
Measure for Measure!

JSR-275 Public Review

© 2007-2010 Creative Arts & Technologies

Werner Keil

Santa Clara, California

January 12th, 2010

AVOIDING INTERFACE

AND ARITHMETIC ERRORS

Our Goal

2 © 2007-2010 Creative Arts & Technologies

Emphasis

Most of today‟s technologies including the Java

Language so far lack support for common non-

trivial Arithmetic problems like Unit Conversions.

3 © 2007-2010 Creative Arts & Technologies

Overview

• Present Situation
• Historic IT Errors and Bugs

• Cause of Conversion Errors

• Proposed Changes
• Unit and Measure Support

• Type Safety

• Case Studies

• Demo

• Q&A

4 © 2007-2010 Creative Arts & Technologies

What do these disasters have in common?

•Patriot Missile

The cause was an inaccurate calculation of the

time since boot due to a computer arithmetic error.

•Ariane 5 Explosion

The floating point number which a value was

converted from had a value greater than what

would be represented by a 16 bit signed integer.

5 © 2007-2010 Creative Arts & Technologies

What do these disasters have in common?

• Mars Orbiter

Preliminary findings indicate that one team used

English units (e.g. inches, feet and pounds) while

the other used metric units for a key spacecraft

operation.
• NASA lost a $125 million Mars orbiter because a Lockheed Martin engineering team used

English units of measurement while the agency's team used the more conventional Metric (SI)

system for a key spacecraft operation

• This also underlines the added risk when 3rd party contractors are involved or projects are

developed Offshore

6 © 2007-2010 Creative Arts & Technologies

Unit Tests wouldn‘t find these…

• All previous example illustrate three categories of

errors difficult to find through Unit Testing:

• Interface Errors (e.g. millisecond/second, radian/degree, meters/feet).

• Arithmetic Errors (e.g. overflow).

• Conversion Errors.

7 © 2007-2010 Creative Arts & Technologies

Causes of Conversion Errors

• Ambiguity on the unit

• Gallon Dry / Gallon Liquid

• Gallon US / Gallon UK

• Day Sidereal / Day Calendar

• ...

• Wrong conversion factors:
static final double PIXEL_TO_INCH = 1 / 72;

double pixels = inches * PIXEL_TO_INCH

8 © 2007-2010 Creative Arts & Technologies

Present Situation

•Java does not have strongly typed primitive types

(like e.g. Ada language).

•For performance reasons most developer prefer

primitive types over objects in their interface.

•Primitives type arguments often lead to name

clashes (methods with the same signature)

9 © 2007-2010 Creative Arts & Technologies

JSR-275

10 © 2007-2010 Creative Arts & Technologies

Base Classes

Namespace: javax.measure.*

Core parts or the API are one interface and an

abstract base class

Measurable<Q extends Quantity> (interface)

Measure<V, Q extends Quantity> (abstract class)

JSR-275

11 © 2007-2010 Creative Arts & Technologies

Packages

•Unit
holds the SI, NonSI and UCUM units

•Quantity
holds dimensions like mass or length)

•Converter
holds Unit Converters

•Format
holds common formatters including UCUM)

JSR-275

12 © 2007-2010 Creative Arts & Technologies

Measurable (1)

Let‟s take the following example

abstract class Person

{

void setWeight(double weight);

}

Should the weight be in Pound, Stone,
Kilogram, or what else ???

JSR-275

13 © 2007-2010 Creative Arts & Technologies

Measurable (2)

Using Measurable there is no room for error

abstract class Person

{

void setWeight(Measurable<Mass> weight);

}

Not only the interface is cleaner (the weight must
a be generic mass type), but also there is no
confusion on the measurement unit

JSR-275

14 © 2007-2010 Creative Arts & Technologies

Measurable (3)

So while either of these calls are legitimate:

double weightInKg = weight.doubleValue(KILOGRAM);

double weightInLb = weight.doubleValue(POUND);

This one isn‟t:

double weightInLiter = weight.doubleValue(LITER);

// Compile Error

JSR-275

15 © 2007-2010 Creative Arts & Technologies

Units

JSR-275

16 © 2007-2010 Creative Arts & Technologies

Systems of Units

JSR-275

17 © 2007-2010 Creative Arts & Technologies

Unit Converters

JSR-275

18 © 2007-2010 Creative Arts & Technologies

Unit Operations

Result with same dimension Result with different dimension

Binary operations:

•plus (double) or (long)

•times (double) or (long)

•divide (double) or (long)

•compound (Unit)

Binary operations:

•root (int)

•power (int)

•times (Unit)

•divide (Unit)

Unary operations:

•inverse()

JSR-275

19 © 2007-2010 Creative Arts & Technologies

Measure or Measurable

Measurable is an interface allowing all kinds of

implementations.

It is matching equivalent to e.g. java.lang.Number and

provides similarly named methods for conversion to

primitive types such as intValue(Unit) or doubleValue(Unit).

Answer:

Measure is the combination of a numeric value and a

unit. Measurable is more flexible, but if you need to

retrieve the original numeric value stated in its original

unit and precision (no conversion), then Measure or

subclasses are your choice.

JSR-275

20 © 2007-2010 Creative Arts & Technologies

Kenai.com

As the first official JSR our EG decided to

migrate to Kenai.com, Sun„s Developer

Cloud for Java, JavaFX, MySQL,

Glassfish and other Open Source

Activities

Project Kenai

http://www.kenai.com

Search for JSR-275

http://www.kenai.com/

JSR-275

21 © 2007-2010 Creative Arts & Technologies

References

•GeoAPI

•Thales Group

•Orbitz/Ebookers.com

•IEM (Emergency Management)

•UCUM

•OpenEHR

•Project Noodles

JSR-275

22 © 2007-2010 Creative Arts & Technologies

Languages and Platforms

•Java

•Groovy/Grails

•Scala

•Android

•plus any other JVM-based language

JSR-275

23 © 2007-2010 Creative Arts & Technologies

Search Results

•Google: 270.000

•Once you enter at least “JSR-2”

•That is 3rd largest for any single JSR

(only 168 and 256 have more)

•Bing: 694.000

•Yahoo: 412.000

DEMOS

Let‟s have a look at some…

24 © 2007-2010 Creative Arts & Technologies

JSR-275

25 © 2007-2010 Creative Arts & Technologies

Case Study: Monetary System

Monetary systems are not subject to JSR-275, but this

illustrates, how easily the framework can be extended to non

physical or scientific quantities.

Such extension can be valuable by leveraging the

framework‟s capabilities (formatting, conversion,…)

and applying its usefulness beyond what java.util.Currency

now provides

JSR-275

26 © 2007-2010 Creative Arts & Technologies

Currency Conversion Classes

DEMOS

Let‟s have a look at some…

27 © 2007-2010 Creative Arts & Technologies

JSR-275

28 © 2007-2010 Creative Arts & Technologies

Money Demo(1)

We‟ll extend MoneyDemo to show fuel costs in Indian Rupees.

First by adding a new currency to MonetarySystem.

// Use currency not defined as constant (Indian Rupee).

public static final DerivedUnit<Money> INR = monetary(
new Currency(„INR")

);

UnitFormat.getInstance().label(INR, „Rp");

Then add this line to MoneyDemo.
(also change static import to MonetarySystem.*;)

JSR-275

29 © 2007-2010 Creative Arts & Technologies

Money Demo(2)

Next set the Exchange Rate for Rupees

((Currency) INR).setExchangeRate(0.022); // 1.0Rp = ~0.022 $

Note, the explicit cast is required here, because getUnits() in
SystemOfUnits currently requires a neutral <?> generic
collection type.

JSR-275

30 © 2007-2010 Creative Arts & Technologies

Money Demo(3)

Then we add the following line to the “Display
cost.” section of MoneyDemo

System.out.println("Trip cost = " + tripCost + " (" +
tripCost.to(INR) + ")");

Trip cost = 87.50 $ (3977.26 Rp)

Resulting in this additional output:

Q & A

Let„s talk

31 © 2007-2010 Creative Arts & Technologies

