Project Panama

Status update

March, 2019

O c ®
R Cl_e Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

A rising tide
GPUs and deep learning

* Linear algebra computations critical for machine learning
— E.g. matrix multiplications (dot products) and additions

* Matrix computations are embarrassingly parallel!
— GPUs provide acceleration for common computations (e.g. cuBLAS)

* Deep learning frameworks support GPUs as execution backend of choice
— Theano, Tensorflow, Spark, Torch, ...

* But wait, all these frameworks rely on native libraries!

o c ®
R Cl_e Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

Going native

* Sometimes you just have to “go native”
— Off-CPU computing (Cuda, OpenCL)
— Deep learning (Blas, cuBlas, cuDNN, Tensorflow, ...)
— Graphics processing (OpenGL, Vulkan, DirectX)
— Others (OpenSSL, SQLite, VS, ...)

* Languages/platforms must lower the activation energy required to do so!

o c ®
R Cl_e Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

Java Native Interface

i is lice -SA-
ORACLE
Copyright © 2019, Oracle and/or its affiliates. All rights reserve

Getpid in JNI

//Getpid. java

public class Getpid {
native int getpid();

}

//Client.java
class Client {
public static void main(String[] args) {
new Getpid().getpid();
}

o c ®
R Cl_e Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

Getpid in JNI

Workflow
Getpidjava — jaovac ——> Getpid class |ibcso
l A
unistd, getpid, |
* A :
user-written gEtpid c gcc/clang ——> gEtpidso
generated

®
ORACI—E Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

Getpid in JNI

Gluing all the framents

//Getpid. java
public class Getpid {

static {
System.loadLibrary("getpid");

}

native int getpid();
}

//Client.java
class Client {
public static void main(String[] args) {
new Getpid().getpid();
}

ORACLE

//getpid.h
#include <jni.h>
#include <stdlib.h>

#ifndef _Included_GetPid
#define _Included_GetPid
#ifdef _ cplusplus
extern "C" {

#endif

/*
* Class: GetPid
* Method: getpid
* Signature: ()I
*/

INIEXPORT jint INICALL Java GetPid_getpid
(INIEnv *, jobject);

#ifdef _ cplusplus
}

#endif

#endif

//getpid.c
#include <unistd.h>
#include "GetPid.h"

IJNIEXPORT jint INICALL Java_GetPid getpid
(INIEnv *env, jobject recv) {
return getpid();

Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

Java Native Interface
Works, but...

* Good: Rich, bidirectional interop between Java and native code

* Bad: No support for modelling off-heap data
— DIY solutions: Unsafe, ByteBuffer, ...

* Ugly: Convoluted workflow

— (Java) users must know how to write (and build!) native code

* Result: writing native bindings in Java is hard!

— Many things can go out of sync as native libraries are updated

o c ®
R Cl_e Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

When JNI fails

Java native bindings fall behind

TensorFlow > Install

Install TensorFlow for Java

TensorFlow provides a Java AP|— particularly useful for loading models created with Python and running them within a
Java application.

@ caution: The TensorFlow Java APl is not covered by the TensorFlow API stability guarantees.

Supported Platforms

TensorFlow for Java is supported on the following systems:

e Ubuntu 16.04 or higher; 64-bit, x86
e macO0S 10.12.6 (Sierra) or higher
e Windows 7 or higher; 64-bit, x86

To install TensorFlow on Android, see Android TensorFlow support [and the TensorFlow Android Camera Demo (4.

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

Enter Panama

The vision

“If non-Java programmers find some library
useful and easy to access, it should be similarly

accessible to Java programmers”

John Rose, JVM Architect

o c ®
R Cl_e Copyright © 2019, Oracle and/or its affiliates. All rights reserved

Panama
The approach

* |dea: model foreign libraries as ordinary Java interfaces
— Foreign interfaces can be generated by tools
— Implementations generated on-the-fly (binding)

* Rich APl to model off-heap data
— Layout, Pointer, Array, Scope, ...

e Result: no more native methods!

o c ®
R Cl_e Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

Getpid in Panama
Library as interfaces

* Foreign functions are just methods
calls on some library object

_lib.getpid();

o c ®
R Cl_e Copyright © 2019, Oracle and/or its affiliates. All rights reserved. 12

Getpid in Panama
Library as interfaces

var 1lib = Libraries.bind(

* Library objects are obtained by
binding a library interface

MethodHandles.lookup(),

Getpid.class);
_lib.getpid();

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

13

Getpid in Panama
Library as interfaces

@NativeHeader .
interface Getpid {

@NativeFunction(“()i32”)

int getpid();

}]

var _lib = Libraries.bind(* Library interfaces contain metadata
MethodHandles.lookup(), _ .
Getpid.class); —E.g. to describe native layouts

_lib.getpid();

o c ®
R Cl_e Copyright © 2019, Oracle and/or its affiliates. All rights reserved. 14

Getpid in JNI

Workflow
Getpidjava — jaovac ——> Getpid class |ibcso
l ,
unistd, getpid, |
A |
user-written getpid . —— gcc/clang —— getpid_,
generated

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

15

Getpid in Panama
Workflow

Getpid — jaovac ——> Getpid class”~ "~ |ibcso

java

user-written
generated

c ®
OR Cl—e Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

16

Off-heap access
pointers and arrays

* Native pointers are modelled with generic class Pointer<X>

— Pointer<X> = address + layout + carrier,

pointee

* Basic operations
— Offset, cast, dereference (get/set), iteration

* Pointers lifecycle managed by Scope
— Cannot dereference a pointer whose owning scope has been closed!

* Native arrays are modelled with generic class Array<X>
— Array<X> = Pointer<X> + size

o c ®
R Cl_e Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

17

Off-heap access
Pointers and arrays

@NativeHeader

interface Strings {
@NativeFunction(“u64:u8)i32”)
int strlen(Pointer<Byte> buf);

var _1ib = Libraries.bind(
MethodHandles.lookup(),
Strings.class);
try (var scope = Scope.newNativeScope()) {
var strPtr = scope.allocateCString(“Hello”);
_lib.strlen(strPtr);

¥

o c ®
R Cl_e Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

18

Off-heap access
Pointers and arrays

@NativeHeader * Scope + try-with-resources

interface Strings .. :
@NativeFunc’%ioi(“uM-u8)i32”) — delimit code blocks which can safely

int strlen(Pointer<Byte> buf); access off-heap memory

var _1ib = Libraries.bind(
MethodHandles.lookup(),
Strings.class);
try (var scope = Scope.newNativeScope()) {
var strPtr = scope.allocateCString(“Hello”);
_lib.strlen(strPtr);

¥

o c ®
R Cl_e Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

19

Off-heap access
Pointers and arrays

@NativeHeader

interface Strings {
@NativeFunction(“u64:u8)i32”)
int strlen(Pointer<Byte> buf);

var _1ib = Libraries.bind(
MethodHandles.lookup(),
Strings.class);

try (var scope = Scope.newNativeScope()) {

* Scope provides many useful
allocation helpers

— allocateCString, allocateArray, ...

var strPtr = scope.allocateCString(“Hello”);

_lib.strlen(strpPtr);
¥

o c ®
R Cl_e Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

20

Panama
Scorecard so far

* Panama interfaces to access foreign functions/data w/o native code!

* But, writing annotated interfaces is (still) relatively hard and error prone!
— Interface metadata contains platform-specific layout descriptions

* Real world example (Tensorflow)
— 161 functions, 23 structs, 50 constants, 2 callbacks
— Total: 26 annotated interfaces!

 Can we do better?

o c ®
R Cl_e Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

21

Jextract

ORACLE

1111

O SN
s
Vol
J

LIQUID
(BOILING)

oo

A= ‘ ouT DISTILLED
== (=N LIQUID

This Photo is licensed under CC BY-SA

Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

22

Jextract
Tools sweet tools

* Goal: auto-generate bundles of annotated interfaces from a C header file
—The generated jar bundle contains headers, structs, callbacks interfaces

* Jextract parses headers (clang), infers layouts, picks Java carrier types
— The generated bundle is platform dependent!

* Tested with many real world libraries
— Tensorflow, BLAS/LAPACK, OpenCL, Clang, OpenGL, Sqlite, Python, ...
— http://hg.openjdk.java.net/panama/dev/raw-file/foreign/doc/panama foreign.html

o c ®
R Cl_e Copyright © 2019, Oracle and/or its affiliates. All rights reserved. 23

Getpid in Panama
Workflow

Getpid — jaovac ——> Getpid class”~ "~ |ibcso

java

user-written
generated

c ®
OR Cl—e Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

24

Getpid in Panama
Workflow w/ jextract

unistdh ——> jextract ——> unistdjar "“*"szo

user-written
generated

o c ®
R Cl_e Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

25

Getpid in Panama
Workflow w/ jextract

unistd .

unistd.class
unistd$gid t.class
unistd$intptr t.class
unistd$off t.class
unistd$pid t.class
unistd$socklen t.class
unistd$ssize t.class
unistd$uid t.class

. unistd$useconds t.class
user-written —

generated

o c ®
R Cl_e Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

26

Getpid in Panama
Workflow w/ jextract

user-written
generated

ORACLE

int
int
int
int
int
int
int

getpid();
getppid();
getpgrp();
__getpgid(int);
getpgid(int);
setpgid(int, int);
setpgrp();

unistd .

unistd.class

Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

27

Getpid in Panama

@NativeHeader(declarations=
“getpid=()i32")

interface Getpid {
int getpid();
}

var _1ib = Libraries.bind(

_lib.getpid();

ORACLE

MethodHandles.lookup(),
Getpid.class);

Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

28

Getpid in Panama
Closing the loop w/ jextract

import static stdlib.unistd_h.*;

getpid();

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

29

Performances

ORACLE

Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

30

Performances
Getpid

(o))
Yo}

(o)}
~N

Mop/sec(throughput)
u u U @) [e)} [e)}
U ~ (o] = w U

o
w

ORACLE

Intel(R) Xeon(R) CPU E5-2665 @ 2.40GHz, 16 cores, 32G RAM

B /NI EMPanama

Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

31

Performances
getpid reloaded (don’t try this at home... yet!)

Intel(R) Xeon(R) CPU E5-2665 @ 2.40GHz, 16 cores, 32G RAM

300

N
(O
o

Mop/sec(throughput)
S

[ERY
ul
o

100

) - -
0

BNl MPanama M Panama (linkToNative - EXPERIMENTAL)

o c ®
R Cl_e Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

Performances
qsort

w w ey
[e))] 0 o
(] (] w

Kop/sec(throughput)

w
B
U

325
305

285

ORACLE

Intel(R) Xeon(R) CPU E5-2665 @ 2.40GHz, 16 cores, 32G RAM

B /NI EMPanama

Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

33

Performances
gsort reloaded (upcalls are still expensive)

Intel(R) Xeon(R) CPU E5-2665 @ 2.40GHz, 16 cores, 32G RAM

Mop/sec(throughput)
= N w
(0] N (9] w Ul H

[EY

o
U

. B .

B NI MPanama M JNI(no upcalls)

O c ®
R CI_E Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

34

Panama
Scorecard

* Ease of use: from header files to native bundles with jextract

* Rich API provides seamless integration with native code
— much of the JNI boilerplate can now be expressed in Java!

e A safer alternative to JNI

— Scope APl manages resource lifecycles (pointers, structs, callbacks, ...

* Room for performance improvement is huge

— Reduce latency of native calls, hoist native transitions out of loops, ...

* Not just for C!

o c ®
R Cl_e Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

35

Panama status

* Early access binaries (macOS/Linux/Windows x64)
— https://jdk.java.net/panama/

* Many community-extracted bindings
— Vulkan, FFTW, Wayland, Cuda, ...

* Community-led ARM port effort is in the works

* Extensive talks with Intel (Steve Dohrmann) to support NVM

o c ®
R Cl_e Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

36

Panama Roadmap
Version 2.0

* Step 1: Low-level, foreign data support
— MemoryAddress, MemoryScope, Layout API, VarHandle changes

* Step 2: Low-level foreign function support
— SystemABI, VM changes to support “native” method handles (aka LinkToNative)

* Step 3: High level Cinterop support
— Pointer<X>, Array<X>, Struct<X>, binder, jextract tool

o c ®
R Cl_e Copyright © 2019, Oracle and/or its affiliates. All rights reserved.

37

