Java API for XML Parsing

Version 1.0 Final Release

James Duncan Davidson (et al)

® Sun Microsystems, Inc.
& S 901 San Antonio Road
un Palo Alto CA 94303 USA
microsystems 650 960-1300

We’re the dot in.com™

March 2, 2000

JavaTM API for XML Parsing Specification ("Specifica-tion")
Version: 1.0

Status: FCS

Release: March 2, 2000

Copyright 1999-2000 Sun Microsystems, Inc.

901 San Antonio Road, Palo Alto, California 94303, U.S.A.
All rights reserved.

NOTICE

The Specification is protected by copyright and the information described therein may be protected by one or more UfStgigitents,

patents, or pending applications. Except as provided under the following license, no part of the Specification may be reproduced in any form
by any means without the prior written authorization of Sun Microsystems, Inc. ("Sun") and its licensors, if any. Any use of the Specification
and the information described therein will be governed by the terms and conditions of this license and the Export Control and General Terms
as set forth in Sun’s website Legal Terms. By viewing, downloading or otherwise copying the Specification, you agreeaietgad, h
understood, and will comply with all of the terms and conditions set forth herein.

Sun hereby grants you a fully-paid, non-exclusive, non-transferable, worldwide, limited license (without the right to sublicense), under Sun’s
intellectual property rights that are essential to practice the Specification, to internally practice the Specification thelglyrmose of

creating a clean room implementation of the Specification that: (i) includes a complete implementation of the current trersion of
Specification, without subsetting or supersetting; (ii) implements all of the interfaces and functionality of the Specification, as defined by Sun,
without subsetting or supersetting; (iii) includes a complete implementation of any optional components (as defined by Sun in th
Specification) which you choose to implement, without subsetting or supersetting; (iv) implements all of the interfacescaradifyiof

such optional components, without subsetting or supersetting; (v) does not add any additional packages, classes or interfaces to the "java.*" or
“javax.*" packages or subpackages (or other packages defined by Sun); (vi) satisfies all testing requirements available from Sun relating to the
most recently published version of the Specification six (6) months prior to any release of the clean room implementation or upgrade thereto;
(vii) does not derive from any Sun source code or binary code materials; and (viii) does not include any Sun source axydeodebin

materials without an appropriate and separate license from Sun. The Specification contains the proprietary informatioth wia$wnin

be used in accordance with the license terms set forth herein. This license will terminate immediately without noticeiffyon filrto

comply with any provision of this license. Upon termination or expiration of this license, you must cease use of or destroy the Specification.

TRADEMARKS

No right, title, or interest in or to any trademarks, service marks, or trade names of Sun or Sun's licensors is graded Bereudun
Microsystems, the Sun logo, Java, the Coffee Cup logo and Duke logo are trademarks or registered trademarks of Sun Micrasystems
the U.S. and other countries.

DISCLAIMER OF WARRANTIES

THE SPECIFICATION IS PROVIDED "AS IS". SUN MAKES NO REPRESENTATIONS OR WARRANTIES, EITHER EXPRESS OR
IMPLIED, INCLUDING BUT NOT LIMITED TO, WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR

PURPOSE, OR NON-INFRINGEMENT THAT THE CONTENTS OF THE SPECIFICATION ARE SUITABLE FOR ANY PURPOSE OR
THAT ANY PRACTICE OR IMPLEMENTATION OF SUCH CONTENTS WILL NOT INFRINGE ANY THIRD PARTY PATENTS,
COPYRIGHTS, TRADE SECRETS OR OTHER RIGHTS. This document does not represent any commitment to release or implement any
portion of the Specification in any product.

THE SPECIFICATION COULD INCLUDE TECHNICAL INACCURACIES OR TYPOGRAPHICAL ERRORS. CHANGES ARE
PERIODICALLY ADDED TO THE INFORMATION THEREIN; THESE CHANGES WILL BE INCORPORATED INTO NEW

VERSIONS OF THE SPECIFICATION, IF ANY. SUN MAY MAKE IMPROVEMENTS AND/OR CHANGES TO THE PRODUCT(S)
AND/OR THE PROGRAM(S) DESCRIBED IN THE SPECIFICATION AT ANY TIME. Any use of such changes in the Specification will
be governed by the then-current license for the applicable version of the Specification.

LIMITATION OF LIABILITY

TO THE EXTENT NOT PROHIBITED BY LAW, IN NO EVENT WILL SUN OR ITS LICENSORS BE LIABLE FOR ANY DAMAGES,
INCLUDING WITHOUT LIMITATION, LOST REVENUE, PROFITS OR DATA, OR FOR SPECIAL, INDIRECT, CONSEQUENTIAL,
INCIDENTAL OR PUNITIVE DAMAGES, HOWEVER CAUSED AND REGARDLESS OF THE THEORY OF LIABILITY, ARISING
OUT OF OR RELATED TO ANY FURNISHING, PRACTICING, MODIFYING OR ANY USE OF THE SPECIFICATION, EVEN IF SUN
AND/OR ITS LICENSORS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

You will indemnify, hold harmless, and defend Sun and its licensors from any claims arising or resulting from: (i) yotireuse of
Specification; (ii) the use or distribution of your Java application, applet and/or clean room implementation; and/ocléiinartiat later
versions or releases of any Specification furnished to you are incompatible with the Specification provided to you uretesethis lic

RESTRICTED RIGHTS LEGEND

U.S. Government: If this Specification is being acquired by or on behalf of the U.S. Government or by a U.S. Government prime contractor or
subcontractor (at any tier), then the Government’s rights in the Software and accompanying documentation shall be ortly mstisist f

license; this is in accordance with 48 C.F.R. 227.7201 through 227.7202-4 (for Department of Defense (DoD) acquisitions) and with 48 C.F.R.
2.101 and 12.212 (for non-DoD acquisitions).

REPORT

You may wish to report any ambiguities, inconsistencies or inaccuracies you may find in connection with your evaluation of the Specification
("Feedback"). To the extent that you provide Sun with any Feedback, you hereby: (i) agree that such Feedback is prooited on a
proprietary and non-confidential basis, and (ii) grant Sun a perpetual, non-exclusive, worldwide, fully paid-up, irrevecad]enith the

right to sublicense through multiple levels of sublicensees, to incorporate, disclose, and use without limitation thefBeadpgukpose

related to the Specification and future versions, implementations, and test suites thereof.

Contents

SECTION 1

SECTION 2

Overview 5

What is XML? 5

XML and the Java™ Platform6
About this Specification 6

Who Should Read this Documen6
Development of this Specification7
Report and Contact7
Acknowledgements 8

Endorsed Specifications 9

W3C XML 1.0 Recommendation9

W3C XML Namespaces 1.0 RecommendaticakO
Simple API for XML Parsing (SAX) 10
Document Object Model (DOM) Level 111

Java API for XML Parsing, Version 1.0

Contents

SECTION 3

SECTION 4

SECTION 5

SECTION 6

SECTION 7

Plugability Layer 13

SAX Plugability 13
DOM Plugability 15
Thread Safety 17

Package javax.xml.parsers 19

public abstract class SAXParserFactord®
public abstract class SAXParse21

public abstract class DocumentBuilderFacto83
public abstract class DocumentBuilde25

public class FactoryConfigurationErro28
public class ParserConfigurationExceptio29

Conformance Requirements 31

Document Character Set Encoding Conformang#
Well Formedness Conformance33

Validity Conformance 33

XML Namespace Conformance33

Change History 35

From 1.0 Public Release to 1.0 Final Relea886
From 1.0 Public Review to 1.0 Public Releasgb

Future Directions 37

Updated SAX and DOM Support37
XSL Plugability Support 38
Pluggability Mechanism Enhancement38

March 2, 2000

SECTION 1

Overview

1.1

What is XML?

XML is the meta language defined by the World Wide Web Consortium (W3C) that
can be used to describe a broad range of hierarchical mark up languages. Itis a set
of rules, guidelines, and conventions for describing structured data in a plain text,
editable file. Using a text format instead of a binary format allows the programmer
or even an end user to look at or utilize the data without relying on the program that
produced it. However the primary producer and consumer of XML data is the com-
puter program and not the end-user.

Like HTML, XML makes use of tags and attributes. Tags are words bracketed by
the’< and> characters and attributes are strings of the forme="value™

that are inside of tags. While HTML specifies what each tag and attribute means, as
well as their presentation attributes in a browser, XML uses tags only to delimit
pieces of data and leaves the interpretation of the data to the application that uses it.
In other words, XML defines only the structure of the document and does not
define any of the presentation semantics of that document.

Development of XML started in 1996 leading to a W3C Recommendation in
Febuary of 1998. However, the technology is not entirely new. It is based on SGML
(Standard Generalized Markup Language) which was developed in the early 1980’s
and became an ISO standard in 1986. SGML has been widely used for large docu-
mentation projects and there is a large community that has experience working with

Java API for XML Parsing Version 1.0 5

Overview

1.2

1.3

1.4

SGML. The designers of XML took the best parts of SGML, used their experience
as a guide and produced a technology that is just as powerful as SGML, but much
simplier and easier to use.

XML-based documents can be used in a wide variety of applications including ver-
tical markets, e-commerce, business-to-business communication, and enterprise
application messaging.

XML and the Java™ Platform

In many ways, XML and the Java Platform are a partnership made in heaven. XML
defines a cross platform data format and Java provides a standard cross platform
programming platform. Together, XML and Java technolgies allow programmers to
apply Write Once, Run Anywhere™ fundamentals to the processing of data and

documents generated by both Java based programs and non-Java based programs.

About this Specification

This document describes the Java API for XML Parsing, Version 1.0. This version
of the specification introduces basic support for parsing and manipulating XML
documents through a standardized set of Java Platform APIs.

When this specification is final there will be a Reference Implementation which
will demonstrate the capabilities of this APl and will provide an operational defini-
tion of the specification. A Compatibility Test Suite will also be available that will
verify whether an implementation of this specification is compliant.

Who Should Read this Document

This specification is intended for use by:
* Parser Developers wishing to implement this version of the specification in
their parser.

* Application Developers who use the APIs described in this specification and
wish to have a more complete understanding of the API.

March 2, 2000

Development of this Specification

1.5

1.6

This specification is not a tutorial or a user’s guide to XML, DOM, or SAX. Famil-
iarity with these technologies and specifications on the part of the reader is
assumed.

Development of this Specification

This specification was developed in accordance with the Java Community Process.
It was developed under the authorization of Java Specification Request 5. More
information about the Java Community Process can be found at:

http://java.sun.com/jcp/

The specific information contained in Java Specification Request 5 can be found at:

http://java.sun.com/aboutJava/communityprocess/jsr/jsr_005_xml.html

The expert group who contributed to this specification is composed of individuals
from a number of companies. These individuals are:

¢ James Duncan Davidson (Spec Lead), Sun
e Larry Cable (Original Spec Lead), Sun

» Takuki Kamiya, Fujitsu Ltd

 Scott Dietzen, BEA Weblogic

¢ Jon Winston, Ariba

* David Booth, Bluestone

* Mark Scardina, Oracle

* A. L. N. Reddy, Netscape

e Scott Fairchild, MCI WorldCom

* Kevin Lawrence, IBM

Report and Contact

Your comments on this specification are welcome and appreciated. Without your
comments, the specifications developed under the auspices of the Java Community
Process would not serve your needs as well. To comment on this specification,
please send email to:

Java API for XML Parsing Version 1.0 7

Overview

1.7

xml-spec-comments@eng.sun.com

You can stay current with Sun’s Java Platform related activities, as well as informa-
tion on ourxml-interest andxml-announce mailing lists, at our website
located at:

http://java.sun.com/xml/

Acknowledgements

Many individuals and companies have given their time and talents to make this
specification, or the specifications that this specification relies upon, a reality. The
author of this specification would like to thank (in no particular order):

* David Megginson and the XML-DEV community who developed the SAX
API

* The W3C DOM Working Group chaired by Lauren Wood
* The JSR-5 Expert Group listed above

e Graham Hamilton, Eduardo Pelegri-Lopart, Rajiv Mordani, Mark Hapner,
Connie Weiss, Nancy K. Lee, Mark Reinhold, Josh Bloch, and Bill Shannon
all of whom work at Sun Microsystems and whose talents have all reflected
upon the development of this API.

 David Brownell who led Sun'’s early investigations into Java Platform based
XML explorations.

e Larry Cable who started the JSR-5 process and led the development of the
API though early Public Draft Phase.

* Eric Armstrong, Pier Fumagalli and Jason Hunter for reviewing late copies
of this spec and finding many areas which needed correction or clarification.

Most importantly, everyone who sent in feedback to this document and who com-
mented on Sun’s Project X technologies which served as a starting point for devel-
oping this specification.

March 2, 2000

SECTION 2

Endorsed Specifications

2.1

This specification endorses and builds upon several external specifications. Each

specification endorsed by this document is called out together with the exact ver-

sion of the specification and its publicly accessible location. All of these standards
have conformance tests provided in the Compatibility Test Suite available for this

specification.

W3C XML 1.0 Recommendation

The W3C XML 1.0 Recommendation specifies the core XML syntax by subsetting

the existing, widely used international SGMiext processing standard. It is a
product of the W3C XML Activity, details of which can be found at:

http://www.w3.org/XML/

The XML 1.0 Recommendation can is located at:
http://www.w3.0rg/TR/1998/REC-xmI-19980210

Standard Generalized Markup Language, 1SO 8879:1986(E) as amended and corrected.

Java API for XML Parsing Version 1.0 9

Endorsed Specifications

2.2

2.3

This specification subsumes the XML 1.0 Recommendation in its entirety for the
purposes of defining the XML language manipulated by the APIs defined herein.

W3C XML Namespaces 1.0 Recommendation

The W3C XML Namespaces Recommendation defines the syntax and semantics
for XML structures required to be distinct from other XML markup. In particular, it
defines a mechanism whereby a set of XML markup may have a distinguishing
"namespace" associated with it, and the responsibility of XML parser in handling
and exposing such namespace information.

The XML Namespaces 1.0 Recommendation is located at:
http://www.w3.0rg/TR/1999/REC-xml-names-19990114/

This specification subsumes the XML Namespaces 1.0 Recommendation in its
entirety.

Simple API for XML Parsing (SAX)

The Simple API for XML (SAX) is a public domain API developed cooperatively
by the members of the XML-DEV mailing list. It provides an event-driven interface
to the process of parsing an XML document.

An event driven interface provides a mechanism for a "callback" notifications to
application’s code as the underlying parser recognizes XML syntactic constructions
in the document.

The SAX 1.0 APl is located at:

http://www.megginson.com/SAX/index.html

This specification subsumes the SAX 1.0 APl in its entirety. The API packages sub-
sumed are:

® org.xml.sax.*
¢ org.xml.sax.helpers.*

10

March 2, 2000

Document Object Model (DOM) Level 1

2.4

Document Object Model (DOM) Level 1

The Document Object Model (DOM) is a set of interfaces defined by the W3C
DOM Working Group. It describes facilities for a programmatic representation of a
parsed XML (or HTML) document. The DOM Level 1 specification defines these
interfaces using Interface Definition Language (IDL) in a language independent
fashion and also includes a Java Language binding.

The DOM Level 1 Recommendation is located at:
http://www.w3.0rg/TR/REC-DOM-Level-1/

This specification subsumes both the abstract semantics described for the DOM
Level 1 Core interfaces and the associated Java Language binding. It does not sub-

sume the HTML-based extensions defined by the Recommendation. The API pack-
age subsumed by this specification is:

* org.w3c.dom.*

Java API for XML Parsing Version 1.0 11

Endorsed Specifications

12

March 2, 2000

SECTION 3

Plugability Layer

3.1

The SAX and DOM APIs provide broad and useful functionality. However, the use
of a SAX or a DOM parser typically requires knowledge of the specific implemen-
tation of the parser. Providing SAX and DOM functionality in the Java Platform,
while allowing choice of the implementation of the parser, requires a Plugability
layer.

This section of the specification defines a Plugability mechanism to allow a compli-
ant SAX or DOM parser to be used through the abstremt.xml.parsers
API.

SAX Plugability

The SAX Plugability classes allow an application programmer to provide an imple-
mentation of therg.xml.sax.HandlerBase API to aSAXParser implementa-

tion and parse XML documents. As the parser processes the XML document, it will
call methods on the provideéthndlerBase .

In order to obtain 8AXParser instance, an application programmer first obtains
an instance of 8AXParserFactory . TheSAXParserFactory instance is
obtained via the stati,ewinstance method of theSAXParserFactory class.

Java API for XML Parsing Version 1.0 13

Plugability Layer

3.1.1

This method uses thavax.xml.parsers.SAXParserFactory system prop-
erty to determine th8AXParserFactory implementation class to load, instantiate
and return. If théavax.xml.parsers.SAXParserFactory system property is

not defined, then a platform defadibXParserFactory instance will be returned.

If the SAXParserFactory implementation class described by the
javax.xml.parsers.SAXParserFactory property cannot be loaded or instan-
tiated at runtime, &actoryConfigurationError is thrown. This error message
must contain a descriptive explanation of the problem and how the user can resolve
it.

The instance o8AXParserFactory can optionally be configured by the applica-
tion programmer to provide parsers that are namespace aware, or validating, or
both. These settings are made usingsttdamespaceAware andsetValidat-

ing methods of the factory. The application programmer can then olaik-a
Parser implementation instance from the factory. If the factory cannot provide a
parser configured as set by the application programmer, thasexConfigu-
rationException is thrown.

Examples

The following is a simple example of how to parse XML content from a URL:

SAXParser parser;
HandlerBase handler = new MyApplicationHandlerBase();
SAXParserFactory factory = SAXParserFactory.newlnstance();
try {
parser = factory.newSAXParser();
parser.parse("http://myserver/mycontent.xml", handler);
} catch (SAXException se) {
/I handle error
} catch (IOException ioe) {
/I handle error
} catch (ParserConfigurationException pce) {
/I handle error

}

The following is an example of how to configure a SAX parser to be namespace
aware and validating:

SAXParser parser;
HandlerBase handler = new MyApplicationHandlerBase();
SAXParserFactory factory = SAXParserFactory.newlnstance();

14

March 2, 2000

DOM Plugability

3.2

factory.setNamespaceAware(true);
factory.setValidating(true);

try {
parser = factory.newSAXParser();
parser.parse("http://myserver/mycontent.xml", handler);
} catch (SAXException se) {
/I handle error
} catch (IOException ioe) {
/I handle error
} catch (ParserConfigurationException pce) {
// handle error

}

DOM Plugability

The DOM plugability classes allow a programmer to parse an XML document and
obtain arorg.w3c.dom.Document object from eDocumentBuilder implemen-
tation which wraps an underlying DOM implementation.

In order to obtain ®ocumentBuilder instance, an application programmer first
obtains an instance ofC®cumentBuilderFactory . TheDocumentBuilder-

Factory instance is obtained via the stat@vinstance method of thédocu-
mentBuilderFactory class. This method uses the
javax.xml.parsers.DocumentBuilderFactory system property to deter-
mine theDocumentBuilderFactory implementation class to load, instantiate
and return. If théavax.xml.parsers.DocumentBuilderFactory system
property is not defined, then a platform def@utumentBuilderFactory

instance will be returned.

If the DocumentBuilderFactory implementation class described by the
javax.xml.parsers.DocumentBuilderFactory property cannot be loaded or
instantiated at runtime, RactoryConfigurationError is thrown. This error

message must contain a descriptive explanation of the problem and how the user
can resolve it.

The instance obocumentBuilderFactory can optionally be configured by the
application programmer to provide parsers that are namespace aware or validating,
or both. These settings are made usingé#tiéamespaceAware andsetVali-

dating methods of the factory. The application programmer can then obtain a
DocumentBuilder implementation instance from the factory. If the factory cannot

Java API for XML Parsing Version 1.0 15

Plugability Layer

3.21

3.2.2

provide a parser configured as set by the application programmer,Rhese@
ConfigurationException is thrown.

Reliance on SAX API

The DocumentBuilder reuses several classes from the SAX API. This does not
mean that the implementor of the underlying DOM implementation must use a
SAX parser to parse the XML content, only that the implementation communicate
with the application using these existing and defined APIs.

Examples

The following is a simple example of how to parse XML content from a URL:

DocumentBuilder builder;
DocumentBuilderFactory factory =
DocumentBuilderFactory.newlnstance();
String location = "http://myserver/mycontent.xml";
try {
builder = factory.newDocumentBuilder();
Document document = builder.parse(location);
} catch (SAXException se) {
/I handle error
} catch (IOException ioe) {
/I handle error
} catch (ParserConfigurationException pce) {
// handle error

}

The following is an example of how to configure a factory to produce parsers to be
namespace aware and validating:

DocumentBuilder builder;
DocumentBuilderFactory factory =
DocumentBuilderFactory.newlnstance();
factory.setNamespaceAware(true);
factory.setValidating(true);
String location = "http://myserver/mycontent.xml";
try {
builder = factory.newDocumentBuilder();
Document document = builder.parse(location);
} catch (SAXException se) {
/I handle error

16

March 2, 2000

Thread Safety

3.3

} catch (IOException ioe) {
/l handle error

} catch (ParserConfigurationException pce) {
/l handle error

}

Thread Safety

Implementations of thBAXParser andDocumentBuilder — abstract classes are

not expected to be thread safe by this specification. This means that application pro-
grammers should not expect to be able to use the same instan&agpParser or
DocumentBuilder in more than one thread at a time without side effects. If a pro-
grammer is creating a multi-threaded application, they should make sure that only
on thread has access to any gigaixParser or DocumentBuilder instance.

Configuration of &sAXParserFactory or DocumentBuilderFactory is also
not expected to be thread safe. This means that an application programmer should
not allow aSAXParserFactory or DocumentBuilderFactory to have itset-
NamespaceAware oOr setValidating methods from more than one thread.

It is expected that theewSAXParser method of ésAXParserFactory imple-
mentation and theewDocumentBuilder method of @ocumentBuilderFac-

tory will be thread safe without side effects. This means that an application
programmer should expect to be able to create parser instances in multiple threads
at once from a shared factory without side effects or problems.

Java API for XML Parsing Version 1.0 17

Plugability Layer

18

March 2, 2000

SECTION 4

Package javax.xml.parsers

4.1

This section defines the API of tlawax.xml.parsers package.

public abstract class SAXParserFactory

TheSAXParserFactory defines a factory API that enables applications to config-
ure and obtain a SAX based parser to parse XML documents.

public abstract class SAXParserFactory {
public static SAXParserFactory newlnstace();
protected SAXParserFactory();
public SAXParser newSAXParser()
throws ParserConfigurationException, SAXException;
public void setNamespaceAware(boolean aware);
public void setValidating(boolean validating);
public boolean isNamespaceAware();
public boolean isValidating();

Java API for XML Parsing Version 1.0 19

Package javax.xml.parsers

41.1

4.1.2

4.1.3

41.4

public static SAXParserFactory newlnstance()

Returns a new instance ofs®XParserFactory . The implementation of th8AX-
ParserFactory returned depends on the setting ofj#vax.xml.pars-
ers.SAXParserFactory property or, if the property is not set, a platform specific
default.

Throws aFactoryConfigurationError if the class implementing the factory
cannot be found or instantiated. An Error is thrown instead of an exception because
the application is not expected to handle or recover from such events.

protected SAXParserFactory()

An empty constructor is provided. Implementors of this abstract class must provide
their own public no-argument constructor in order for the statiénstance

method to work correctly. Application programmers should be able to instantiate an
implementation of this abstract class directly if they want to use a specific imple-
mentation of this AP| without using the static newlnstance method to obtain the
configured or platform default implementation.

public SAXParser newSAXParser()

Returns a new configured instance of tgp&Parser .

Throws aParserConfigurationException if the SAXParser instance cannot
be created with the requested configuration.

Throws aSAXException if the initialization of the underlying parser fails.

public void setNamespaceAware(boolean aware)

Configuration method that specifies whether the parsers created by this factory are
required to provide XML namespace support or not.

Note, if a parser cannot be created by this factory that satisfies the requested
namespace awareness valueaeserConfigurationException will be thrown
when the program attempts to acquire the parser vigeth@axParser method.

20

March 2, 2000

public abstract class SAXParser

4.1.5

4.1.6

4.1.7

4.2

public void setValidating(boolean validating)

Configuration method whether specifies if the parsers created by this factory are
required to validate the XML documents that they parse.

Note, that if a parser cannot be created by this factory that satisfies the requested
validation capacity, arserConfigurationException will be thrown when
the application attempts to acquire the parser viadhwSaxParser method.

public boolean isNamespaceAware()

Indicates if thisSAXParserFactory is configured to produce parsers that are
namespace aware or not.

public boolean isValidating()

Indicates if thisSAXParserFactory is configured to produce parsers that validate
XML documents as they are parsed.

public abstract class SAXParser

Implementation instances of tB&XParser abstract class contain an implementa-
tion of theorg.xml.saxParser interface and enables content from a variety of
sources to be parsed using the contained parser. Instarg/esRafrser are
obtained from &AXParserFactory by invoking itsnewSAXParser method.

public abstract class SAXParser {

protected SAXParser();

public void parse(InputStream stream, HandlerBase base)
throws SAXException, IOException;

public void parse(String uri, HandlerBase base)
throws SAXException, IOException;

public void parse(File file, HandlerBase base)
throws SAXException, IOException;

public void parse(InputSource source, HandlerBase base)
throws SAXException, IOException;

public abstract org.xml.sax.Parser getParser()
throws SAXException;

public abstract boolean isNamespaceAware();

public abstract boolean isValidating();

Java API for XML Parsing Version 1.0 21

Package javax.xml.parsers

421

4.2.2

4.2.3

4.2.4

protected SAXParser()

An empty constructor is provided. Implementations should provide a protected con-
structor so that their factory implementation can instantiate instances of the imple-
mentation class. Application programmers should not be able to directly construct
implementation subclasses of this abstract subclass. The only way a application
should be able to obtain a reference ®/xXParser implementation instance is by
using the appropriate methods of 8¥XParserFactory

public void parse(InputStream stream, HandlerBase base)

Parses the contents of the giyava.io.InputStream as an XML document
using the specifiedrg.sax.xml.HandlerBase object.

Throws arorg.xml.sax.SAXException if there is a problem parsing the given
XML content.

Throws gjava.io.lOException if any 10 errors occur reading the given
InputStream
Throws anllegalArgumentException if the giveninputStream is null.

public void parse(String uri, HandlerBase base)

Parses the content of the given URI as an XML document using the specified
org.sax.xml.HandlerBase object.

Throws arorg.xml.sax.SAXException if there is a problem parsing the given
XML content. Throws gava.io.lOException if any 10 errors occur while read-
ing content located by the given URI.

Throws anllegalArgumentException if the given URI is null.

public void parse(File file, HandlerBase base)

Parses the content of the given java.io.File as an XML document using the specified
org.sax.xml.HandlerBase object.

Throws arorg.xml.sax.SAXException if there is a problem parsing the given
XML content.

22

March 2, 2000

public abstract class DocumentBuilderFactory

Throws gjava.io.|IOException if any 10 errors occur while reading content
from the giverFile .

Throws anllegalArgumentException if the givenFile is null.

4.2.5 public void parse(InputSource source, HandlerBase base)

Parses the content of the giwag.xml.sax.InputSource as an XML docu-
ment using the specifiedg.sax.xml.HandlerBase object.

Throws arorg.xml.sax.SAXException if there is a problem parsing the given
XML content.

Throws gjava.io.lOException if any 10 Errors occur while reading content
from the given InputSource.

Throws anllegalArgumentException if the given InputSource is null.

4.2.6 public abstract org.xml.sax.Parser getParser()

Returns the underlyingrg.xml.sax.Parser object which is wrapped by this
SAXParser implementation.

Throws aSAXException if the underlying parser cannot be obtained.

4.2.7 public abstract boolean isNamespaceAware()

Returns whether or not this parser supports XML namespaces.

4.2.8 public abstract boolean isValidating()

Returns whether or not this parser supports validating XML content as it is parsed.

4.3 public abstract class DocumentBuilderFactory

TheDocumentBuilderFactory defines a factory API that enables applications to
configure and obtain a parser to parse XML documents into a D&lvment
tree.

public abstract class DocumentBuilderFactory {

Java API for XML Parsing Version 1.0 23

Package javax.xml.parsers

4.3.1

4.3.2

4.3.3

public static DocumentBuilderFactory newlnstance();

protected DocumentBuilderFactory();

public DocumentBuilder newDocumentBuilder()
throws ParserConfigurationException;

public void setNamespaceAware(boolean awareness);

public void setValidating(boolean validating);

public boolean isNamespaceAware();

public boolean isValidating();

public static DocumentBuilderFactory newlnstance()

Returns a new instance obacumentBuilderFactory . The implementation of
the DocumentBuilderFactory returned depends on the setting of the
javax.xml.parsers.DocumentBuilderFactory property or, if the property is
not set, a platform specific default.

Throws aFactoryConfigurationError if the class implementing the factory
cannot be found or instantiated. An Error is thrown instead of an exception because
the application is not expected to handle or recover from such events.

protected DocumentBuilderFactory()

An empty constructor is provided by the API. Implementors of this abstract class
must provide a public no-argument constructor in order for the statitnstance

method to work correctly. Application programmers should be able to instantiate an
implementation of this abstract class directly if they want to use a specific imple-
mentation of this API without using the static newlnstance method to obtain the
configured or platform default implementation.

public DocumentBuilder newDocumentBuilder()

Returns a new configured instance of tippeumentBuilder

Throws aParserConfigurationException if the DocumentBuilder instance
cannot be created with the requested configuration.

24

March 2, 2000

public abstract class DocumentBuilder

4.3.4

4.3.5

4.3.6

4.3.7

4.4

public void setNamespaceAware(boolean aware)

Configuration method that specifies whether the parsers created by this factory are
required to provide XML namespace support or not.

Note that if a parser cannot be created by this factory that satisfies the requested
namespace awarenesg®aserConfigurationException will be thrown when
an attempt to obtain the parser via tle@SaxParser method is made.

public void setValidating(boolean validating)

Configuration method that specifies if the parsers created by this factory are
required to validate the XML documents that they parse.

Note that if a parser cannot be created by this factory that satisfies the requested
validation capacity, ®arserConfigurationException will be thrown when an
attempt to obtain the parser via th@vSaxParser method is made.

public boolean isNamespaceAware()

Indicates if thisDocumentBuilderFactory is configured to produce parsers that
are namespace aware or not.

public boolean isValidating()

Indicates if thisDocumentBuilderFactory is configured to produce parsers that
validate XML documents as they are parsed.

public abstract class DocumentBuilder

Instances obocumentBuilder provide a mechansim for parsing XML docu-
ments into a DOM document tree represented hy@w3c.dom.Document
object. ADocumentBuilder instance is obtained fromDcumentBuilder-
Factory by invoking itsnewDocumentBuilder method.

Note that DocumentBuilder uses several classes from the SAX API. This does not
require that the implementor of the underlying DOM implementation use a SAX
parser to parse XML content intmay.w3c.dom.Document . It merely requires

Java API for XML Parsing Version 1.0 25

Package javax.xml.parsers

4.4.1

4.4.2

that the implementation communicate with the application using these existing
APIs.

public abstract class DocumentBuilder {
protected DocumentBuilder();
public Document parse(InputStream is)
throws SAXException, IOException;
public Document parse(String uri)
throws SAXException, IOException;
public Document parse(File f)
throws SAXException, IOException;
public abstract Document parse(InputSource is)
throws SAXException, IOException;
public abstract boolean isNamespaceAware();
public abstract boolean isValidating();
public abstract void setEntityResolver(EntityResolver er);
public abstract void setErrorHandler(ErrorHandler eh);
public Document newDocument();

protected DocumentBuilder()

An empty constructor is provided. Implementations should provide a protected con-
structor so that their factory implementation can instantiate instances of the imple-
mentation class. Application programmers should not be able to directly construct
implementation subclasses of this abstract subclass. The only way a application
should be able to obtain a reference BweumentBuilder implementation

instance is by using the appropriate methods obtivementBuilder

public Document parse(InputStream stream)

Parses the contents of the giyava.io.InputStream as an XML document
and returns anrg.w3c.dom.Document object.

Throws gjava.io.lOException if any 10 errors occur reading the given
InputStream
Throws anllegalArgumentException if the giveninputStream is null.

26

March 2, 2000

public abstract class DocumentBuilder

4.4.3 public Document parse(String uri)

Parses the content at the location specified by the given URI as an XML document
and returns anrg.w3c.dom.Document object.

Throws gava.io.lOException if any 10 errors occur while reading the content
specified by the URI.

Throws anllegalArgumentException if the URI is null.

4.4.4 public Document parse(File file)

Parses the content of the givjava.io.File as an XML document and returns
anorg.w3c.dom.Document object.

Throws gava.io.lOException if any 10 errors occur while reading the content
from theFile .
Throws anllegalArgumentException if the File is null.

4.4.5 public abstract Document parse(InputSource source)

Parses the content of the giwag.xml.sax.InputSource as an XML docu-
ment and returns @&g.w3c.dom.Document object.

Throws gjava.io.lOException if any 10 errors occur reading the content from
the InputSource

Throws anllegalArgumentException if the InputSource is null.

4.4.6 public abstract boolean isNamespaceAware()

Returns whether or not this parser supports XML namespaces.

4.4.7 public abstract boolean isValidating()

Returns whether or not this parser supports validating XML content as it is parsed.

Java API for XML Parsing Version 1.0 27

Package javax.xml.parsers

4.4.8

4.4.9

4.4.10

4.5

451

public abstract void setEntityResolver(EntityResolver er)

Specifies therg.xml.sax.EntityResolver to be used by thiBocument-

Builder . Setting theEntityResolver to null, or not calling this method, will
cause the underlying implementation to use its own default implementation and
behavior.

public abstract void setErrorHandler(ErrorHandler eh)

Specifies th@rg.xml.sax.ErrorHandler to be used by thiBocument-
Builder . Setting theErrorHandler to null, or not calling this method, will cause
the underlying implementation to use its own default implementation and behavior.

public Document newDocument()

Creates an newrg.w3c.dom.Document instance from the underlying DOM
implementation.

public class FactoryConfigurationError

This error is thrown if there is a configuration problem when creating new factory
instances. This error will also be thrown when the class of a Factory specified by a
system property, or the class of the default system parser factory, cannot be loaded
or instantiated. Implementation or Application developers should never need to
directly construct or catch errors of this type.

public class FactoryConfigurationError extends Error {
public FactoryConfigurationError();
public FactoryConfigurationError(String msg);
public FactoryConfigurationError(Exception e);
public FactoryConfigurationError(Exception e, String msg);
public String getMessage();
public Exception getException();

public FactoryConfigurationError()

Constructs a neWactoryConfigurationError with no detail message.

28

March 2, 2000

public class ParserConfigurationException

4.5.2 public FactoryConfigurationError(String msg)

Constructs a newactoryConfigurationError with the given detail message.

4.5.3 public FactoryConfigurationError(Exception e)

Constructs a neWwactoryConfigurationError with the givenException asa
root cause.

4.5.4 public FactoryConfigurationError(Exception e, String msg)

Constructs a heWwactoryConfigurationError with the givenException asa
root cause and the given detail message.

4.5.5 public String getMessage()

Returns the detail message of the error or null if there is no detail message.

4.5.6 public Exception getException()

Returns the root cause of the error or null if there is none.

4.6 public class ParserConfigurationException

This exception is thrown if a factory cannot configure a parser given its current con-
figuration parameters. For example, if a parser factory cannot create parsers that
validate, but have been configured to do so, it will throw this exception when a
parser is requested to via the parser creation methods. Application developers are
not expected to construct instances of this exception type, but must catch them in
code that obtains parser instances from a factory.

public class ParserConfigurationException extends Exception {
public ParserConfigurationException();
public ParserConfigurationException(String msg);

}

Java API for XML Parsing Version 1.0 29

Package javax.xml.parsers

4.6.1

4.6.2

public ParserConfigurationException()

Constructs a heWwarserConfigurationException with no detail error mes-
sage.

public ParserConfigurationException(String msg)

Constructs a neWarserConfigurationException with the given detail error
message.

30

March 2, 2000

SECTION 5

Conformance Requirements

5.1

This section describes the conformance requirements for parser implementations of
this specification. Parser implementations that are accessed via the APIs defined
here must implement these constraints, without exception, to provide a predictable
environment for application development and deployment.

Document Character Set Encoding Conformance

XML documents, both markup and content, are represented using the UNICODE
character set. A character set may be physically encoded using one or more charac-
ter set encodings. An XML document’s encoding is typically announced in the pro-
log of the document in the XML declaration Processing Instruction. For example:

<?XML Version="1.0" encoding="UTF-8"?>

Note that if the XML document’s character encoding is ASCII, the XML declara-
tion does not need to contain the encoding attribute. Appendix F of the W3C XML
1.0 Recommendation describes a mechanism for determining the character encod-
ing of an XML document that is not encoded in the UTF-8 or UTF-16 character
sets.

Java API for XML Parsing Version 1.0 31

Conformance Requirements

Parser implementations are required to support the following character set encod-
ings:

* ASCII

* UTF-8

* UTF-16

In addition, parser implementations may optionally support additional encodings,
including the following encoding values which are also defined in the W3C XML
Recommendation:

* |SO-10646-UCS-2

* |SO-10646-UCS-4

* |SO-8859-1

* |SO-8859-2

* |SO-8859-3

* |SO-8859-4

* |SO-8859-5

* |SO-8859-6

* |SO-8859-7

* |SO-8859-8

* |SO-8859-9

* |SO-2022-JP

* Shift_JIS

* EUC-JP

Itis an error for a document to declare a particular encoding and actually use
another. If this situation occurs, the parser must throw an exception 0S8/EXx-
ception and stop processing the document.

Parser implementations are required to support the facility whereby an external
entity may declare its own encoding distinct from that of the referencing entity or
document.

32

March 2, 2000

Well Formedness Conformance

5.2

5.3

5.4

541

Well Formedness Conformance

The W3C XML 1.0 Recommendation defines a well formed document to be a tex-
tual object that meets the following requirements:

* There is exactly one element, the root (or document) element which may
contain other elements.
* Meets all the well-formedness constraints defined in the Recommendation

* References, either directly or indirectly, only parsed entities that are also
well formed.

All parser implementations implementing this specification are required to report
any violations of the well-formedness constraints defined by the W3C XML 1.0
Recommendation.

Validity Conformance

In addition to checking documents for well-formedness, as defined above, a validat-
ing parser implementation is also required to check an XML document for con-
formance to:

* The Document’s DTD (if any)

* The XML validity constraints defined in section 2.8 of the W3C XML 1.0
Recommendation

XML Namespace Conformance

Parser implementations may optionally provide support to parse documents that
utilize the W3C XML Namespaces Recommendation.

Non Validating Parser Conformance

A non-validating parser that implements namespace support is required to check
for, and report as an error, any syntactic violations defined by the W3C XML
Namespaces Recommendation. Parser implementations are required to detect
namespace usage that has no matching prior namespace declaration, either within
the body of the document entity or within the internal subset of a document’s DTD.

Java API for XML Parsing Version 1.0 33

Conformance Requirements

5.4.2

Parser implementations encountering namespace usage without a prior matching
namespace declaration shall result in a parsing error.

Validating Parser Conformance

In addition to meeting the requirements for a non-validating parser detailed above,
a validating parser that implements namespace support as defined is required to
check for, and report as an error, any namespace used buy not declared within a
document or its internal or external DTD sets.

34

March 2, 2000

SECTION 6

Change History

6.1

6.2

This section lists the changes that have occurred over the development of this spec:
ification.

From 1.0 Public Release to 1.0 Final Release

The reservation of the java and javax namespace prefixes was removed. The XML
Namespace specification is clear that a namespace is a collection of names that is
identified by a URI reference. The prefix is a local identifier for the URI reference,
therefore the reservation of the java and javax nhamespaces was in error.

From 1.0 Public Review to 1.0 Public Release

From the Public Review draft of this specification to the Public Release version, the
specification was reordered and rewritten to address general feedback from the user
community. This feedback indicated that the specification was too detailed in
describing the endorsed specifications and not detailed enough in describing the
plugability layer.

Java API for XML Parsing Version 1.0 35

Change History

ThenewParser method of theSAXParserFactory abstract class was removed.
Feedback showed that it was confusing to be able to obtain b XiRarser
wrapper and the underlying implementation from the factory. Removing this
method allows the API to be more understandable while preserving the ability to
access the underlying parser via geeParser method of theSAXParser

abstract class.

ThegetLocale andsetLocale methods of the various classes were removed.
Instead it was felt that parser implementation authors should report errors in the
configured default locale of the execution environment.

A new exception nameRiarserConfigurationException was added so that a
parser factory can signal to an application that it can’t provide a parser with the
desired configuration. TheheckXXX methods aren’t sufficient for this purpose as

a situation may arise where there is a mutually exclusive setting of various parser
properties. At this time, this problem is potentially minor as there are only two set-
table properties on each of the parser types, but in the future as the number of setta-
ble properties increases, the problem would get harder to solve without an
exception that could be thrown at parser creation time. As part of this change, the
setXXX property methods of the factories no longer throwlegalArgument-

Exception if they are set to a property which cannot be supported.

TheFactoryException class was renamed EactoryConfigurationError
This rename was undertaken to emphasize that such an error condition is a fatal
condition that an application should not be reasonable expected to handle.

36

March 2, 2000

SECTION 7

Future Directions

7.1

This first version of the Java API for XML Parsing includes the basic facilities for
working with XML documents using either the SAX or DOM APIs. However, there
is always more to be done.

This section briefly describes our plans for future versions of this specification.
Please keep in mind that the items listed here are preliminary and there is no com-
mitment to the inclusion of any specific feature in any specific version of the speci-
fication. In addition, this list of items is by no means the only features that may
appear in a future revision. Your feedback is encouraged.

Updated SAX and DOM Support

As this specification was finalized, the SAX2 and DOM Level 2 specifications were
well on their way to completion. It is anticipated that these revisions to the SAX
and DOM specifications will be completed in time to be reflected in the next ver-
sion of this API.

Java API for XML Parsing Version 1.0 37

Future Directions

7.2

7.3

XSL Plugability Support

XSL (eXtensible Stylesheet Language) is a language for expressing stylesheets that
can be used with XML document. It consists of two parts:

* A language for transforming XSL documents (also known as XSLT)
* An XML vocabulary for specifying formatting specfics

XSL Transformations has been formalized as a W3C Recommendation. In a future
version of the specification, we would like to provide a plugability API to allow an
application programmer to provide an XML document and an XSLT document to a
wrapped XSLT processor and obtain a transformed result.

Pluggability Mechanism Enhancements

While system properties are a useful mechanism for allowing pluggability of pars-
ers, they do not cover some common use cases. Future versions of this specification
need to provide alternative pluggability mechanisms for these cases.

38

March 2, 2000

	Java API for XML Parsing
	Contents
	SECTION 1 Overview�5
	SECTION 2 Endorsed Specifications�9
	SECTION 3 Plugability Layer�13
	SECTION 4 Package javax.xml.parsers�19
	SECTION 5 Conformance Requirements�31
	SECTION 6 Change History�35
	SECTION 7 Future Directions�37

	SECTION 1 Overview
	1.1 What is XML?
	1.2 XML and the Java™ Platform
	1.3 About this Specification
	1.4 Who Should Read this Document
	1.5 Development of this Specification
	1.6 Report and Contact
	1.7 Acknowledgements

	SECTION 2 Endorsed Specifications
	2.1 W3C XML 1.0 Recommendation
	2.2 W3C XML Namespaces 1.0 Recommendation
	2.3 Simple API for XML Parsing (SAX)
	2.4 Document Object Model (DOM) Level 1

	SECTION 3 Plugability Layer
	3.1 SAX Plugability
	3.1.1 Examples

	3.2 DOM Plugability
	3.2.1 Reliance on SAX API
	3.2.2 Examples

	3.3 Thread Safety

	SECTION 4 Package javax.xml.parsers
	4.1 public abstract class SAXParserFactory
	4.1.1 public static SAXParserFactory newInstance()
	4.1.2 protected SAXParserFactory()
	4.1.3 public SAXParser newSAXParser()
	4.1.4 public void setNamespaceAware(boolean aware)
	4.1.5 public void setValidating(boolean validating)
	4.1.6 public boolean isNamespaceAware()
	4.1.7 public boolean isValidating()

	4.2 public abstract class SAXParser
	4.2.1 protected SAXParser()
	4.2.2 public void parse(InputStream stream, HandlerBase base)
	4.2.3 public void parse(String uri, HandlerBase base)
	4.2.4 public void parse(File file, HandlerBase base)
	4.2.5 public void parse(InputSource source, HandlerBase base)
	4.2.6 public abstract org.xml.sax.Parser getParser()
	4.2.7 public abstract boolean isNamespaceAware()
	4.2.8 public abstract boolean isValidating()

	4.3 public abstract class DocumentBuilderFactory
	4.3.1 public static DocumentBuilderFactory newInstance()
	4.3.2 protected DocumentBuilderFactory()
	4.3.3 public DocumentBuilder newDocumentBuilder()
	4.3.4 public void setNamespaceAware(boolean aware)
	4.3.5 public void setValidating(boolean validating)
	4.3.6 public boolean isNamespaceAware()
	4.3.7 public boolean isValidating()

	4.4 public abstract class DocumentBuilder
	4.4.1 protected DocumentBuilder()
	4.4.2 public Document parse(InputStream stream)
	4.4.3 public Document parse(String uri)
	4.4.4 public Document parse(File file)
	4.4.5 public abstract Document parse(InputSource source)
	4.4.6 public abstract boolean isNamespaceAware()
	4.4.7 public abstract boolean isValidating()
	4.4.8 public abstract void setEntityResolver(EntityResolver er)
	4.4.9 public abstract void setErrorHandler(ErrorHandler eh)
	4.4.10 public Document newDocument()

	4.5 public class FactoryConfigurationError
	4.5.1 public FactoryConfigurationError()
	4.5.2 public FactoryConfigurationError(String msg)
	4.5.3 public FactoryConfigurationError(Exception e)
	4.5.4 public FactoryConfigurationError(Exception e, String msg)
	4.5.5 public String getMessage()
	4.5.6 public Exception getException()

	4.6 public class ParserConfigurationException
	4.6.1 public ParserConfigurationException()
	4.6.2 public ParserConfigurationException(String msg)

	SECTION 5 Conformance Requirements
	5.1 Document Character Set Encoding Conformance
	5.2 Well Formedness Conformance
	5.3 Validity Conformance
	5.4 XML Namespace Conformance
	5.4.1 Non Validating Parser Conformance
	5.4.2 Validating Parser Conformance

	SECTION 6 Change History
	6.1 From 1.0 Public Release to 1.0 Final Release
	6.2 From 1.0 Public Review to 1.0 Public Release

	SECTION 7 Future Directions
	7.1 Updated SAX and DOM Support
	7.2 XSL Plugability Support
	7.3 Pluggability Mechanism Enhancements

