
901 San Antonio Road
Palo Alto, CA 94303 USA
650 960-1300 fax 650 969-9131

Sun Microsystems, Inc.

Connected, Limited Device
Configuration

Specification (First Release)

Java 2 Platform Micro Edition

First Release, April 24, 2000

Please
Recycle

Copyright © 1999-2000 Sun Microsystems, Inc.

901 San Antonio Road, Palo Alto, CA 94303 USA

All rights reserved. Copyright in this document is owned by Sun Microsystems, Inc.

RESTRICTED RIGHTS LEGEND

Use, duplication, or disclosure by the U.S. Government is subject to restrictions of FAR 52.227-14(g)(2)(6/87)
and FAR 52.227-19(6/87), or DFAR 252.227-7015(b)(6/95) and DFAR 227.7202-1(a).

TRADEMARKS

Sun, the Sun logo, Sun Microsystems, J2SE, J2EE, J2ME, Java, Solaris, and the Java Coffee Cup logo are
trademarks or registered trademarks of Sun Microsystems, Inc. in the United States and other countries.

THIS PUBLICATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, OR NON-INFRINGEMENT.

THIS PUBLICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS.
CHANGES ARE PERIODICALLY ADDED TO THE INFORMATION HEREIN; THESE CHANGES WILL BE
INCORPORATED IN NEW EDITIONS OF THE PUBLICATION. SUN MICROSYSTEMS, INC. MAY MAKE
IMPROVEMENTS AND/OR CHANGES IN THE PRODUCT(S) AND/OR THE PROGRAM(S) DESCRIBED
IN THIS PUBLICATION AT ANY TIME.

Contents iii

Contents

Preface ix

1. Introduction and Background 1-1

2. Goals, Requirements and Scope 2-1

2.1 Goals 2-1

2.1.1 Dynamic delivery of Java applications and content 2-1

2.1.2 Targeting 3rd party application developers 2-2

2.2 Requirements 2-2

2.2.1 Hardware requirements 2-2

2.2.2 Software requirements 2-3

2.2.3 J2ME requirements 2-3

2.3 Scope 2-4

3. High-level Architecture and Security 3-1

3.1 Virtual machine environment 3-1

3.2 The concept of a Java Application 3-2

3.3 Application management 3-2

3.4 Security 3-3

3.4.1 Low-level virtual machine security 3-3

3.4.2 Application-level security 3-4

iv Connected, Limited Device Configuration • April 24, 2000

3.4.3 Other security areas 3-6

4. Adherence to the Java Language Specification 4-1

4.1 No floating point support 4-1

4.2 No finalization 4-2

4.3 Error handling limitations 4-2

5. Adherence to Java Virtual Machine Specification 5-1

5.1 No floating point support 5-1

5.2 Features eliminated because of library changes or security concerns 5-2

5.2.1 Java Native Interface (JNI) 5-3

5.2.2 User-defined class loaders 5-3

5.2.3 Reflection 5-3

5.2.4 Thread groups and daemon threads 5-4

5.2.5 Finalization 5-4

5.2.6 Weak references 5-4

5.2.7 Errors 5-4

5.3 Classfile verification 5-4

5.3.1 Off-device pre-verification + runtime verification with stack maps
5-5

5.4 Classfile format and class loading 5-10

5.4.1 Supported file formats 5-10

5.4.2 Public representation of Java applications and resources 5-11

5.4.3 Classfile lookup order 5-11

5.4.4 Implementation optimizations 5-12

5.4.5 Preloading/prelinking (“ROMizing”) 5-12

5.4.6 Future classfile formats 5-12

6. CLDC Libraries 6-1

6.1 Overview 6-1

6.1.1 General goals 6-1

Contents v

6.1.2 Compatibility 6-2

6.2 Classes inherited from J2SE 6-2

6.2.1 System classes 6-3

6.2.2 Data type classes 6-3

6.2.3 Collection classes 6-3

6.2.4 Input/output classes 6-4

6.2.5 Calendar and time classes 6-4

6.2.6 Additional utility classes 6-5

6.2.7 Exception and error classes 6-5

6.2.8 Internationalization 6-6

6.2.9 Property support 6-7

6.3 CLDC-specific classes 6-8

6.3.1 Background and motivation 6-8

6.3.2 The Generic Connection framework 6-8

6.3.3 No implementations provided at the configuration level 6-10

6.3.4 Design of the Generic Connection framework 6-10

6.3.5 Additional remarks 6-14

6.3.6 Examples 6-14

A. Appendices A-1

vi Connected, Limited Device Configuration • April 24, 2000

Figures vii

Figures

FIGURE 3-1 High-level architecture 3-1

FIGURE 6-1 Connection interface hierarchy 6-11

viii Connected, Limited Device Configuration • April 24, 2000

Preface ix

Preface

This document, Connected, Limited Device Configuration Specification, defines the
Connected, Limited Device Configuration (CLDC) of Java™ 2 Micro Edition (J2ME™).

A configuration of J2ME specifies the subset of Java programming language features
supported, the subset of functionality of the configuration’s Java virtual machine,
the networking, security, installation and possibly other core platform APIs
supported, all to support a certain group of embedded consumer products.

The Connected, Limited Device Configuration is the basis for one or more profiles. A
profile of J2ME defines additional sets of APIs and features for a particular vertical
market, device category or industry. Configurations and profiles are more exactly
defined in the related publication, Configurations and Profiles Architecture Specification,
Java 2 Platform Micro Edition (J2ME), Sun Microsystems, Inc.

Who Should Use This Specification
The audience for this document is the Java Community Process (JCP) expert group
(JSR-30) defining this configuration, device manufacturers who want to build small
Java-enabled devices, and content developers who want to write Java applications
for small, resource-constrained, connected devices.

How This Specification Is Organized
The topics in this specification are organized as follows:

x Connected, Limited Device Configuration • April 24, 2000

Chapter 1, “Introduction and Background,” provides a context for the CLDC
Specification, and lists the names of the companies that have been involved in the
specification work.

Chapter 2, “Goals, Requirements and Scope,” defines the goals, special
requirements and scope of this specification.

Chapter 3, “High-level Architecture and Security,” defines the high-level
architecture of the CLDC, and discusses its security features.

Chapter 4, “Adherence to the Java Language Specification,” defines the variances
from the standard Java programming language required by the CLDC configuration.

Chapter 5, “Adherence to Java Virtual Machine Specification,” defines the
variances from the standard Java virtual machine required by the CLDC
configuration.

Chapter 6, “CLDC Libraries,” defines the specific Java APIs required by the CLDC
configuration.

Appendix , “Appendices,” is a pointer to a number of appendices that accompany
this specification.

Related Literature
The Java Language Specification by James Gosling, Bill Joy, and Guy L. Steele.
Addison-Wesley, 1996, ISBN 0-201-63451-1

The Java Virtual Machine Specification (Java Series), Second Edition by Tim Lindholm
and Frank Yellin. Addison-Wesley, 1999, ISBN 0-201-43294-3

Configurations and Profiles Architecture Specification, Java 2 Platform Micro Edition
(J2ME), Sun Microsystems, Inc.

Java 2 Platform: Micro Edition, A White Paper, Sun Microsystems, Inc.

The K Virtual Machine (KVM), A White Paper, Sun Microsystems, Inc.

Chapter 1 Introduction and Background 1-1

1

Introduction and Background

This document specifies the Connected, Limited Device Configuration (CLDC) of
Java™ 2 Platform, Micro Edition (J2ME™). The goal of this work is to define a
standard Java platform for small, resource-constrained, connected devices
characterized as follows:

Q 160 kB to 512 kB of total memory budget available for the Java platform (see
Section 2.2.1, “Hardware requirements”.)

Q a 16-bit or 32-bit processor
Q low power consumption, often operating with battery power
Q connectivity to some kind of network, often with a wireless, intermittent

connection and with limited (often 9600 bps or less) bandwidth

Cell phones, two-way pagers, personal digital assistants (PDAs), organizers, home
appliances, and point of sale terminals are some, but not all, of the devices that
might be supported by this specification.

This J2ME configuration specification defines the minimum required complement of
Java technology components and libraries for small connected devices. Java
language and virtual machine features, core libraries, input/output, networking and
security are the primary topics addressed by this specification.

This specification is the result of a Java Community Process (JCP) expert group JSR-
30 consisting of a number of industrial partners. The following companies (in
alphabetical order) have been involved in the definition of CLDC:

Q America Online
Q Bull
Q Ericsson
Q Fujitsu
Q Matsushita
Q Mitsubishi
Q Motorola
Q Nokia
Q NTT DoCoMo
Q Oracle

1-2 Connected, Limited Device Configuration • April 24, 2000

Q Palm Computing
Q RIM
Q Samsung
Q Sharp
Q Siemens
Q Sony
Q Sun Microsystems
Q Symbian

CLDC is core technology that will be used as the basis for one or more profiles. A
J2ME profile defines a more comprehensive and focused Java platform for a
particular vertical market, device category or industry.

For definitive information about J2ME configurations and profiles, refer to
Configurations and Profiles Architecture Specification, Java 2 Platform Micro Edition
(J2ME), Sun Microsystems, Inc. Some information about Java 2 Micro Edition,
configurations and profiles is provided in Appendix 1. That appendix also provides
information on KVM, a Java virtual machine that can be used to run the Connected,
Limited Device Configuration.

Chapter 2 Goals, Requirements and Scope 2-1

2

Goals, Requirements and Scope

2.1 Goals
The high-level goal for the Connected, Limited Device Configuration (CLDC) is to
define a standard Java platform for small, resource-constrained, connected devices.
The devices targeted by the CLDC have the following general characteristics:

Q 160 kB to 512 kB of total memory budget available for the Java platform (see
Section 2.2.1, “Hardware requirements”.)

Q a 16-bit or 32-bit processor
Q low power consumption, often operating with battery power
Q connectivity to some kind of network, often with a wireless, intermittent

connection and with limited (often 9600 bps or less) bandwidth

Typically, these target devices are manufactured in very large quantities (hundreds
of thousands or even millions of units), meaning that manufacturers are usually
extremely cost-conscious and interested in keeping the per-unit costs as low as
possible.

2.1.1 Dynamic delivery of Java applications and
content
Based on the feedback from the CLDC expert group, one of the greatest benefits of
Java technology in the small device space is the dynamic, secure delivery of
interactive content and applications over different kinds of networks to small client
devices. Unlike in the past, when small devices such as cell phones and pagers
usually came with a hard-coded feature set, device manufacturers are increasingly
looking for solutions that allow them to build extensible devices that support rich,
dynamic, interactive content from 3rd party content providers and developers. With

2-2 Connected, Limited Device Configuration • April 24, 2000

the recent introduction of Internet-enabled cell phones, communicators and pagers,
this transition is already underway. One of the main goals of this CLDC Specification
is to take this transition several steps further by allowing the use of the Java
programming language as the standard platform for secure delivery of dynamic
content for these extensible next-generation devices.

2.1.2 Targeting 3rd party application developers
The focus on dynamically delivered Java applications means that this specification is
intended not just for hardware manufacturers and their system programmers, but
also for 3rd party application developers. In fact, we assume that once small Java-
enabled devices become commonplace, the vast majority of application developers
for these devices will be 3rd party developers rather than device manufacturers
themselves.

This trend has certain implications for the Java platform features and APIs to be
included in this specification. First, the specification shall include only high-level
libraries that provide sufficient programming power for the 3rd party application
developer. For instance, the networking APIs to be included in CLDC should
provide the programmer with meaningful high-level abstractions, such as the ability
to transfer whole files, applications or web pages at once, rather than require the
programmer to know about the details of specific network transmission protocols.
Second, we emphasize the importance of generality and portability. The CLDC
Specification shall not focus on any specific device category or vertical market.

2.2 Requirements

2.2.1 Hardware requirements
CLDC is intended to run on a wide variety of small devices ranging from wireless
communication devices such as cellular telephones and two-way pagers to personal
organizers, point-of-sale terminals and even home appliances. The underlying
hardware capabilities of these devices vary considerably, and therefore the CLDC
Specification does not impose any specific hardware requirements other than memory
requirements.

This specification assumes that the virtual machine, the configuration libraries, the
profile libraries and the applications must all fit within a total memory budget of
160-512 kilobytes. More specifically, we assume that:

Chapter 2 Goals, Requirements and Scope 2-3

Q 128 kilobytes of non-volatile1 memory is available for the Java virtual machine
and CLDC libraries.

Q at least 32 kilobytes of volatile2 memory is available for the Java runtime and
object memory.

The ratio of volatile to non-volatile memory in the total memory budget varies
considerably depending on the target device and the role of the Java platform in the
device. If the Java platform is used strictly for running system applications that have
been built in a device, then applications can be prelinked and a very limited amount
of volatile memory will be needed. If the Java platform is used for running
dynamically downloaded content, then devices will need a higher ratio of volatile
memory.

2.2.2 Software requirements
Like the hardware capabilities, the system software in CLDC devices varies
considerably. For instance, some of the devices may have a full-featured operating
system that supports multiple, concurrent operating system processes and a
hierarchical file system. Many other devices may have extremely limited system
software with no notion of a file system. Faced with such variety, CLDC makes
minimal assumptions about the system software available in CLDC devices.

Generally, this specification assumes that a minimal host operating system (see
Section 3.1, “Virtual machine environment”) or kernel is available to manage the
underlying hardware. This host operating system must provide at least one
schedulable entity to run the Java virtual machine. The host operating system does
not need to support separate address spaces or processes, nor must it make any
guarantees about the real-time scheduling or latency behavior.

2.2.3 J2ME requirements
CLDC is defined as a Java 2 Micro Edition (J2ME™) configuration. This has certain
important implications for the CLDC Specification:

Q A J2ME configuration shall only define a minimum complement or the “lowest
common denominator” of Java technology. All the features included in a
configuration must be generally applicable to a wide variety of devices. Features

1. The term non-volatile is used to indicate that the memory is expected to retain its contents between the user
turning the device “on” or “off”. For the purposes of this specification, it is assumed that non-volatile memory
is usually accessed in read mode, and that special setup may be required to write to it. Examples of non-
volatile memory include ROM, Flash and battery-packed SDRAM. Actual memory technology is outside the
scope of this specification.

2. The term volatile is used to indicate that the memory is not expected to retain its contents between the user
turning the device “on” or “off”. For the purposes of this specification, it is assumed that volatile memory can
be read and written to directly without any special setup. The most common type of volatile memory is
DRAM.

2-4 Connected, Limited Device Configuration • April 24, 2000

specific to a certain vertical market, device category or industry should be defined
in a profile rather than in CLDC. This means that the scope of CLDC is limited and
must generally be complemented by profiles.

Q Since the goal of the configuration is to guarantee portability and interoperability
between various kinds of resource-constrained devices, the configuration shall not
define any optional features. This limitation has a significant impact on what can be
included in the configuration and what should not be included. The more
domain-specific functionality must be defined in profiles rather than in CLDC.

For further information on the rules and guidelines for defining J2ME configurations
and profiles, refer to Configurations and Profiles Architecture Specification, Java 2
Platform Micro Edition (J2ME), Sun Microsystems, Inc.

Note that the absence of optional features in CLDC does not preclude the use of
various implementation-level optimizations. For instance, at the implementation level
alternative execution techniques (e.g., JIT compilation) or class representation
techniques can be used, as long as the observable user-level semantics of the
implementation remain the same as defined by the CLDC Specification.

2.3 Scope
Based on the decisions of the JSR-30 expert group, this CLDC Specification will
address the following areas:

Q Java language and virtual machine features
Q Core Java libraries (java.lang.*, java.util.*)
Q Input/output
Q Networking
Q Security
Q Internationalization

This CLDC Specification shall not address the following features:

Q Application life-cycle management (application installation, launching, deletion)
Q User interface functionality
Q Event handling
Q High-level application model (the interaction between the user and the

application)

These features can be addressed by profiles implemented on top of the CLDC.

The CLDC expert group is intentionally trying to keep small the number of areas
addressed by CLDC. It seems better to restrict the scope of CLDC in order not to
exceed the strict memory limitations or to exclude any particular device category.
Future versions of this CLDC Specification might address additional areas.

Chapter 2 Goals, Requirements and Scope 2-5

The rest of this specification is organized as follows. It starts with a discussion of the
high-level architecture of a typical CLDC environment. Then, it compares the Java
language and virtual machine features of a Java virtual machine (JVM) supporting
CLDC to a conventional Java environment. Finally, it details the Java libraries
included in CLDC.

2-6 Connected, Limited Device Configuration • April 24, 2000

Chapter 3 High-level Architecture and Security 3-1

3

High-level Architecture and
Security

This chapter discusses the high-level architecture of a typical CLDC environment.
This discussion serves as a starting point for more detailed specification in later
chapters.

FIGURE 3-1 High-level architecture

3.1 Virtual machine environment
The high-level architecture of a typical CLDC device is illustrated in FIGURE 3-1. At
the heart of a CLDC implementation is the Java Virtual Machine, which, apart from
specific differences defined later in this specification, is compliant with the Java
Virtual Machine Specification and Java Language Specification. The virtual machine
typically runs on top of a host operating system that is outside the scope of CLDC.

 Java Virtual Machine Java Virtual Machine

CLDC Libraries

Host Operating System

Profiles

3-2 Connected, Limited Device Configuration • April 24, 2000

On top of the virtual machine are the Java libraries. These libraries are divided into
two categories:

1. those defined by the Connected, Limited, Device Configuration, and

2. those defined by profiles

3.2 The concept of a Java Application
Throughout this specification, the term Java application is used to refer to a collection
of Java classfiles containing a single, unique method main that identifies the
launchpoint of the application. As specified in Java Virtual Machine Specification
(JVMS), §5.2, §2.17.1, the method main must be declared public, static and void,
as shown below:

public static void main(String[] args)

A JVM supporting CLDC starts the execution of a Java application by calling the
method main.

3.3 Application management
Many small, resource-constrained devices do not have a file system or any other
standard mechanism for storing dynamically downloaded information on the
device. Therefore, a CLDC implementation shall not require that Java classes
downloaded from an external source are stored persistently on the device. Rather,
the virtual machine might just load the classfiles and discard them after loading.

However, in many potential CLDC devices it is beneficial to be able to execute the
same Java applications several times without having to download the applications
over and over again. This is particularly important if applications are being
downloaded over a wireless network, where the user could incur high downloading
expenses.

We assume that a device implementing CLDC has capabilities for managing the Java
applications that have been stored in the device. At the high level, application
management refers to the ability to:

Q inspect existing Java applications stored on the device
Q select and launch Java applications
Q delete existing Java applications (if applicable)

Chapter 3 High-level Architecture and Security 3-3

Due to significant variations and feature differences among potential CLDC devices,
the details of application management are highly device-specific and
implementation-dependent. Consequently, application management capabilities are
often written in the C programming language or some other low-level programming
language specific to the host operating system. The actual details regarding
application management are outside the scope of CLDC Specification.

3.4 Security
One of the greatest promises of the Java platform is the ability to dynamically
deliver interactive content and applications in a secure way to client devices over
different kinds of networks.

Unfortunately, the total amount of code devoted to security in Java 2 Standard
Edition far exceeds the memory budget available for a Java virtual machine
supporting CLDC. Therefore, some compromises are necessary when defining the
security model for the CLDC. Our general guideline for defining the security model
for CLDC has been to keep things simple, and allow for more comprehensive
security solutions in later versions of this CLDC Specification.

One of the difficulties in defining the security model for CLDC is that security
means different things to different people. For instance, wireless device
manufacturers are usually very concerned about network-level security, such as
ensuring that nobody can decode or modify the information that is being
transmitted over the wireless network. Such solutions are beyond the scope of this
CLDC Specification.

The focus in this specification is on two areas:

1. low-level virtual machine security, and

2. application-level security.

3.4.1 Low-level virtual machine security
In this specification, low-level virtual machine security means that a Java application
executed by the virtual machine must not be able to harm the device in which it is
running. In a standard Java virtual machine implementation, this constraint is
guaranteed by the Java classfile verifier, which ensures that the Java bytecodes and
other items stored in Java classfiles cannot contain references to invalid memory
locations or memory areas that are outside the Java object memory (the Java heap).

3-4 Connected, Limited Device Configuration • April 24, 2000

The role of the classfile verifier is to ensure that classfiles loaded into the virtual
machine shall not execute in any way that is not allowed by the Java Virtual
Machine Specification.

As will be explained in more detail in Section 5.3, “Classfile verification,” this CLDC
Specification requires that a JVM supporting CLDC must be able to reject invalid
classfiles. This can be guaranteed either by using a standard Java classfile verifier, or
by utilizing the alternative verification technology defined in Section 5.2.

3.4.2 Application-level security
Even in a standard Java environment, the security provided by the classfile verifier
is limited. The verifier can only guarantee that the given program is a valid Java
program, and nothing more. There are still several other potential security threats
that will go unnoticed by the verifier. For instance, access to external resources such
as the file system, printers, infrared devices or the network is beyond the scope of
the verifier.

To provide controlled access to external resources from Java applications, a J2SE or
J2EE environment provides the concept of a security manager. A security manager is
called whenever the various parts of a Java application or the Java runtime system
need access to a protected resource. J2SE provides a very comprehensive security
model consisting of formal notions of permissions, access controllers, and security
policies.

Unfortunately, the J2SE security model is too memory-consuming to be included in a
CLDC device that allows only a few hundred kilobytes of total memory budget.
Therefore, a simpler solution is needed.

3.4.2.1 Sandbox model

A JVM supporting CLDC provides a simple “sandbox” security model. By a sandbox
we mean that a Java application must run in a closed environment in which the
application can only access those APIs that have been defined by the configuration,
profiles and licensee open classes supported by the device.

More specifically, the sandbox model means that:

Q Java classfiles have been properly verified and are guaranteed to be valid Java
applications (see Section 5.3, “Classfile verification.”)

Q Only a limited, predefined set of “safe” Java APIs is available to the application
programmer (defined by the CLDC, profiles and licensee open classes.)

Chapter 3 High-level Architecture and Security 3-5

Q The downloading and management of Java applications on the device takes place
at the native code level inside the virtual machine, and no user-definable class
loaders are provided, in order to prevent the programmer from overriding the
standard class loading mechanisms of the virtual machine.

Q The set of native functions accessible to the virtual machine is closed, meaning
that the application programmer cannot download any new libraries containing
native functionality, or access any native functions that are not part of the Java
libraries provided by the CLDC, profiles or licensee open classes.

J2ME profiles may provide additional security solutions. Profiles also define which
additional APIs are available to the application programmer.

3.4.2.2 Protecting system classes

A central requirement for CLDC is the ability to support dynamic downloading of
Java applications to the virtual machine. An obvious security hole in the Java virtual
machine would be exposed if the downloaded applications could override the
system classes provided in packages java.*, javax.microedition.*, or other
profile- or system-specific packages. A CLDC implementation shall ensure that the
programmer cannot override the classes in these protected system packages in any
way. At the implementation level this can be guaranteed in different ways,
depending on whether or not the implementation supports preloading/prelinking of
system classes (see Section 5.4, “Classfile format and class loading.”) One solution is
to require system classes always to be searched first when performing a classfile
lookup. For security reasons, it is also required that the application programmer is
not allowed to manipulate the classfile lookup order in any way. Classfile lookup
order is discussed in more detail in Section 5.4.3, “Classfile lookup order.”

3.4.2.3 Supporting multiple, simultaneously running Java
applications

Depending on the resources available on the device, a CLDC system can allow
multiple Java applications to execute concurrently, or can restrict the system to
permit only the execution of one Java application at a time. It is up to the particular
CLDC implementation to decide if the execution of multiple Java applications is
supported by utilizing the multitasking capabilities (if they exist) of the underlying
host operating system, or by instantiating multiple logical virtual machines to run
the concurrent Java applications.

3-6 Connected, Limited Device Configuration • April 24, 2000

3.4.3 Other security areas
A device supporting the CLDC is typically a part of an end-to-end solution such as a
wireless network or a payment terminal network. These networks typically require a
number of advanced security solutions to ensure secure delivery of data and code
between server machines and client devices. All these end-to-end security solutions
are assumed to be implementation-dependent and outside the scope of this CLDC
Specification.

Chapter 4 Adherence to the Java Language Specification 4-1

4

Adherence to the Java Language
Specification

The general goal for a JVM supporting CLDC is to be as compliant with the Java
Language Specification as is feasible within the strict memory limits. This chapter
summarizes the differences between a JVM supporting CLDC, and the J2SE Java
virtual machine. Except for the differences indicated herein, a JVM supporting CLDC
shall be compatible with Chapters 1 through 17 of The Java Language Specification
by James Gosling, Bill Joy, and Guy L. Steele. Addison-Wesley, 1996, ISBN 0-201-
63451-1.

4.1 No floating point support
The main language-level difference between the full Java Language Specification and
this CLDC Specification is that a JVM supporting CLDC does not have floating point
support. Floating point support was removed because the majority of CLDC target
devices do not have hardware floating point support, and since the cost of
supporting floating point in software was considered too high.

Note – For the remainder of this specification, the Java Language Specification will
be referred to as JLS. Sections within the Java Language Specification will be referred
to using the § symbol. For example, (JLS §4.2.4).

This means that a JVM supporting CLDC shall not allow the use of floating point
literals (JLS §3.10.2), floating point types and values (JLS §4.2.3) and floating point
operations (JLS §4.2.4). For further information, refer to Section 5.1, “No floating
point support” in this CLDC Specification.

4-2 Connected, Limited Device Configuration • April 24, 2000

4.2 No finalization
CLDC libraries do not include the method Object.finalize(), and therefore a
JVM supporting CLDC shall not support finalization of class instances (JLS §12.6).
No application built on top of a JVM supporting CLDC shall require that finalization
is available.

4.3 Error handling limitations
A JVM supporting CLDC shall generally support exception handling as defined in
JLS Chapter 11. However, the set of error classes included in CLDC libraries is
limited, and consequently the error handling capabilities of CLDC are restricted.
This is because of two reasons:

1) In embedded systems, recovery from error conditions is usually highly device-
specific. While some embedded devices may try to recover from serious error
conditions, many embedded devices simply soft-reset themselves upon encountering
an error. Application programmer cannot be expected to worry about device-specific
error handling mechanisms and conventions.

2) As specified in JLS §11.5.2, class java.lang.Error and its subclasses are
exceptions from which ordinary programs are not ordinarily expected to recover.
Implementing the error handling capabilities fully according to the Java Language
Specification is rather expensive, and mandating the presence and handling of all the
error classes would impose an unnecessary overhead on the implementation given
the strict memory constraints in CLDC target devices.

A JVM supporting CLDC shall support a limited set of error classes defined in
Section 6.2, “Classes inherited from J2SE.” When encountering any other error, the
implementation shall handle the error in a manner that is appropriate for the device.

Chapter 5 Adherence to Java Virtual Machine Specification 5-1

5

Adherence to Java Virtual Machine
Specification

The general goal for a JVM supporting CLDC is to be as compliant with the Java
Virtual Machine Specification as is possible within strict memory constraints. This
chapter summarizes the differences between a JVM supporting CLDC, and the J2SE
Java virtual machine. Except for the differences indicated herein, a JVM supporting
CLDC shall be compatible with the Java Virtual Machine as specified in the The
Java Virtual Machine Specification (Java Series), Second Edition by Tim Lindholm and
Frank Yellin. Addison-Wesley, 1999, ISBN 0-201-43294-3.

Note – For the remainder of this specification, the Java Virtual Machine Specification
will be referred to as JVMS. Sections within the Java Virtual Machine Specification
will be referred to using the § symbol. For example, (JVMS §2.4.3).

5.1 No floating point support
A JVM supporting CLDC does not have floating point support. Floating point
support was removed because the majority of CLDC target devices do not have
hardware floating point support, and since the cost of supporting floating point in
software was considered too high. Consequently, a JVM supporting CLDC shall not
support the following bytecodes:

Constants
fconst_0, fconst_1, fconst_2, dconst_0, dconst_1

Loads
fload, fload_x, dload, dload_x

5-2 Connected, Limited Device Configuration • April 24, 2000

Stores
fstore, fstore_x, dstore, dstore_x

Arrays
faload, daload, fastore, dastore, newarray T_DOUBLE, newarray T_FLOAT

Arithmetic
fadd, dadd, fsub, dsub, fmul, dmul, fdiv, ddiv, frem, drem, fneg,
dneg, fcmpl, fcmpg, dcmpl, dcmpg

Conversion
i2f, f2i, i2d, d2i, l2f, l2d, f2l, d2l, f2d, d2f

Returns
freturn, dreturn

All user-supplied classes and methods running on top of a JVM supporting CLDC
must satisfy the following constraints:

Q No method shall use any of the above forbidden bytecodes.
Q No field can have as its type float or double, or an array of one of those types.
Q No method can have an argument or return type of type float or double or an

array whose component type is float or double.
Q No constant pool entry can be of type CONSTANT_Float or CONSTANT_Double.
Q No constant pool entry can be of type CONSTANT_Class in which the class is an

array of type float or double.

Due to the lack of floating point support, the following sections and subsections of
the Java Virtual Machine Specification (JVMS) are not applicable to a JVM supporting
CLDC: §2.4.3, §2.4.4, §2.18, §3.3.2 and §3.8. In addition, all the other parts of the
JVMS that refer to floating point data types (float or double) or operations are
beyond the scope of this CLDC Specification.

5.2 Features eliminated because of library
changes or security concerns
A number of features have been eliminated from a JVM supporting CLDC because
the Java libraries included in CLDC are substantially more limited than regular J2SE
libraries, and/or the presence of the feature would have posed security problems in
the absence of the full Java security model. The eliminated features include:

Chapter 5 Adherence to Java Virtual Machine Specification 5-3

Q Java Native Interface (JNI)
Q User-defined class loaders
Q Reflection
Q Thread groups and daemon threads
Q Finalization
Q Weak references

Applications written for CLDC shall not rely on any of the features above. Each of
the features in this list is discussed in more detail below.

5.2.1 Java Native Interface (JNI)
A JVM supporting CLDC does not implement the Java Native Interface (JNI). The
way in which the virtual machine invokes native functionality is implementation-
dependent. Support for JNI was eliminated mainly because of two reasons:

1) the limited security model provided by CLDC assumes that the set of native
functions must be closed (see Section 3.4.2.1, “Sandbox model”.)

2) the full implementation of JNI was considered too expensive given the strict
memory constraints of CLDC target devices.

5.2.2 User-defined class loaders
A JVM supporting CLDC does not support user-defined, Java-level class loaders (see
JVMS §5.3, §2.17.2.) A JVM supporting CLDC shall have a built-in class loader that
cannot be overridden, replaced, or reconfigured by the user. The actual class loading
implementation as well as any error conditions occurring during class loading are
implementation-dependent.

5.2.3 Reflection
A JVM supporting CLDC does not have reflection features, i.e., features that allow a
Java program to inspect the number and the contents of classes, objects, methods,
fields, threads, execution stacks and other runtime structures inside the virtual
machine.

A Java application built on top of a JVM supporting CLDC shall not rely on features
that require reflection capabilities. Consequently, a JVM supporting CLDC does not
support RMI, object serialization, JVMDI (Debugging Interface), JVMPI (Profiler
Interface) or any other advanced features of J2SE that depend on the presence of
reflective capabilities.

5-4 Connected, Limited Device Configuration • April 24, 2000

5.2.4 Thread groups and daemon threads
A JVM supporting CLDC implements multithreading, but shall not have support for
thread groups or daemon threads. (See JVMS §2.19, §8.12-14). Thread operations
such as starting and stopping of threads can be applied only to individual thread
objects. If application programmers want to perform thread operations for groups of
threads, explicit collection objects must be used at the application level to store the
thread objects.

5.2.5 Finalization
CLDC libraries do not include the method Object.finalize(), and therefore a
JVM supporting CLDC does not support finalization of class instances. (See JVMS
§2.17.7). No application built on top of a JVM supporting CLDC shall require that
finalization is available.

5.2.6 Weak references
A JVM supporting CLDC does not support weak references. No application built on
top of a JVM supporting CLDC shall require that weak references are available.

5.2.7 Errors
As discussed earlier in Section 4.3, “Error handling limitations,” the error handling
capabilities of a JVM supporting CLDC are limited. Apart from supporting the error
classes defined in Section 6.2, “Classes inherited from J2SE”, the error handling
capabilities of a JVM supporting CLDC are assumed to defined in a manner that is
appropriate for the target device.

5.3 Classfile verification
Like a standard J2SE Java virtual machine, a JVM supporting CLDC must be able to
reject invalid classfiles. However, since the static and dynamic memory footprint of
the standard Java classfile verifier is excessive for a typical device supporting CLDC,
a more compact and efficient verification solution has been specified. This solution is
described below.

Chapter 5 Adherence to Java Virtual Machine Specification 5-5

5.3.1 Off-device pre-verification + runtime verification
with stack maps
The existing J2SE classfile verifier defined in Java Virtual Machine Specification
JVMS §4.9 is not ideal for small, resource-constrained devices. The J2SE verifier takes
a minimum of 50 kB binary code space, and at least 30-100 kB of dynamic RAM at
runtime. In addition, the CPU power needed to perform the iterative dataflow
algorithm in the conventional verifier can be substantial.

The verification approach described in this subsection is significantly smaller and
more efficient in resource-constrained devices than the existing J2SE verifier. The
implementation of the new verifier in Sun’s KVM requires about ten kilobytes of
Intel x86 binary code and less than 100 bytes of dynamic RAM at runtime for typical
class files. The verifier performs only a linear scan of the bytecode, without the need
of a costly iterative dataflow algorithm.

The new verifier requires Java classfiles to contain a special attribute. The new
verifier includes a pre-verification tool that inserts this attribute into normal class
files. A transformed class file is still a valid J2SE class file, with additional attributes
(see Section 5.3.1.2, “Stack map attribute definition” and Section 5.4.2, “Public
representation of Java applications and resources”) that allow verification to be
carried out efficiently at run time. These attributes are automatically ignored by the
conventional classfile verifier, so the solution is fully upwards compatible with the
J2SE virtual machine. Preprocessed class files containing the extra attributes are
approximately 5% bigger than the original, unmodified class files.

Runtime byte code verification guarantees type safety. Classes that pass the verifier
cannot, for example, violate Java virtual machine's type system and corrupt the
memory. Unlike approaches based on code signing, such a guarantee does not rely
on the verification attribute to be authentic or trusted. A missing, incorrect or
corrupted verification attribute causes the class to be rejected by the verifier.

5.3.1.1 Verification process

The new classfile verifier operates in two phases: 1) pre-verification and 2) in-device
verification. Pre-verification generally takes place off-device, e.g., on a server
machine from which Java applications are being downloaded, or on the
development workstation where new applications are being developed. In-device
verification is carried out inside the device containing the virtual machine. The in-
device verifier utilizes the information generated by the pre-verification tool.

The actual verification process is defined below:

Phase 1: Pre-verification (off-device)

5-6 Connected, Limited Device Configuration • April 24, 2000

The pre-verification tool provided with the new verifier performs the following two
operations:

Q Inline all subroutines and remove all the jsr (JVMS p. 304, jsr_w (JVMS p. 305),
ret (JVMS p. 352) and wide ret (JVMS p. 360) bytecodes from the classfile.
Each method containing these instructions is replaced with semantically
equivalent bytecode not containing the jsr, jsr_w, ret and wide ret
bytecodes.

Q Add special stack map attributes into class files to facilitate runtime verification.
The format and the semantics of the stack map attribute is defined in
Section 5.3.1.2, “Stack map attribute definition.”

Phase 2: In-device verification

The in-device verification algorithm consists of the following steps:

Q First, the verifier allocates enough memory for storing the types of all local
variables and operand stack items of a given method. The memory size is
determined by the maximum number of local variables and maximum stack
depth specified in the Code attribute. This memory area will be used to store the
derived types as the verifier makes a linear pass through the byte code. This is the
only piece of memory the verifier allocates.

Q Second, the verifier initializes the derived types to be the type of the this pointer
for instance methods, argument types, and an empty operand stack.

Q Third, the verifier linearly iterates through each instruction. For each instruction,
the following happens:

Q If the previous instruction is either unconditional jump (e.g., goto), return
(e.g., ireturn), athrow, tableswitch, or lookupswitch, there is no
direct control flow from the previous instruction. The verifier ignores the
current derived types and sets the derived types according to the stack map
entry recorded for the current instruction. If the current instruction does not
have a stack map entry the verifier reports an error.

Q If the previous instruction is not unconditional jump (e.g., goto), return (e.g.,
ireturn), athrow, tableswitch, or lookupswitch, there is direct
control flow from the previous instruction. The verifier checks if there is a stack
map entry recorded for the current instruction. If there is, the verifier attempts
to match the derived types with the recorded stack map entry. If the recorded
types are less general than the derived types, the derived types are set to be the
recorded types. If the derived types are less general than the recorded types,
the verifier reports a type error.

Q If the current instruction is in the scope of an exception handler, the derived
types are matched against the stack map entry that corresponds to the starting
byte code offset of the exception handler. The verifier reports an error if there is
not a stack map entry that corresponds to the starting byte code offset of the
exception handler.

Chapter 5 Adherence to Java Virtual Machine Specification 5-7

Q The verifier then attempts to match the derived types with what is expected by
the instruction. The iadd instruction, for example, expects the top two
operand stack items to be integers. The derived types are then modified
according to what the instruction does. The iadd instruction, for example,
pops two integers off the operand stack and pushes an integer result onto the
operand stack.

Q Finally the verifier attempts to match the derived types with any stack map
entries recorded for any successor instructions that do not directly follow the
current instruction.

Finally, the verifier makes sure that the last instruction in the method is a
unconditional jump (e.g., goto), return (e.g., ireturn), athrow,
tableswitch, or lookupswitch. Otherwise it reports a verification error: the
control flow falls through the end of the method.

In addition to the steps discussed above, the in-device verifier must perform an
additional check: the verifier must distinguish newly allocated objects from those on
which a constructor has been invoked. It must make sure that constructors are
invoked exactly once on an object allocated by a new instruction at a given byte code
offset, that the only legal operation on newly allocated objects is to invoke its
constructor, and that there are no newly allocated objects in local variables or on the
operand stack when a backward branch may be taken.

5.3.1.2 Stack map attribute definition

The pre-verification tool described earlier modifies classfiles to contain special
attributes. Because these attributes describe the types of local variables and operand
stack items, all of which reside on the interpreter stack, we call the attribute a “stack
map.”

Each stack map attribute consists of multiple entries, with each entry recording the
types of local variables and operand stack items at a given byte code offset.

The stack map attribute is a sub-attribute of the Code attribute defined in JVMS
§4.7.3. See page 120 of The Java Virtual Machine Specification (Java Series), Second
Edition by Tim Lindholm and Frank Yellin. Addison-Wesley, 1999, ISBN 0-201-43294-
3 for a detailed description of the Code attribute and how the stack map attribute
fits in as part of the Code attribute.

The format of the stack map attribute is as follows:

StackMap_attribute {
 u2 attribute_name_index;
 u4 attribute_length;
 u2 number_of_entries;
 { u2 byte_code_offset;
 u2 number_of_locals;

5-8 Connected, Limited Device Configuration • April 24, 2000

 ty types_of_locals[number_of_locals];
 u2 number_of_stack_items;
 ty types_of_stack_items[number_of_stack_items];
 } entries [number_of_entries];
}

The items of the StackMap_attribute structure are as follows:

attribute_name_index

The value of the attribute_name_index item must be a valid index into the
constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Utf8_info structure containing the string "StackMap".

attribute_length

The value of the attribute_length item indicates the length of the attribute,
excluding the initial 6 bytes.

number_of_entries

The value of the number_of_entries item indicates the number of entries in
the entries array.

entries[]

Every entry records the types of local variables and the types of stack items at a
given byte code offset. Not all byte code offsets need to have their local variable
types and stack item types recorded. Local variable and stack item types are
recorded for a bytecode offset if the offset marks the beginning of a bytecode
instruction and one or more of the following conditions hold for the instruction:

1. The instruction is a target of a conditional jump (e.g., ifeq), unconditional
jump (e.g., goto), tableswitch, or a lookupswitch instruction.

2. The instruction is marked by the handler_pc in the exception_table of the
Code attribute.

3. The instruction immediately follows an unconditional jump (e.g., goto),
tableswitch, lookupswitch, athrow, or return instructions. Unless this
instruction is dead code, it must also fall into cases 1 or 2.

Each entry contains the following items:

byte_code_offset

The offset of byte code instruction to which the current entry corresponds. The
instruction at the offset must satisfy one or more of the above three conditions.

number_of_locals

The number of local variables whose types are recorded.

Chapter 5 Adherence to Java Virtual Machine Specification 5-9

types_of_locals

The type of local variables. type_of_locals[n] denotes the type of local
variable n (for 0 <= n < number_of_locals). The types (ty) are either 1-byte
or 3-byte entities. They are encoded as follows:

Name Code Explanation

ITEM_Bogus 0 an unknown or uninitialized value
ITEM_Integer 1 a 32-bit integer
ITEM_Float 2 (not used by the CLDC implementation

 of the verifier)
ITEM_Double 3 (not used by the CLDC implementation

 of the verifier)
ITEM_Long 4 a 64-bit integer
ITEM_Null 5 the type of null
ITEM_InitObject 6 explained in more detail below
ITEM_Object 7 explained in more detail below
ITEM_NewObject 8 explained in more detail below

Note that the first seven types are encoded in 1 byte, and last two types are
encoded in 3 bytes.

The meanings of the above types ITEM_InitObject, ITEM_Object, and
ITEM_NewObject are as follows:

ITEM_InitObject

Before a constructor (the <init> method) for a class other than
java.lang.Object calls a constructor (the <init> method) of one of its
superclasses, the “this” pointer has type ITEM_InitObject. (Comment: The
verifier uses this type to enforce that a constructor must first invoke a
superclass constructor before performing other operations on the “this”
pointer.)

ITEM_Object

A class instance. The 1-byte type code (7) is followed by a 2-byte
type_name_index (a u2). The type_name_index value must be a valid entry
to the constant_pool table. The constant_pool entry at that index must be a
CONSTANT_Class_info structure.

ITEM_NewObject

An uninitialized class instance. The class instance has just been created by the
new instruction, but a constructor (the <init> method) has not yet been
invoked on it. The type code 8 is followed by a 2-byte
new_instruction_index (a u2). The new_instruction_index must be a
valid offset of a byte code instruction. The opcode of the byte code instruction

5-10 Connected, Limited Device Configuration • April 24, 2000

must be new. (Comment: The uninitialized object is created by this new
instruction. The verifier uses this type to enforce that an instance cannot be
used until it is fully constructed.)

number_of_stack_items

The number of items on the stack.

types_of_stack_items

The type of items on the stack. types_of_stack_items[0] denotes the
bottom of the operand stack, and types_of_stack_items[n] (for 0 < n <
number_of_stack_items) denotes the stack item above
types_of_stack_items[n-1].

5.4 Classfile format and class loading
An essential requirement for the Connected, Limited Device Configuration is the
ability to support dynamic downloading of Java applications and 3rd party content.
The dynamic class loading mechanism of the Java platform plays a central role in
enabling this. This section discusses the application representation formats and class
loading practices required of a JVM supporting CLDC.

5.4.1 Supported file formats
It is assumed that a CLDC implementation must be able to read standard Java
classfiles (defined in Chapter 4 of JVMS) with the changes defined in Section 5.4.2,
“Public representation of Java applications and resources”.) In addition, a CLDC
implementation must support compressed Java Archive (JAR) files. This requirement
has been added to maintain upward compatibility with larger Java environments
and existing Java tools, but with a smaller footprint than with regular classfiles.
Detailed information about JAR format is provided at
http://java.sun.com/products/jdk/1.2/docs/guide/jar.

In general, network bandwidth conservation is very important in today's low-
bandwidth wireless networks. The compressed JAR format provides 30-50%
compression over regular Java classfiles without loss of any symbolic information or
compatibility problems with existing Java systems.

Chapter 5 Adherence to Java Virtual Machine Specification 5-11

5.4.2 Public representation of Java applications and
resources
A Java application is considered to be “represented publicly” or “distributed
publicly” when the system it is stored on is open to the public, and the transport
layers and protocols it can be accessed with are open standards. In contrast, a device
can be part of a single, closed network system where the vendor controls all
communication. In this case, the application is no longer represented publicly once it
enters and is distributed via the closed network system.

Whenever Java applications intended for a CLDC device are represented publicly,
the compressed JAR file representation format must be used. The JAR file must
contain regular Java classfiles with the following restrictions and additional
requirements:

Q stack map attributes (Section 5.3.1.2, “Stack map attribute definition”) must be
included in classfiles.

Q the classfile must not contain any of the following Java bytecodes: jsr (JVMS
p. 304, jsr_w (JVMS p. 305), ret (JVMS p. 352) and wide ret (JVMS p. 360).

Sun’s reference implementation includes a preverification tool for performing the
above modifications to a Java classfile. Note that the stack map attributes are
automatically ignored by the conventional classfile verifier described in JVMS §4.9,
i.e., the format specified here is fully upwards compatible with larger Java
environments such as J2SE or J2EE.

Additionally, the JAR file may contain application-specific resource files that can be
loaded into the virtual machine by calling method
Class.getResourceAsStream(String name) (see the library documentation
for details.)

5.4.3 Classfile lookup order
The Java Language Specification and Java Virtual Machine Specification do not
specify the order in which classfiles are searched when new classfiles are loaded into
the virtual machine. At the implementation level, a typical Java virtual machine
implementation utilizes a special environment variable classpath to define the
lookup order.

This CLDC Specification assumes classfile lookup order to be implementation-
dependent, with the restrictions described in the next paragraph. The lookup
strategy is typically defined as part of the application management implementation
(see Section 3.3, “Application management.”) A JVM supporting CLDC is not
required to support the notion of classpath, but may do so at the implementation
level.

5-12 Connected, Limited Device Configuration • April 24, 2000

Two restrictions apply to classfile lookup order. First, as explained in Section 3.4.2.2,
“Protecting system classes,” a JVM supporting CLDC must guarantee that the
application programmer cannot override the system classes (classes belonging to the
CLDC or supported profiles) in any way. Second, it is required that the application
programmer must not be able to manipulate the classfile lookup order in any way.
Both these restrictions are important for security reasons.

5.4.4 Implementation optimizations
This CLDC Specification mandates the use of compressed JAR files for Java
applications that are represented and distributed publicly. However, in closed
network environments (see the discussion in previous subsection) and internally
inside the virtual machine at runtime, alternative formats can be used. For instance,
in low-bandwidth wireless networks at the network transport level it is often a good
idea to use alternative, more compact transport formats to conserve network
bandwidth. Similarly, when storing the downloaded applications in CLDC devices,
more compact representations can be used, as long as the observable user-level
semantics of the applications remain the same as with the original representation.
The definition of more compact classfile representations is assumed to be
implementation-dependent and outside the scope of this CLDC Specification.

5.4.5 Preloading/prelinking (“ROMizing”)
A JVM supporting CLDC may choose to preload/prelink some classes. This
technology is referred to informally as ROMizing. Typically, small virtual machine
implementations choose to preload all the system classes (classes belonging to a
specific configuration or profile), and perform application downloading
dynamically. The actual mechanisms for preloading are implementation-dependent
and beyond the scope of this CLDC Specification. In all cases, the runtime effect and
semantics of preloading/prelinking must be the same as if the actual class had been
loaded in at that point. There must be no visible effects from preloading other than
the possible speed-up in application launching. In particular, any class initialization
that has a user-visible effect must be performed at the time the class would have first
been loaded if it had not been preloaded into the system.

5.4.6 Future classfile formats
Regular Java classfiles are not optimized for network transport in bandwidth-limited
environments. This is because each Java classfile is an independent unit that contains
its own constant pool (symbol table), method, field and exception tables, bytecodes,
and some other information. The self-contained nature of classfiles is one of the

Chapter 5 Adherence to Java Virtual Machine Specification 5-13

virtues of Java technology, allowing applications to be composed of multiple pieces
that do not necessarily have to reside in the same location, and making it possible to
extend applications at runtime. However, this flexibility has its price. If Java
applications were treated as a sealed unit, a lot of space could be saved by removing
the redundancies in multiple constant pools and other structures, especially if full
symbolic information was left out. Also, one of the desirable features of an
application transport format is a limited-power computing environment is the ability
to execute applications “in-place,” without any special loading or conversion process
between the static representation and runtime representation. Standard Java
classfiles are not designed for such execution.

Later releases of CLDC might utilize a variation of “split VM” prelinked classfiles
such as “cap” files as specified in the Java Card 2.1 Virtual Machine Specification,
Revision 1.1, Sun Microsystems, Inc.

5-14 Connected, Limited Device Configuration • April 24, 2000

Chapter 6 CLDC Libraries 6-1

6

CLDC Libraries

6.1 Overview
Java 2 Platform, Enterprise Edition (J2EE) and Java 2 Platform, Standard Edition
(J2SE) provide a very rich set of libraries for the development of enterprise
applications for desktop and server machines. Unfortunately, these libraries require
several megabytes of memory to run, and are therefore unsuitable for small devices
with limited resources.

6.1.1 General goals
A general goal for designing the Java libraries for CLDC is to provide a minimum
useful set of libraries for practical application development and profile definition for
a variety of small devices. Given the strict memory constraints and differing features
of today’s small devices, it is virtually impossible to come up with a set of libraries
that would please everyone. No matter where the bar for feature inclusion is set, the
bar is inevitably going to be too low for some devices and users, and too high for
many others.

In defining the scope of the libraries, we have used the original Java Specification
Request JSR-30 as a guideline, and placed a lot of emphasis on connectivity. This
means that in addition to fundamental system and data type classes, the libraries
included in CLDC should provide an extensible set of networking features for both
today’s and tomorrow’s small, connected devices.

6-2 Connected, Limited Device Configuration • April 24, 2000

6.1.2 Compatibility
The majority of the libraries included in CLDC are a subset of the larger Java
editions (J2SE and J2EE) to ensure upward compatibility and portability of
applications. While upward compatibility is a very desirable goal, J2SE and J2EE
libraries have strong internal dependencies that make subsetting of them difficult in
important areas such as security, input/output, user interface definition, networking
and storage. These dependencies are a natural consequence of design evolution and
reuse that has taken place during the development of Java libraries over time.
Unfortunately, these dependencies make it very difficult to take just one part of the
libraries without including several others. For this reason, we have redesigned some
of the libraries, especially in the areas of networking and I/O.

The CLDC libraries presented in this CLDC Specification can be divided into two
categories:

Q those classes that are a subset of standard J2SE libraries,
Q those classes that are specific to CLDC (but which can be mapped onto J2SE).

Classes belonging to the former category are located in packages java.lang.*,
java.util.*, and java.io.*. These classes have been derived from Java 2
Standard Edition version 1.3. A detailed list of these classes is presented in
Section 6.2, “Classes inherited from J2SE.”

Classes belonging to the latter category are located in package
javax.microedition.*. These classes are discussed in Section 6.3, “CLDC-specific
classes.”

6.2 Classes inherited from J2SE
CLDC provides a number of classes that have been inherited from J2SE. The rules for
J2ME configurations mandate that each class that has the same name and package
name as a J2SE class must be identical to or a subset of the corresponding J2SE class.
The semantics of the classes and their methods included in the subset shall not be
changed. The classes shall not add any public or protected methods or fields that are
not available in the corresponding J2SE classes. For official information on these
rules, refer to Configurations and Profiles Architecture Specification, Java 2 Platform
Micro Edition (J2ME), Sun Microsystems, Inc.

For a definitive reference on the classes listed in this section, refer to Appendix 2.

Chapter 6 CLDC Libraries 6-3

6.2.1 System classes
J2SE class libraries include several classes that are intimately coupled with the Java
virtual machine. Similarly, several standard Java tools assume the presence of certain
classes in the system. For instance, the J2SE Java compiler (javac) generates code
that requires that certain functions of classes String and StringBuffer be
available. The following system classes are included.

java.lang.Object

java.lang.Class

java.lang.Runtime

java.lang.System

java.lang.Thread

java.lang.Runnable (interface)

java.lang.String

java.lang.StringBuffer

java.lang.Throwable

6.2.2 Data type classes
The following basic data type classes from package java.lang.* are supported.
Each of these classes is a subset of the corresponding class in J2SE.

java.lang.Boolean

java.lang.Byte

java.lang.Short

java.lang.Integer

java.lang.Long

java.lang.Character

6.2.3 Collection classes
The following collection classes from package java.util.* are supported.

java.util.Vector

java.util.Stack

6-4 Connected, Limited Device Configuration • April 24, 2000

java.util.Hashtable

java.util.Enumeration (interface)

6.2.4 Input/output classes
The following classes from package java.io.* are supported. Classes Reader,
Writer, InputStreamReader and InputStreamWriter are required in order to
support internationalization (see Section 6.2.8, “Internationalization.”).

java.io.InputStream

java.io.OutputStream

java.io.ByteArrayInputStream

java.io.ByteArrayOutputStream

java.io.DataInput (interface)

java.io.DataOutput (interface)

java.io.DataInputStream

java.io.DataOutputStream

java.io.Reader

java.io.Writer

java.io.InputStreamReader

java.io.OutputStreamWriter

java.io.PrintStream

6.2.5 Calendar and time classes
CLDC includes a small subset of the standard J2SE classes java.util.Calendar,
java.util.Date, and java.util.TimeZone. By default, only one time zone is
supported. Additional time zones may be provided by actual implementations.

java.util.Calendar

java.util.Date

java.util.TimeZone

Chapter 6 CLDC Libraries 6-5

6.2.6 Additional utility classes
Two additional utility classes are provided. Class java.util.Random provides a
simple pseudo-random number generator that is useful for implementing
applications such as games. Class java.lang.Math provides methods min, max
and abs (for data types int and long) that are frequently used by other Java library
classes.

java.util.Random

java.lang.Math

6.2.7 Exception and error classes
Since the libraries included in CLDC are generally intended to be highly compatible
with J2SE libraries, the library classes included in CLDC shall throw precisely the
same exceptions as regular J2SE classes do. Consequently, a fairly comprehensive set
of exception classes has been included.

In contrast, as explained in Section 4.3, “Error handling limitations,” the error
handling capabilities of CLDC are limited. By default, a JVM supporting CLDC is
required to support only the error classes listed below in Section 6.2.7.2, “Error
classes.”

6.2.7.1 Exception classes

java.lang.Exception

java.lang.ClassNotFoundException

java.lang.IllegalAccessException

java.lang.InstantiationException

java.lang.InterruptedException

java.lang.RuntimeException

java.lang.ArithmeticException

java.lang.ArrayStoreException

java.lang.ClassCastException

java.lang.IllegalArgumentException

java.lang.IllegalThreadStateException

java.lang.NumberFormatException

java.lang.IllegalMonitorStateException

6-6 Connected, Limited Device Configuration • April 24, 2000

java.lang.IndexOutOfBoundsException

java.lang.ArrayIndexOutOfBoundsException

java.lang.StringIndexOutOfBoundsException

java.lang.NegativeArraySizeException

java.lang.NullPointerException

java.lang.SecurityException

java.util.EmptyStackException

java.util.NoSuchElementException

java.io.EOFException

java.io.IOException

java.io.InterruptedIOException

java.io.UnsupportedEncodingException

java.io.UTFDataFormatException

6.2.7.2 Error classes

java.lang.Error

java.lang.VirtualMachineError

java.lang.OutOfMemoryError

6.2.8 Internationalization
CLDC includes limited support for the translation of Unicode characters to and from
a sequence of bytes. In J2SE this is done using objects called Readers and Writers, and
this same mechanism is used here using the InputStreamReader and
OutputStreamWriter classes with identical constructors.

new InputStreamReader(InputStream is);

new InputStreamReader(InputStream is, String name);

new OutputStreamWriter(OutputStream os);

new OutputStreamWriter(OutputStream os, String name);

In the cases where the string parameter is present, it is the name of the encoding to
be used. Where it is not, a default encoding (defined by the system property
microedition.encoding) is used. Additional converters may be provided by
particular implementations. If a converter for a certain encoding is not available, an

Chapter 6 CLDC Libraries 6-7

UnsupportedEncodingException will be thrown. For official information on
character encodings in J2SE, refer to http://java.sun.com/products/jdk/1.3/docs/
guide/intl/encoding.doc.html.

Note that CLDC does not provide any localization features. This means that all the
solutions related to the formatting of dates, times, currencies, and so on are assumed
to be outside the scope of CLDC.

6.2.9 Property support
A JVM supporting CLDC does not implement class java.util.Properties,
which is part of J2SE. However, a limited set of properties described in the table
below is available. These properties can be accessed by calling the method
System.getProperty(String key).

Property microedition.encoding describes the default character encoding name.

This information is used by the system to find the correct class for the default
character encoding in supporting internationalization. Property
microedition.platform characterizes the host platform or device. Property
microedition.configuration describes the current J2ME configuration and
version, and property microedition.profiles defines a string containing the
names of the supported profiles separated by blanks.

Profiles may define additional properties not included in TABLE 6-1 above.

TABLE 6-1 Standard System Properties

Key Explanation Value

microedition.platformName of the host platform or device Default null

microedition.encodingDefault character encoding Default “ISO8859_1”

microedition.
configuration

Name and version of the supported
configuration

Default “CLDC-1.0”

microedition.profilesNames of the supported profiles Default null

6-8 Connected, Limited Device Configuration • April 24, 2000

6.3 CLDC-specific classes
This section contains a description of the Generic Connection framework for supporting
input/output and networking in a generalized, extensible fashion. The Generic
Connection framework provides a coherent way to access and organize data in a
resource-constrained environment.

6.3.1 Background and motivation
The J2SE and J2EE libraries provide a rich set of functionality for handling input and
output access to storage and networking systems. The package java.io.* of J2SE
contains approximately 60 classes and interfaces, and more than 15 exception classes.
The package java.net.* of J2SE consists of approximately 20 regular classes and
10 exception classes. The total static size of these class files is approximately 200
kilobytes. It is difficult to make all this functionality fit in a small device with only a
few hundred kilobytes of total memory budget. Furthermore, a significant part of
the standard I/O and networking functionality is not directly applicable to today's
small devices, which often need to support specific types of connections such as
infrared or Bluetooth, or which do not provide TCP/IP support.

In general, the requirements for the networking and storage libraries vary
significantly from one resource-constrained device to another. Those device
manufacturers who are dealing with packet-switched networks typically want
datagram-based communication mechanisms, while those dealing with circuit-
switched networks require stream-based connections. Some of the devices have
traditional file systems, while many others have highly device-specific mechanisms.
Due to strict memory limitations, manufacturers supporting certain kinds of input/
output, networking and storage capabilities generally do not want to support other
mechanisms. All this makes the design of these facilities for CLDC very challenging,
especially since J2ME configurations are not allowed to define optional features.
Also, the presence of multiple networking mechanisms and protocols is potentially
very confusing to the application programmer, especially if the programmer has to
deal with low-level protocol issues.

6.3.2 The Generic Connection framework
The requirement for having small footprint J2ME systems has led to the
generalization of the J2SE network and I/O classes. The general goal for this new
system is to be a precise functional subset of J2SE classes, which can easily map to
common low-level hardware or to any J2SE implementation, but with better
extensibility, flexibility and coherence in supporting new devices and protocols.

Chapter 6 CLDC Libraries 6-9

The general idea is illustrated below. Instead of using a collection of totally different
kinds of abstractions for different forms of communication, a set of related
abstractions are used at the application programming level.

Note – These examples are provided for illustration only. It is not expected that a
particular implementation would provide support for all these kinds of connections.
Actual implementations may also support protocols not shown below.

General form

All connections are created using a single static method in a system class called
Connector. If successful, this method will return an object that implements one of
the generic connection interfaces. There are number of these interfaces that form a
hierarchy with the Connection interface being the root. The method takes a URL
parameter in the general form:

Connector.open("<protocol>:<address>");

HTTP records
Connector.open("http://www.foo.com");

FTP records
Connector.open("ftp://www.foo.com/foo.dat");

Sockets
Connector.open("socket://129.144.111.222:9000");

Communication ports
Connector.open("comm:9600:18N");

Datagrams
Connector.open("datagram://129.144.111.333");

Files
Connector.open("file:/foo.dat");

Network file systems
Connector.open("nfs:/foo.com/foo.dat");

6-10 Connected, Limited Device Configuration • April 24, 2000

A central objective of this design is to isolate, as much as possible, the differences
between the setup of one protocol and another into a string characterizing the type
of connection. This string is the parameter to Connector.open(). A key benefit of
this approach is that the bulk of the application code stays the same regardless of the
kind of connection that is used. This is different from traditional implementations, in
which the abstractions used inside applications often change dramatically when
changing from one form of communication to another.

The binding of protocols to a J2ME program is done at runtime. At the
implementation level, the string (up to the first occurrence of ‘:’) that is provided as
the parameter to Connector.open() instructs the system to obtain the desired
protocol implementation from a location where all the protocol implementations are
stored. It is this late binding mechanism which permits a program to dynamically
adapt to use different protocols at runtime. Conceptually this is identical to the
relationship between application programs and device drivers on a PC or
workstation computer.

6.3.3 No implementations provided at the
configuration level
The Generic Connection framework included in CLDC does not specify the actual
supported protocols or include implementations of specific protocols. The actual
implementations and decisions regarding supported protocols must be made at the
profile level.

6.3.4 Design of the Generic Connection framework
Connections to different types of devices will need to exhibit different forms of
behavior. A file, for instance, can be renamed, but no similar operation exists for a
TCP/IP socket (data sent through time is managed quite differently than data sent
through space). The Generic Connection framework reflects these different
capabilities, ensuring that operations that are logically the same share the same API.

The new framework is implemented using a hierarchy of Connection interfaces
that group together classes of protocols with the same semantics. This hierarchy
consists of seven interfaces. Additionally, there is the Connector class, one
exception class, one other interface, and a number of data stream classes for reading
and writing data (see Appendix 2 for details.) At the implementation level, a
minimum of one class is needed for implementing each supported protocol. Often,
each protocol implementation class contains simply a number of wrapper functions
that call the native functions of the underlying host operating system.

Chapter 6 CLDC Libraries 6-11

There are six basic interface types that are addressed by the Generic Connection
framework:

Q A basic serial input device.
Q A basic serial output device.
Q A datagram oriented communications device.
Q A circuit oriented communications device (TCP, etc.).
Q A notification mechanism for a server to be informed of client-server connections.
Q A basic Web server connection.

The collection of Connection interfaces forms a hierarchy that becomes
progressively more capable as the hierarchy progresses from the root Connection
interface. This arrangement allows application programmers to choose the optimal
level of cross-protocol portability for the code they are writing.

The Connection interface hierarchy is illustrated in FIGURE 6-1. For a definitive
reference on the Connection interfaces, refer to Appendix 2.

FIGURE 6-1 Connection interface hierarchy

Connection

StreamConnection

StreamConnectionNotifier InputConnection DatagramConnection

ContentConnection

OutputConnection

6-12 Connected, Limited Device Configuration • April 24, 2000

6.3.4.1 Interface Connection

This is the most basic connection type that can only be opened and closed. The open
method is not public because it is always called via the static open() method in the
Connector class.

Methods:
public void close() throws IOException;

6.3.4.2 Interface InputConnection

This connection type represents a device from which data can be read. The
openInputStream method of this interface will return an input stream for the
connection.

Methods:
public InputStream openInputStream() throws IOException;

public DataInputStream openDataInputStream() throws IOException;

6.3.4.3 Interface OutputConnection

This connection type represents a device to which data can be written. The
openOutputStream method of this interface will return an output stream for the
connection.

Methods:
public OutputStream openOutputStream() throws IOException;

public DataOutputStream openDataOutputStream() throws IOException;

6.3.4.4 Interface StreamConnection

This is simply an interface that combines the InputConnection and
OutputConnection interfaces. It forms a logical starting point for classes that
implement communications interfaces.

6.3.4.5 Interface ContentConnection

This is a sub-interface of StreamConnection, and provides access to some of the
most basic meta data information provided by HTTP connections.

Chapter 6 CLDC Libraries 6-13

Methods:
public String getType();

public String getEncoding();

public long getLength();

6.3.4.6 Interface StreamConnectionNotifier

This connection type is used to wait for a connection to be established. The
acceptAndOpen method of this class will block until a client program makes a
connection. It returns a StreamConnection on which a communications link has
been established. Like all connections, the returned stream connection must be
closed when it is no longer required.

Methods:
public StreamConnection acceptAndOpen() throws IOException;

6.3.4.7 Interface DatagramConnection

This interface represents a datagram endpoint. In common with the J2SE datagram
interface, the address used for opening the connection is the endpoint at which
datagrams will be received. The destination for datagrams to be sent is placed in the
datagram object itself. There is no address object in this API. Instead, a string is used
that allows the addressing to be abstracted in a similar way as in the Connection
interface design.

Methods:
public String getAddress();

public int getMaximumLength();

public int getNominalLength();

public void setTimeout(int time);

public void send(Datagram datagram);

public void receive(Datagram datagram);

public Datagram newDatagram(int size);

public Datagram newDatagram(byte[] buf, int size);

public Datagram newDatagram(byte[] buf, int size, String addr);

6-14 Connected, Limited Device Configuration • April 24, 2000

This class requires a data type called Datagram that is used to contain the data
buffer and address associated with it. The Datagram interface contains a useful set
of access methods with which data can be placed into, or extracted from, the
datagram buffer. These access methods conform to the DataInput and DataOutput
interfaces, meaning that the datagram object also behaves like a stream. A current
position is maintained in the datagram. This is automatically reset to the start of the
datagram buffer after a read operation is performed.

6.3.5 Additional remarks
In order to read and write data to and from generic connections, a number of input
and output stream classes are needed. The stream classes supported by CLDC are
listed in Section 6.2.4, “Input/output classes.” Profiles may provide additional
stream classes as necessary.

6.3.6 Examples
Examples illustrating the use of the Generic Connection framework are available
separately.

A-1

Appendices

APPENDIX 1: Introduction to Java 2 Micro Edition and the KVM.

APPENDIX 2: Detailed description of CLDC libraries in javadoc format.

A-2 Connected, Limited Device Configuration • April 24, 2000

