen size of the device, rather 
than by specific functionality or by a certain type of connectivity. 

1.2 J2ME Configurations and Profiles
While connected consumer devices such as cell phones, pagers, personal organizers 
and set-top boxes have many things in common, they are also diverse in form, 
function and features. Information appliances tend to be special-purpose, limited-
function devices. To address this diversity, an essential requirement for J2ME is not 
only small size but also modularity and customizability. 

The Java 2 ME architecture is modular and scalable so that it can support the kind of 
flexible deployment demanded by the consumer and embedded markets. To enable 
this, Java 2 ME provides a range of virtual machine technologies, each optimized for 
the different processor types and memory footprints commonly found in the 
consumer and embedded marketplace. 

For low-end, resource-limited products, Java 2 ME supports minimal configurations 
of the Java virtual machine and Java APIs that capture just the essential capabilities 
of each kind of device. As device manufacturers develop new features in their 
devices, or service providers develop new and exciting applications, these minimal 



1- 4 Connected, Limited Device Configuration • April 24, 2000

configurations can be expanded with additional APIs or with a richer complement of 
Java virtual machine features. To support this kind of customizability and 
extensibility, two essential concepts are defined:

• Configuration. A J2ME configuration defines a minimum platform for a 
“horizontal” class or family of devices, each with similar requirements on total 
memory budget and processing power. A configuration defines the Java language 
and virtual machine features and minimum libraries that a device manufacturer 
or a content provider can expect to be available on all devices of the same class.

• Profile. A J2ME profile addresses the specific demands of a certain “vertical” 
market segment or device category. The main goal for a profile is to guarantee 
interoperability in a certain vertical device category or domain by defining a 
standard Java platform for that market. Profiles may include libraries that are far 
more device category specific that libraries provided in a configuration. Profiles 
are implemented on top of a configuration.

Configurations and profiles are defined through the Java Community Process (JCP). 
Both configurations and profiles are discussed in more detail below.

1.2.1 Configurations
J2ME can be deployed in a number of configurations. A configuration defines a Java 
platform for a “horizontal” class or family of devices with similar requirements on 
total memory budget and other hardware capabilities. More specifically, a 
configuration:

Q specifies the Java programming language features supported,
Q specifies the Java virtual machine features supported,
Q specifies the Java libraries and APIs supported.

Each configuration specifies the Java virtual machine features and a set of APIs that 
the users and content providers can safely assume to be present on all devices when 
shipped from the factory. Application developers and content providers must design 
their code to stay within the bounds of the Java virtual machine features and APIs 
specified by that configuration. 

To avoid fragmentation, there will be a very limited number of J2ME configurations. 
Currently, the goal is to define two standard J2ME configurations (see FIGURE 1-1 on 
page 2):

• Connected, Limited Device Configuration (CLDC). The market consisting of 
personal, mobile, connected information devices is served by the CLDC. This 
configuration includes some new classes, not drawn from the J2SE APIs, designed 
specifically to fit the needs of small-footprint devices. 



Appendix 1 Introduction to Java 2 Micro Edition and KVM 1-5

• Connected Device Configuration (CDC). The market consisting of shared, fixed, 
connected information devices is served by the Connected Device Configuration 
(CDC). To ensure upward compatibility between configurations, the CDC shall be 
a superset of the CLDC.

This specification focuses on the Connected, Limited Device Configuration (CLDC).

FIGURE 0-1 Relationship between J2ME configurations and J2SE

FIGURE 0-1 illustrates the relationship between CLDC, CDC and Java 2 Standard 
Edition (J2SE). As shown in the figure, the majority of functionality in CLDC and 
CDC has been inherited from J2SE. Each class inherited from J2SE must be precisely 
the same or a subset of the corresponding class in Java 2 Standard Edition. In 
addition, CLDC and CDC may introduce a number of features, not drawn from the 
J2SE, designed specifically to fit the needs of small-footprint devices. For further 
details, refer to Configurations and Profiles Architecture Specification, Java 2 Platform 
Micro Edition (J2ME), Sun Microsystems, Inc.

1.2.2 Profiles
Application portability is a key benefit of Java technology in the desktop and 
enterprise server markets. Portability is also a critical element of the J2ME value 
proposition for consumer devices. However, application portability requirements in 
the consumer space are generally quite different from portability requirements 
demanded by the desktop and server markets. In most cases consumer devices have 
substantial differences in memory size, networking, and user interface capabilities, 
making it very difficult to support all devices with just one solution. 

J2SE

CDC CLDC

Classes outside J2SE may not 
use the java.* name space



1- 6 Connected, Limited Device Configuration • April 24, 2000

In general, the consumer device market is not so homogeneous that end users expect 
or require universal application portability. Rather, in the consumer space, 
applications should ideally be fully portable between devices of the same kind. In 
addition, some kinds of applications, such as payment and banking applications, are 
expected to be freely portable between many kinds of devices. 

In order to make it possible to define Java platforms for specific vertical markets, 
J2ME framework provides the concept of a profile. A profile defines a Java platform 
for a specific vertical market segment or device category. Profiles can serve two 
distinct portability requirements. 

• To provide a complete toolkit for implementing applications for a particular kind 
of device such as cell phone, pager, or set-top box.

• Profiles may also be created to support significant, coherent groups of 
applications (for example, personal information management), which might be 
hosted on several kinds of devices.

At the implementation level, a profile is defined simply as a collection of Java APIs 
and class libraries that reside on top of a configuration to provide domain-specific 
capabilities for devices in a specific market segment. Profiles and the specific rules 
for defining J2ME profiles are described in more detail in separate specifications. 

1.3 Introduction to KVM
At the present time, the CLDC runs only on top of Sun's K Virtual Machine (KVM). 
However, this specification allows for the possibility of running on other virtual 
machines. KVM is a compact, portable Java virtual machine specifically designed 
from ground up for small, resource-constrained devices. The high-level design goal 
for KVM was to create the smallest possible “complete” Java virtual machine that 
would maintain all the central aspects of the Java programming language, but would 
run in a resource-constrained device with only a few hundred kilobytes total 
memory budget.

More specifically, KVM was designed to be:

Q small, with a static memory footprint in the range 30 kilobytes to 80 kilobytes 
(depending on compilation options and the target platform,)

Q clean and highly portable,
Q modular and customizable,
Q as “complete” and “fast” as possible without sacrificing the other design goals.



Appendix 1 Introduction to Java 2 Micro Edition and KVM 1-7

The K in KVM stands for “kilo.” It was so named because its size is measured in tens 
of kilobytes. KVM is suitable for 16/32-bit RISC/CISC microprocessors with a total 
memory budget of no more than a few hundred kilobytes (and sometimes less than 
128 kilobytes). This typically applies to digital cellular phones, pagers, personal 
organizers, and small retail payment terminals. 

The minimum total memory budget required by a KVM implementation is about 128 
kB, including the virtual machine, minimal Java libraries and some heap space for 
running Java applications. A more typical implementation requires a total memory 
budget of 256 kB, of which half is used as heap space for applications, 30 to 80 kB is 
needed for the virtual machine itself, and the rest is reserved for class libraries. The 
ratio between volatile memory (e.g., DRAM) and non-volatile memory (e.g., ROM or 
Flash) in the total memory budget varies considerably depending on the 
implementation. A simple KVM implementation without system class prelinking 
support needs more volatile memory than a KVM implementation with system 
classes preloaded into the device.

The actual role of KVM in the target devices can vary significantly. In some 
implementations, KVM is used on top of an existing software stack to give the 
device the ability to download and run dynamic, interactive, secure Java content on 
the device. In other implementations, KVM is used at a lower level to implement the 
system software and applications of the device in the Java programming language. 
Several alternative usage models are possible.

For further information on KVM, refer to the KVM web site at 
http://java.sun.com/products/kvm. 

KVM is derived from a research system called Spotless developed originally at Sun 
Microsystems Laboratories. More information on Spotless is available in the Sun 
Labs technical report “The Spotless System: Implementing a Java system for the 
Palm Connected Organizer” (Sun Labs Technical Report SMLI TR-99-73).



1- 8 Connected, Limited Device Configuration • April 24, 2000


